Test ID: 7441633
The Term Structure and Interest Rate Dynamics
Question #1 of 101
QuestionID:472553ᅞ A)
ᅚ B)
ᅞ C)
Question #2 of 101
QuestionID:472594ᅞ A) ᅞ B) ᅚ C)
Question #3 of 101
QuestionID:463732ᅚ A)
Usethefollowing spotratecurvetoanswerthis question:
Maturity 1 2 3
Spot rates 5% 5.5% 6%
The1-yearforwardrateinoneyear [ƒ(1,1)] andthe1-yearforwardrateintwoyears [ƒ(2,1)] isclosestto: ƒ(1,1) ƒ(2,1)
4% 4.89%
6% 7%
5.25% 5.75%
Explanation
ƒ(1,1) = (1+S )/(1+S ) - 1 = 6% ƒ(2,1) = (1+S )/(1+S ) - 1 = 7%
Volatilityinshort-termratesismostlikelyrelatedtouncertaintyabout:
inflation.
thereal economy. monetary policy.
Explanation
Volatilityinshort-termratesismost likely linkedtomonetary policy, whereas volatilityin long-termratesismost likely linkedto uncertaintyaboutthereal economyandinflation.
Assume thatthe interestrates inthe future are not expectedtodifferfromcurrentspotrates. Insuchacase, the liquidity premiumtheory
ofthe termstructure of interestrates projectsthatthe shape ofthe yieldcurve will be:
upward sloping. 22 1
ᅞ B) ᅞ C)
Question #4 of 101
QuestionID:463741ᅞ A) ᅚ B) ᅞ C)
Question #
5
of 101
QuestionID:463714ᅞ A)
ᅞ B)
ᅚ C)
Question #6 of 101
QuestionID:472585variable.
downwardsloping.
Explanation
The liquidity theory holdsthat investorsdemanda premiumtocompensate themto interestrate exposure andthe premium increases with
maturity. Whenthe yieldcurve under pure expectations isflat (i.e., interestrates infuture are expectedto be same ascurrentrates),
additionof liquidity premium (which increases withmaturity) wouldresult inanupwardsloping yieldcurve.
Whichofthefollowing statementsaboutyieldcurvesismost likelyaccurate?
A twist refers to changes to the degree to which the yield curve is humped. Ayieldcurve getssteeper whenspreads widen.
Anegative butterflymeansthattheyieldcurvehas become lesscurved.
Explanation
Atwistreferstoyieldcurvechanges whentheslope becomeseitherflatterorsteeper. Anegativebutterflymeansthatthe
yieldcurvehas becomemorecurved.
Comparedtoayieldcurve basedon government bonds, swap ratecurvesare:
more comparable across countries and have a smaller number of yields at various maturities.
lesscomparableacrosscountriesandhavea greaternumberofyieldsat various maturities.
morecomparableacrosscountriesandhavea greaternumberofyieldsat various maturities.
Explanation
Swap ratecurvesaretypicallydetermined bydollardenominated borrowing basedon LIBOR. Theseratesaredetermined by
market participantsandarenotregulated by governments. Swap ratecurvesarenotaffected bytechnical marketfactorsthat affecttheyieldson government bonds. Swap ratecurvesarealsonotsubjecttosovereigncreditrisk (potential government
defaultondebt)thatisuniqueto governmentdebtineachcountry. Thusswap ratecurvesaremorecomparableacross countries becausetheyreflectsimilar levelsofcreditrisk. Thereisalsoa wider varietyofmaturitiesavailableforswap rate
curves, relativetoayieldcurve basedon USTreasurysecurities, whichhasonlyfouron-the-runmaturitiesoftwoyearsor
ᅚ A) ᅞ B) ᅞ C)
Question #7 of 101
QuestionID:463747ᅞ A) ᅚ B) ᅞ C)
Question #8 of 101
QuestionID:463761ᅞ A) ᅚ B) ᅞ C)
Question #
9
of 101
QuestionID:472566JimMalone, CIO ofSigma bondfundhadasuccessful trackrecordofinvesting ininvestment grade bonds. Recentlythough,
Sigmahas been lagging its peers becauseMalonerefusestoreducethedurationofthe portfolio by purchasing short-term
bondsforthefund. Malone'sactionsaremostconsistent with:
Segmented markets theory.
Preferredhabitattheory. Liquidity preferencetheory.
Explanation
Undersegmentedmarketstheoryinvestorsinonematuritysegmentofthemarket will notmoveintoanyothermaturity
segments.
Suppose thatthere isa parallel upwardshift inthe yieldcurve. Whichofthe following best explainsthis phenomenon? The yield:
decrease is the same for all maturities.
increase isthe same forall maturities.
increase is proportional tothe original level forall maturities.
Explanation
A parallel upwardshift indicatesan equal yield increase acrossall maturities.
Whichofthe following isthe mostimportantconsideration indetermining the numberofobservationstouse to estimate the yield
volatility?
The liquidity of the underlying instrument.
The appropriate time horizon.
The shape ofthe yieldcurve.
Explanation
The appropriate numberofdaysdependsonthe investmenthorizonofthe userofthe volatility measurement, e.g., day traders versus
pensionfundmanagers.
JoeMcBathmakesthefollowing twostatements:
Statement1:Theswap ratecurveindicatescreditspreadover government bondyield.
ᅞ A) ᅚ B) ᅞ C)
Question #10 of 101
QuestionID:472567ᅞ A) ᅞ B) ᅚ C)
Question #11 of 101
QuestionID:463718Josephismostlikelycorrect withregardto:
Both statements.
