• Tidak ada hasil yang ditemukan

Teori dan Dasar dan Motor

N/A
N/A
Protected

Academic year: 2018

Membagikan "Teori dan Dasar dan Motor"

Copied!
39
0
0

Teks penuh

(1)

Teori Dasar Motor Listrik

15

MAR

Pendahuluan

Telah dikatakan bahwa jika orang Romawi Kuno, dengan peradaban maju dan pengetahuan tentang ilmu pengetahuan, telah mampu mengembangkan sebuah motor uap, perjalanan sejarah akan jauh berbeda. Perkembangan motor listrik di zaman modern telah menunjukkan kebenaran dalam teori ini.

Perkembangan motor listrik telah memberi kita yang paling efisien dan efektif untuk melakukan kerja berarti dikenal manusia. Karena motor listrik telah kita dapat sungguh-sungguh sangat mengurangi kerja keras kelangsungan hidup manusia dan telah mampu membangun peradaban yang sekarang sampai ke bintang-bintang. Motor listrik perangkat sederhana pada prinsipnya. Aplikasi ini dapat mengkonversi energi listrik menjadi energi mekanik. Selama bertahun-tahun, motor listrik telah berubah secara

substansial dalam desain, namun prinsip-prinsip dasar tetap sama. Dalam bagian ini, Panduan Aksi kita akan membahas prinsip-prinsip dasar ini motor. Kita akan membahas fenomena magnetisme, AC arus dan dasar operasi motor.

Magnetisme

Sekarang, sebelum kita membahas operasi motor dasar review singkat magnet mungkin bermanfaat bagi banyak dari kita. Kita semua tahu bahwa sebuah magnet permanen akan menarik dan memegang benda logam ketika objek itu sudah dekat atau bersentuhan dengan magnet. Magnet permanen dapat

melakukan hal ini karena gaya magnet yang melekat disebut sebagai “medan magnet”. Dalam Gambar 1, medan magnet dua magnet permanen yang diwakili oleh “garis-garis fluks”. Garis-garis fluks ini

(2)

Gambar 1 – Garis-garis fluks dari medan magnet perjalanan dari N-tiang ke S-tiang.

Gambar 2 – Aliran arus listrik dalam suatu konduktor konsentris set up garis fluks magnet di sekitar

(3)

Gambar 3 – garis magnet di sekitar konduktor arus

berangkat dari N-tiang dan re-enter pada S-tiang.

(4)

Gambar 4 – The kutub dari sebuah elektro-magnetik kumparan berubah ketika arah aliran arus perubahan.

Prinsip dasar dari semua motor dapat dengan mudah ditampilkan dengan menggunakan dua

elektromagnet dan magnet permanen. Arus mengalir melalui koil no. 1 dalam arah yang seperti kutub utara dibentuk dan melalui koil no. 2 dalam arah yang seperti kutub selatan didirikan. Permanen magnet dengan kutub utara dan selatan merupakan bagian yang bergerak sederhana ini motor. Pada Gambar 5-sebuah kutub utara magnet permanen berlawanan kutub utara dari elektromagnet. Demikian pula, kutub selatan saling berlawanan. Seperti kutub magnet saling tolak, menyebabkan magnet permanen bergerak untuk mulai berbelok. Setelah ternyata bagian jalan sekitar, gaya tarik-menarik antara kutub berbeda menjadi cukup kuat untuk menjaga magnet permanen berputar. Magnet yang berputar terus memutar sampai kutub tidak seperti berbaris. Pada titik ini biasanya rotor berhenti karena tarik-menarik antara kutub berbeda. (Gambar 5-b)

(5)

Namun, jika arah arus dalam kumparan elektromagnetik tiba-tiba terbalik, sehingga membalik polaritas dari dua kumparan, maka akan kembali kutub berlawanan dan saling tolak. (Gambar 5-c). Magnet permanen yang bergerak kemudian akan terus berputar. Jika arah arus dalam kumparan elektromagnetik berubah setiap kali magnet berubah 180 derajat atau setengah keliling, maka magnet akan terus

berputar. Perangkat sederhana