Statement 2 butnotstatement1.
Statement1 butnotstatement 2.
Explanation
Swap ratesarenotspreadsandhencetheswap ratecurvedoesnotindicatecreditspread. Theswap ratecurvecan beused
insteadof government bondyieldcurvetoindicate premiumfortime valueofmoney.
Pricesof zero-coupon, $1 par bondsisshown below:
Maturity (years) Price
1 $0.9615
2 $0.9070
3 $0.8396 4 $0.7629
Thedefaultriskofthese bondsissimilartothedefaultriskofsurveyed banks basedon whichtheswap rateisdetermined. Governmentspotratecurveis given below:
Maturity (years) Rate
1 3.05%
2 4.10%
3 5.25%
4 6.45%
Thethree-yearswap spreadisclosestto:
78 bps. 110 bps.
67 bps.
Explanation
The3-yearswap fixedrateSFR3isdetermined bysolving:
SFR (P + P + P) + P = 1orSFR (0.9615 + 0.9070) + 0.8396 + 8396 = 1 SFR (2.7081) = 0.1604
SFR = 0.1604/2.7081 = 5.92%
Swap spread = SFR - S = 5.92% - 5.25% = 0.67% or67 bps
3 1 2 3 3 3
3
3
ᅚ A) ᅞ B) ᅞ C)
Question #1
2
of 101
QuestionID:463762ᅚ A) ᅞ B) ᅞ C)
Question #13 of 101
QuestionID:463707ᅞ A) ᅚ B) ᅞ C)
Question #14 of 101
QuestionID:472560ᅚ A)
Theuseof whichofthefollowing benchmarksto generateaspread wouldnotreflectcreditrisk? An issuer-specific benchmark.
A global industry-yield benchmark.
A U.S. Treasury benchmark.
Explanation
Anissuer-specific benchmark (another bondofthesamecompany) wouldnotreflectcreditrisk becausethe benchmark would
incorporatethecreditriskofthefirm. Using a U.S. Treasury benchmark wouldreflectcreditrisk becausethe bondto be evaluated wouldhavehighercreditriskthaneither benchmark. Theyieldina global industryisnottypicallyusedasa benchmark.
Whichofthe following isa majorconsideration whenthe daily yield volatility isannualized?
The appropriate day multiple to use for a year.
The appropriate time horizon.
The shape ofthe yieldcurve.
Explanation
Typically, the numberoftrading days per year isused, i.e., 250days.
Suppose thatthere isanonparallel downwardshift inthe yieldcurve. Whichofthe following best explainsthis phenomenon?
The yield decrease is the same for all maturities.
The absolute yielddecrease isdifferentforsome maturities.
The absolute yield increase isdifferentforsome maturities.
Explanation
Anonparallel downward yieldcurve shift indicatesanunequal yielddecrease acrossall maturities, i.e., some maturity yieldsdeclined
more thanothers.
JonSmithsonisa bondtraderat ZezenBank. Thespotratecurveiscurrentlyflat. Smithsonexpectsthatthecurve will becomeupwardsloping inthenextyear. Basedonthisexpectation, theleastappropriateactivestrategyforSmithson would
beto:
ᅞ B)
ᅞ C)
Question #1
5
of 101
QuestionID:472568ᅚ A) ᅞ B) ᅞ C)
Question #16 of 101
QuestionID:472595sell all the long-term bondsinthe portfolioandreinvestthe proceedsinshorter
-maturity bonds.
reducethedurationofthe portfolio.
Explanation
The questionisasking for leastappropriatestrategy. Givenanexpectationofsteepening oftheyieldcurve, anactive bond manager wouldreducethedurationofthe portfolio.
Pricesof zero-coupon, $1 par bondsisshown below:
Maturity (years) Price
1 $0.9615
2 $0.9070
3 $0.8396 4 $0.7629
Thedefaultriskofthese bondsissimilartothedefaultriskofsurveyed banks basedon whichtheswap rateisdetermined. Governmentspotratecurveis given below:
Maturity (years) Rate
1 3.05%
2 4.10%
3 5.25%
4 6.45%
Theswap fixedratefora periodof 2 yearsisclosestto:
4.98% 4.00%
4.75%
Explanation
Since weare giventhediscountfactorsdirectly, wecanusethoseinsteadofcomputing theindividual spotrates. The 2-year
swap fixedrateSFR isdetermined bysolving:
SFP (P +P)+P = 1orSFR (09.615+0.9070)+0.9070 = 1 SFR (1.8685) = 0.093
SFR = 0.093/1.8685 = 4.98%
Whichofthefollowing statementsaremostaccurate? 2
2 1 2 2 2
2
ᅚ A) ᅞ B) ᅞ C)
Question #17 of 101
QuestionID:472582ᅚ A) ᅞ B) ᅞ C)
Question #18 of 101
QuestionID:463713ᅞ A) ᅞ B) ᅚ C)
Question #1
9
of 101
QuestionID:463728ᅞ A) ᅚ B) ᅞ C)
Short-term rates are typically more volatile than long-term rates.
Volatilityofshort-termand long-termratesistypicallyequal. Long-termratesaretypicallymore volatilethanshort-termrates.
Explanation
Volatilityofratesisinverselyrelatedtomaturity: long-termratesare less volatilethanshort-termrates.
Underthe liquidity preferencetheory, expectedfuturespotrates will mostlikely be:
Less than the current forward rate. Morethanthecurrentforwardrate. Equal tothecurrentforwardrate.
Explanation
Existenceofa liquidity premiumunderthe liquidity preferencetheoryimpliesthatthecurrentforwardrateisanupwardly
biasedestimateofthefuturespotrate.
Theswap ratecurveistypically basedon whichinterestrate? Treasury bill and bond rates.
The Fed Fundsrate. LIBOR.
Explanation
Theinterestrate paidonnegotiableCDs by banksin Londonisreferredtoas LIBOR. LIBORisdeterminedeveryday bythe
BritishBankersAssociation. Swap ratecurvesaretypicallydetermined bydollardenominated borrowing basedon LIBOR. The Fed Fundsrateistherate paidoninterbank loans withinthe U.S. Treasury bill and bondratesareusedfordetermining the
yieldcurve, butnotfortheswap ratecurve.
Ifthe liquidity preference hypothesis istrue, whatshape shouldthe termstructure curve have ina period where interestratesare
expectedto be constant?
Downward sweeping.
Upwardsweeping.
Question #
2
0 of 101
QuestionID:463716ᅞ A) ᅞ B) ᅚ C)
Question #
2
1 of 101
QuestionID:472551ᅚ A) ᅞ B) ᅞ C)
Question #
22
of 101
QuestionID:463758ᅞ A) ᅚ B) ᅞ C) Explanation
The liquidity theory holdsthat investorsdemanda premiumtocompensate themfor interestrate exposure andthe premium increases
withmaturity. Addthis premiumtoaflatcurve andthe result isanupwardsloping yieldcurve.
Whichofthefollowing is NOTareason whymarket participants prefertheswap ratecurveovera government bondyield curve? Theswap market:
it is not affected by technical factors.
isfreeof governmentregulation. reflectssovereigncreditrisk.
Explanation
Swap ratecurvesaretypicallydetermined bydollardenominated borrowing basedon LIBOR. Theseratesaredetermined by
market participantsandarenotregulated by governments. Swap ratecurvesarenotaffected bytechnical marketfactorsthat affecttheyieldson government bonds. Theswap ratecurveisalsonotsubjecttosovereigncreditrisk (potential government
defaultondebt)thatisuniquetoeachcountry.
Ifthe 2-yearspotrateis4% and1-yearspotrateis7%, theoneyearforwardrateoneyearfromnow isclosestto:
1%
2%
3%
Explanation
(1+S ) = (1+s )[1+ƒ(1,1)]
ƒ(1,1) = (1.04)/(1.07)- 1 = 0.0108 = 1.08%
Whichofthefollowing isclosesttotheannualizedyield volatility (250trading days peryear)ifthedailyyield volatilityisequal to0.45%?
112.50%. 7.12%. 9.73%.
Explanation
Annualizedyield volatility = σ × 22 1
Question #
2
3 of 101
QuestionID:463710ᅞ A) ᅚ B) ᅞ C)
Question #
2
4 of 101
QuestionID:472590ᅞ A) ᅞ B) ᅚ C)
Questions #
25-
30 of 101
where:σ = thedailyyield volatility
So, annualizedyield volatility = (0.45%) = 7.12%.
Whichofthefollowing ismostlikelytooccurifthereisatwistintheyieldcurve? The curvature of the yield curve increases.
Theyieldcurveflattensorsteepens.
Theyieldcurve becomeshumpedatintermediatematurities.
Explanation
Twistsrefertoyieldcurvechanges whentheslope becomeseitherflatterormoresteep. Aflattening (steepening)oftheyield curvemeansthatthespread betweenshort- and long-termrateshasnarrowed (widened).
Currentlythetermstructureofinterestrateisdownwardsloping. Whichofthefollowing modelsmostaccuratelydescribethe
currenttermstructure?
Vasicek model.
Cox-Ingersoll-Rossmodel. Ho-Leemodel.
Explanation
Ho-Leemodel isanarbitrage-freetermstructurethatiscalibratedtothecurrentactual termstructure (regardlessof whetherit
isupwardordownwardsloping). VasicekandCox-Ingersoll-Rossmodel areexamplesofequilibriumtermstructuremodels
andmay generatetermstructuresinconsistent withcurrentmarketobservations.
Carol Stephens, CFA, overseesfive portfoliomanagers whoall managefixedincome portfoliosforoneinstitutional client.
Stephensfeelsthatinterestrates will changeoverthenextyear butisuncertainabouttheextentanddirectionofthischange.
Sheisconfident, however, thattheyieldcurve will changeinanonparallel mannerandthatmodifiedduration will not accuratelymeasuretheoverall total portfolio'syield-curveriskexposure. Tohelp herevaluatetheriskofherclient'stotal portfolio, shehasassembledthetableofratedurationsshown below.
Issue Value
($millions) 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr
Portfolio1 100 0.03 0.14 0.49 1.35 1.71 1.59 1.47 4.62
Question #
25
of 101
QuestionID:463752ᅚ A) ᅞ B) ᅞ C)
Question #
2
6 of 101
QuestionID:463753ᅚ A)
Portfolio3 150 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83
Portfolio4 250 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Portfolio 5 300 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00
The valueofthetotal portfoliois $1,000,000,000.
Forthis questiononly, imaginethatthefollowing threekeyrateschange whiletheothersremainconstant: The3-monthrateincreases by 20 basis points.
The 5-yearrateincreases by 90 basis points.
The30-yearratedecreases by150 basis points.
Thenew total valueofthe portfolioaftertheseratechanges will beclosestto:
$1,009,469,000.
$961,075,000. $1,004,735,000.
Explanation
KeyRateDurations
weight 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr Effective
Duration
Portfolio1 0.10 0.03 0.14 0.49 1.35 1.71 1.59 1.47 4.62 11.40
Portfolio 2 0.20 0.02 0.13 1.47 0.00 0.00 0.00 0.00 0.00 1.62
Portfolio3 0.15 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83 10.67
Portfolio4 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Portfolio 5 0.30 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00 2.71
Total Portfolio 1.00 0.0265 0.3250 0.4195 0.3450 0.9870 0.4050 0.4980 0.8865 3.8925
Changein Portfolio Value
Changefrom3-monthkeyrateincrease: (20 bp)(0.0265) = 0.0053% decrease
Changefrom 5-yearkeyrateincrease: (90 bp)(0.4195) = 0.3776% decrease
Changefrom30-yearkeyratedecrease: (150 bp)(0.8865) = 1.3298% increase
Netchange 0.9469% increase
Thismeansthatthetotal portfolio valueaftertheyieldcurveshiftis: 1,000,000,000(1 + 0.009469) = $1,009,469,000 (LOS46.f)
Forthis questiononly, imaginethattheoriginal yieldcurveundergoesa parallel shiftsuchthattheratesatall keymaturities
ᅞ B) ᅞ C)
Question #
2
7 of 101
QuestionID:463754ᅞ A) ᅞ B) ᅚ C)
$961,075,000. $1,019,462,500.
Explanation
KeyRateDurations
weight 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr
Effective
Duration
Portfolio1 0.10 0.03 0.14 0.49 1.35 1.71 1.59 1.47 4.62 11.40
Portfolio 2 0.20 0.02 0.13 1.47 0.00 0.00 0.00 0.00 0.00 1.62
Portfolio3 0.15 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83 10.67
Portfolio4 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Portfolio 5 0.30 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00 2.71
Total Portfolio 1.00 0.0265 0.3250 0.4195 0.3450 0.9870 0.4050 0.4980 0.8865 3.8925
Sincetheyieldcurveunderwenta parallel shift, theimpacton portfolio valuecan becomputeddirectlyusing the portfolio's
effectiveduration. Therearetwomethodsthatcan beusedtocalculateeffectivedurationinthissituation. Bothmethodsuse themarket weightoftheindividual bondsinthe portfolio. Asshowninthesecondcolumnofthetableabove, thetotal portfolio
weightofeachsubportfolioequals:Bond value/Portfolio value, wherethe portfolio valueis $1,000,000,000.
Method1) Effectivedurationofthe portfolioisthesumofthe weightedaveragesofthekeyratedurationsforeachissue. The
3-monthkeyratedurationforthetotal portfoliocan becalculatedasfollows:
(0.10)(0.03) + (0.20)(0.02) + (0.15)(0.03) + (0.25)(0.06) + (0.30)(0) = 0.0265
Thismethodcan beusedto generatetherestofthekeyratedurationshowninthe bottomrow ofthetableaboveand summedtoyieldaneffectiveduration = 3.8925.
Method 2) Effectivedurationofthe portfolioisthe weightedaverageoftheeffectivedurationsforeachissue. Theeffective
durationofeachissueisthesumoftheindividual ratedurationsforthatissue. These valuesareshownintheright-hand columnofthetableabove. Using thisapproach, theeffectivedurationofthe portfoliocan becomputedas:
(0.10)(11.4) + (0.20)(1.62) + (0.15)(10.67) + (0.25)(0.06) + (0.30)(2.71) = 3.8925
Using aneffectivedurationof3.8925, the valueofthe portfoliofollowing a parallel 50 basis pointshiftintheyieldcurvecan be
computedasfollows: Percentagechange = (50 basis points)(3.8925) = 1.9463% decrease. $1,000,000,000 × (1-0.0194625) = $980,537.500. (LOS46.f)
Forthis questiononly, imaginethattheoriginal yieldcurveundergoesashiftsuchthat3-monthratesremainconstantandall
otherratesincrease by135 basis points. Thenew valueof portfolio4 will beclosestto: $243,375,000.
$229,750,000. $250,000,000.
Explanation
Question #
2
8 of 101
QuestionID:463755ᅚ A) ᅞ B) ᅞ C)
Question #
29
of 101
QuestionID:463756ᅞ A) ᅚ B) ᅞ C)
weight 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr Effective
Duration
Portfolio1 0.10 0.03 0.14 0.49 1.35 1.71 1.59 1.47 4.62 11.40
Portfolio 2 0.20 0.02 0.13 1.47 0.00 0.00 0.00 0.00 0.00 1.62
Portfolio3 0.15 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83 10.67
Portfolio4 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Portfolio 5 0.30 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00 2.71
Total Portfolio 1.00 0.0265 0.3250 0.4195 0.3450 0.9870 0.4050 0.4980 0.8865 3.8925
Sincethe3-monthratedidnotchange, andall otherkeyratedurationsfor Portfolio4are zero, a135 basis pointchange will
havenoeffectonthe valueof Portfolio4. Hence, Portfolio4remains valuedat $250,000,000. (LOS46.f)
The10-yearkeyratedurationforthetotal portfolioisclosestto:
0.345. 1.350.
1.375.
Explanation
KeyRateDurations
weight 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr Effective
Duration
Portfolio1 0.10 0.03 0.14 0.49 1.35 1.71 1.59 1.47 4.62 11.40
Portfolio 2 0.20 0.02 0.13 1.47 0.00 0.00 0.00 0.00 0.00 1.62
Portfolio3 0.15 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83 10.67
Portfolio4 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Portfolio 5 0.30 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00 2.71
Total Portfolio 1.00 0.0265 0.3250 0.4195 0.3450 0.9870 0.4050 0.4980 0.8865 3.8925
Thetotal portfoliokeyratedurationforaspecificmaturityisthe weighted valueofthekeyratedurationsoftheindividual
issuesforthatmaturity. Inthiscase, the10-yearkeyratedurationforthe portfoliois:
(0.10)(1.35) + (0.20)(0.00) + (0.15)(1.40) + (0.25)(0.00) + (0.30)(0.00) = 0.345 (LOS46.f)
Theeffectivedurationfor Portfolio 2 isclosestto:
1.47. 1.62.
0.023.
Explanation
Question #30 of 101
QuestionID:463757ᅚ A) ᅞ B) ᅞ C)
Question #31 of 101
QuestionID:463729ᅚ A) ᅞ B) ᅞ C)
weight 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr Effective
Duration
Portfolio1 0.10 0.03 0.14 0.49 1.35 1.71 1.59 1.47 4.62 11.40
Portfolio 2 0.20 0.02 0.13 1.47 0.00 0.00 0.00 0.00 0.00 1.62
Portfolio3 0.15 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83 10.67
Portfolio4 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Portfolio 5 0.30 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00 2.71
Total Portfolio 1.00 0.0265 0.3250 0.4195 0.3450 0.9870 0.4050 0.4980 0.8865 3.8925
Theeffectivedurationforanyindividual issueisthesumoftheindividual keyratedurationsforthatissue. For Portfolio 2, the effectivedurationis:
0.02 + 0.13 + 1.47 = 1.62 (LOS46.f)
Which portfolioismostaccuratelydescribedasa laddered portfolio?
Portfolio 3.
Portfolio4. Portfolio 5.
Explanation
KeyRateDurations
weight 3mo 2 yr 5 yr 10yr 15 yr 20yr 25 yr 30yr Effective
Duration
Portfolio3 0.15 0.03 0.14 0.51 1.40 1.78 1.64 2.34 2.83 10.67
Portfolio4 0.25 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
Portfolio 5 0.30 0.00 0.88 0.00 0.00 1.83 0.00 0.00 0.00 2.71
A ladder portfolio'sdurationsarerelativelyequal acrossall maturities, and Portfolio3exhibitsthiskindofequal durationacross maturities.
Portfolio4is bestdescribedasa bullet portfolioasitsdurationisconcentratedinonematurity.
Portfolio 5 is bestdescribedasa barbell portfolio, asitsdurationisconcentratedintheshortand long regionsofthe
maturities. (LOS46.f)
The liquiditytheoryofthetermstructureofinterestratesisa variationofthe pureexpectationstheorythatexplains why:
the yield curve usually slopes upward.
theyieldcurveusuallyslopesdownward.
durationisanimprecisemeasure.
Question #3
2
of 101
QuestionID:472569ᅞ A) ᅚ B) ᅞ C)
Question #33 of 101
QuestionID:463709ᅞ A) ᅚ B) ᅞ C)
Question #34 of 101
QuestionID:463745ᅚ A) ᅞ B) ᅞ C)
The pureexpectationshypothesissaysthattheshapeoftheyieldcurveonlyreflectsexpectationsoffutureshort-termrates. Yet, theyieldcurve generallyslopesupward. The liquiditytheorysaysthattheyieldcurveincorporatesexpectationsofshort -termrates; however, thetendencyfortheyieldcurvetoslopeupwardreflectsthedemandforahigherreturntocompensate
investorsfortheextrainterestrateriskassociated with bonds with longermaturities.
7.5%, 15-year, annual payoption-free XeleonCorp bondtradesatamarket priceof $95.72 per $100 par. The government
spotratecurveisflatat 5%.
The Z-spreadon XeleonCorp bondisclosestto:
250 bps
300 bps 325 bps
Explanation
Sincethespotratecurveisflat, wecansimplycomputetheyieldonthe bondandsubtractthespotratefromittoobtainthe
Z-spread.
PV = - 95.72; N = 15; PMT = 7.50; FV = 100; I/Y=?=8%. Z-spread = 8% - 5% = 3% or300bps
Ayieldcurveisflat, andthenitundergoesanon-parallel shift. Aftertheshift, whichofthefollowing must beleastaccurate?
Thenew yieldcurveis:
a straight line.
flat.
curvilinear.
Explanation
Ifayieldcurve beginsflatandthenexperiencesanon-parallel shift, thismeansthatsomerateschangedmorethanothers.
Afterthenon-parallel shifttheformerlyflatyieldcurvecanno longer beflat.
Whatadjustmentmust be made tothe key rate durationstomeasure the riskofasteepening ofanalready upwardsloping yieldcurve?
Decrease the key rates at the short end of the yield curve.
Increase all key rates by the same amount.
Question #3
5
of 101
QuestionID:472558ᅞ A) ᅞ B) ᅚ C)
Question #36 of 101
QuestionID:472592ᅚ A) ᅞ B) ᅞ C)
Question #37 of 101
QuestionID:472583ᅞ A) ᅚ B) ᅞ C) Explanation
Decreasing the key ratesatthe short endofthe yieldcurve makesanupwardsloping yieldcurve steeper. Performing the corresponding
change in portfolio value will determine the riskofasteepening yieldcurve.
Anactive bond portfoliomanager wouldmostappropriately buy bonds whenexpectedspotratesare:
greater than current forward rates.
equal tocurrentforwardrates. lessthancurrentforwardrates.
Explanation
Whenexpectedspotratesare lessthantheforwardrates priced bythemarket, bondsareundervalued (theyarediscounted
attoohigharate)andhenceshould be purchased.
Supposethattheshort-termand long-termratesdecrease by75bps whiletheintermediate-termratesdecrease by30bps.
Themovementinyieldcurveisbestdescribedasinvolving changesinthe:
level and curvature. curvatureonly. level only.
Explanation
Thedecreaseinshort-termand long-termratesisanindicationofchangein level ofinterestrates. Becauseintermediate-term
rateschangedifferentlythantheshort-termand long-termrates, thereisalsoachangeinthecurvatureoftheyieldcurve.
DonMcGuire, fixedincomespecialistatMCB bankmakesthefollowing statement: "Inthe veryshort-term, theexpectedrate
ofreturnfrominvesting inany bond, including risky bonds, istherisk-freerateofreturn".
McGuire'sstatementismostconsistent with:
unbiased expectations theory.
local expectationstheory. liquidity preferencetheory.
Explanation
Question #38 of 101
QuestionID:472572ᅞ A)
ᅚ B)
ᅞ C)
Question #3
9
of 101
QuestionID:472588ᅞ A) ᅞ B) ᅚ C)
Question #40 of 101
QuestionID:472565ᅚ A)
notextendtherisk-neutralityassumptiontoeverymaturitystrategy liketheunbiasedexpectationstheory.
Z-spreadismostaccuratelydescribedastheconstantspreadthatis:
added to the zero volatility binomial tree such that an option-free bond is correctly valued.
addedtothespotratecurveto generatediscountratesforeachofthe bond'scash
flowssuchthatthe present valueofthecashflowsisexactlyequal tothemarket price
ofthe bond.
equal tothedifference betweena bond'syieldandtheyieldona government bond.
Explanation
Z-spreadistheconstantspreadaddedtothespotratecurveto generatediscountrates whichthen valuethe bondatits currentmarket price. Thedifference betweenyieldsofariskyand government bond will besameasthe Z-spreadonly when theyieldcurveisflat. A Zero-volatility binomial treedoesnotexist!
Jill Sebelius, editor-in-chiefofamonthlyinterest-ratenewsletterusesthefollowing model toforecastshort-terminterestrates:
Forthecurrentnewsletter, Sebeliushasissuedthefollowing expectations:
a=0.40, b = 3%, r = 2%.
BasedonSebelius"sestimates, overasufficiently long periodoftime, theexpected valueoftheshort-terminterestrateis
closestto:
2%
2.4%
3%
Explanation
The long-termexpected valueofshort-termratesisthemeanreverting level (b)estimated bySebeliusto be3%.
Whichoneofthefollowing isleastlikelyareasontousetheswap ratecurve?
ᅞ B) ᅞ C)
Question #41 of 101
QuestionID:463734ᅞ A) ᅚ B) ᅞ C)
Question #4
2
of 101
QuestionID:472554ᅚ A) ᅞ B) ᅞ C)
Question #43 of 101
QuestionID:472550ᅞ A) ᅞ B) ᅚ C)
Swap ratesreflectcreditriskofcommercial banksandnot government.
Theswap marketisnotregulated byany government.
Explanation
Lower volatilityofswap ratesrelativeto government bondyieldsasa generalizationisanincorrectstatement.
According tothe pure expectationstheory, how are forwardrates interpreted? Forwardratesare:
expected future spot rates if the risk premium is equal to zero.
expectedfuture spotrates.
equal tofuturesrates.
Explanation
The pure expectationstheory, alsoreferredtoasthe unbiased expectationstheory, purportsthatforwardratesare solely afunctionof
expectedfuture spotrates. This impliesthat long-term interestratesrepresentthe geometricmeanoffuture expectedshort-termrates,
nothing more.
Ifthespotcurveisupwardsloping, theforwardcurveismostlikelyto be:
steeper than the spot curve and above the spot curve.
parallel tothespotcurveand below thespotcurve. parallel tothespotcurveandabovethespotcurve.
Explanation
Whenthespotcurveisupwardsloping, theforwardcurve will be lieabovethespotcurveand will also beupwardsloping with
asteeperslope.
Givenannual spotinterestratesfor1year, 2 years, 3years, 4years, and 5 years, themaximumnumberofforwardratesthat
can bederivedisclosestto:
8 5
10
Question #44 of 101
QuestionID:472562ᅞ A) ᅚ B) ᅞ C)
Question #4
5
of 101
QuestionID:463717ᅞ A) ᅚ B) ᅞ C)
Questions #46
-5
1 of 101
Selectall forwardrates ƒ(j,k)suchthat j+k ≤ 5. Thereare10forwardrates possible: ƒ(1,1), ƒ(1,2), ƒ(1,3), ƒ(1,4), ƒ(2,1), ƒ(2,2), ƒ(2,3), ƒ(3,1), ƒ(3,2), ƒ(4,1)
Theactive bond portfoliomanagementstrategyofrolling downtheyieldcurveismostconsistent with:
segmented markets theory.
liquidity preferencetheory. pureexpectationstheory.
Explanation
Underthe liquidity preferencetheory, investors wouldearnanextrareturnforinvesting in longer-maturity bondsratherthanin
shorter-maturity bonds. Suchextra positiverisk-premium linkedtomaturityofthe bondsisabsentinthe pureexpectationsand
themarketsegmentationtheory.
Whichofthefollowing benchmarks would generatethe greatestspread whenusedtoexaminea bondyield? Bond sector benchmark.
A U.S. Treasurysecurity.
Theissuerofaspecificcompany.
Explanation
The U.S. Treasurysecurity would generatethehighestspread becausetheyieldonTreasurysecurities will bethe lowestas
theyhavethe lowestcreditand liquidityrisk. Theyieldsona bondsector benchmarkandforaspecificcompany will behigher.
Bill Woods, CFA, isa portfoliomanagerforMatrix Securities Fund, aclosed-end bondfundthatinvestsin U.S. Treasuries,
mortgage-backedsecurities (MBS), asset-backedsecurities (ABS), andMBSderivatives. Thefundhasassetsof
approximately $400million, hasacurrentstock priceof $14.50andanetasset value (NAV)of $16.00. Woodsisamemberof afour personinvestmentteamthatisresponsibleforall aspectsofmanaging the portfolio, including interestrateforecasting, performing basicfinancial analysisand valuationofthe portfolio, andselecting appropriateinvestmentsforMatrix. His
expertiseisintheanalysisand valuationofMBSandABS.
Thefund paysa $0.12 monthlydividendthatis paidfromcurrentincome. The basicoperating strategyofMatrix isto leverage
itscapital byinvesting infixedincomesecurities, andthenfinancing thoseassetsthroughrepurchaseagreements. Matrix then earnsthespread betweenthenetcouponoftheunderlying assetsandthecosttofinancetheasset. Therefore, when
evaluating asecurityforinvestment, itiscritical thatMatrix can bereasonablyassuredthatit will earna positivespread.
During thecourseofhisanalysis, Woodsutilizesseveral methodologiestoevaluatecurrent portfolioholdingsand potential
Question #46 of 101
QuestionID:472574ᅞ A) ᅞ B)
ᅚ C)
Question #47 of 101
QuestionID:472575ᅚ A) ᅞ B) ᅞ C)
ongoing debateamong theinvestmentteamastothemeritsandshortcomingsofeachofthemethods. Woods believesthat the OASmethodis byfarasuperiortool inall circumstances, whilehisfellow portfoliomanager, YuriAckerman, feelsthat eachofthemethodscanattimesserveauseful purpose. WoodandAckerman'scurrentdiscussioninvolvestwosimilar FNMA
adjustable-ratemortgage (ARM)securities Woodisconsidering purchasing. BothARM "A" andARM "B" areindexedoffof6
-month LIBOR, arenew production, andhavesimilarnetcoupons.
Se
l
ect
F
inancia
l
Information:
A
RM
Net
C
o
u
po
n W
A
M
N
o
m
inal
S
p
rea
d
O
A
S
(b
ps)
Z-
sp
rea
d
(b
ps)
A
6
.2
7
%
360
81
9
8
13
5
B
6
.
41
%
3
5
8
95
116
1
29
WoodsrecommendsthatMatrix purchaseARM "A" withthe6.27% netcoupon. Hehas basedhisconclusiononthecalculated
OASofthesecurities, whichhe believesindicatesthatARM "A" isthecheaperofthetwosecurities. Ackermandisagrees with
Woods, arguing that OASisonlyonecomponentofanyanalysis, andthata buyorsell recommendationshouldnot bemade baseduponthe OASspreadalone. Ackermanclaimsthatothermeasures, suchasoneofthemanydurationmeasuresand convexity, needto beincorporatedintotheanalysis. He pointsoutthat bothARMshaveequal convexities, butARM "A" hasa
durationof7.2 yearsandARM "B" hasdurationof6.8years. Thesecharacteristics will affecttheexpectedreturninany interestratescenario. Woodsadmitsthathehadnotconsideredthedifferencesinthe bond'sdurations, andheacknowledges
thatothersfactorsshould beconsidered beforearecommendationcan bemade.
Woodsismostlikelyresistanttothe zero-volatilityspread becausethespread:
fails to consider price risk,which is uncertainty regarding terminal cash flows. doesnotindicatehow muchofthespreadreflectsthesignificant prepaymentrisk
associated withMBS.
onlyconsidersone pathofinterestrates, thecurrentTreasuryspotratecurve.
Explanation
Zero-volatilityspreadisacommonlyusedmeasureofrelative valueforMBSandABS. However, itonlyconsidersone pathof
interestrates, while OASconsiderseveryspotratealong everyinterestrate path. (StudySession15, LOS 50.a)
OAScan beusedtoderiveoptioncostratherthanusing anoption pricing model. The OAScan beinterpretedastheMBS spreadaftertheaffectoftheembeddedoptiononcashflowsisconsidered. Whichofthefollowing summariesismost
accurate?
option cost =zero-volatility spread − option-adjusted spread. optioncost = option-adjustedspread− zero-volatilityspread.
optioncost = nominal spread−option-adjustedspread.
Explanation
OASistheMBSspreadafterthe "optionality" ofthecashflowsistakenintoaccount. OAScan beusedtoexpressthedollar
ᅞ C)
Question #
52
of 101
QuestionID:463748ᅞ A) ᅚ B) ᅞ C)
Question #
5
3 of 101
QuestionID:472581ᅞ A) ᅞ B) ᅚ C)
Question #
5
4 of 101
QuestionID:472596ᅞ A) ᅚ B) ᅞ C)
OAS, becausethecashflowsareinterestrate pathdependent.
Explanation
Creditcardreceivable-backedABShaveno prepaymentoption, therefore prepaymentsarenot pathdependentandthe
Z-spreadisthemostappropriatemodel. (StudySession15, LOS 50.h, i)
Ananalysthasa listofkeyratedurationsfora portfolioof bonds. Ifonlyoneinterestrateontheyieldcurvechanges, the effectonthe valueofthe bond portfolio will bethechangeofthatratemultiplied bythe:
median of the key rate durations.
keyratedurationassociated withthematurityoftheratethatchanged. weightedaverageofthekeyratedurations.
Explanation
Thisishow ananalystuseskeyratedurations: Fora givenchangeintheyieldcurve, eachratechangeismultiplied bythe associatedkeyrateduration. Thesumofthose products givesthechangeinthe valueofthe portfolio. Ifonlythefive-year
interestratechanges, forexample, thentheeffectonthe portfolio will bethe productofthatchangetimesthefive-yearkey
rateduration.
Ascomparedtothe10-yearswap spread, thecreditriskinthe banking systemismoreaccuratelycaptured bythe:
Libor-OIS spread.
Z-spread.
TEDspread.
Explanation
Theriskof banking systemismoreaccuratelycaptured bytheTEDspread. 10-yearswap spreadcapturesdiffering
demand/supplyconditions.
Volatilityin long-termratesismostlikelyrelatedtouncertaintyabout:
fiscalpolicy.
thereal economyandinflation.
central bankactions.
Question #
55
of 101
QuestionID:472563ᅚ A) ᅞ B) ᅞ C)
Question #
5
6 of 101
QuestionID:472561ᅞ A) ᅞ B)
ᅚ C)
Question #
5
7 of 101
QuestionID:472552ᅞ A)
ᅚ B) ᅞ C)
Volatilityin long-termratesismost likely linkedtouncertaintyaboutthereal economyandinflation, whereas volatilityinshort -termratesismost likely linkedtomonetary policy.
Whichoneofthefollowing actionsismostconsistent withthestrategyofriding anupwardsloping theyieldcurve? Buying bonds withamaturity:
longer than than the investor's horizon. shorterthantheinvestor'shorizon.
equal totheinvestor'shorizon.
Explanation
Iftheyieldcurveisupwardsloping andisexpectedtoremainthesame, higherreturnscan beobtained byriding theyield curve, i.e., buying bonds witha longermaturitythantheinvestor'shorizon.
Ifanactive bond portfoliomanager believesfuturespotrates will be lowerthanindicated bytoday'sforwardrates, thenshe will mostlikely:
be indifferent because her holdingperiod return willbe unaffected.
sell bonds becausethemarketappearsto bediscounting futurecashflowsat "too high" ofadiscountrate.
purchase bonds becausethemarketisdiscounting futurecashflowsat "toohigh" ofa
discountrate.
Explanation
Ifaninvestor believesfuturespotrates will be lowerthanindicated bytoday'sforwardrates, thensheshould purchase bonds
(ata presumablyattractive price) becausethemarketappearsto bediscounting futurecashflowsat "toohigh" ofadiscount rate.
Supposethe governmentspotratecurveisflatat3%. Anactivemanageris planning on purchasing afive-year government bondat par. Therealizedreturnonthis bond will mostlikely be:
more than 3% if the bond is held to maturity while the yield curve remains flat but decreases below 3%.
3% ifthe bondisheldtomaturity providedthattheyieldcurveremainsflatat3%.
Question #
5
8 of 101
QuestionID:472593ᅞ A) ᅚ B) ᅞ C)
Question #
59
of 101
QuestionID:463736ᅞ A) ᅞ B) ᅚ C)
Question #60 of 101
QuestionID:472591ᅞ A) Explanation
Thereisno priceriskforadefault-free bondheldtomaturity. However, thereisreinvestmentriskforthecoupon payments
receivedduring the lifeofthe bond (inthisinstance, the bondisa par bondandhencehasthesamecouponrateasitsyield).
Iftheyieldcurveshiftsdown, thereinvestmentrate would be lowerandtherealizedholding periodreturn would be lowerthan
3%.
A bond portfoliohasthefollowing keyratedurations: D = 0.50; D = 2.70andD = 7.23.
Supposethatthechangeinyieldcurveresultsinchangesinthefollowing spotrates: S = +50bps; S = +100bps; S = +25 bps; S = -75bps; S = -100bps.
Thechangeinthe valueofthe portfolio will beclosestto:
-2.80%
+6.30% +4.75%
Explanation
%△P = -(0.50)(0.5)-(2.70)(0.25)-(7.23)(-1) = 6.31%
According tothe pureexpectationstheory, whichofthefollowing statementsismostaccurate? Forwardrates:
are biased estimates of market expectations.
alwaysoverestimatefuturespotrates.
exclusivelyrepresentexpectedfuturespotrates.
Explanation
The pureexpectationstheory, alsoreferredtoastheunbiasedexpectationstheory, purportsthatforwardratesaresolelya functionofexpectedfuturespotrates. Underthe pureexpectationstheory, ayieldcurvethatisupward (downward)sloping,
meansthatshort-termratesareexpectedtorise (fall). Aflatyieldcurveimpliesthatthemarketexpectsshort-termratesto
remainconstant.
Theleastimportantfactorexplaining thechangesintheshapeoftheyieldcurveis:
Level
2 5 15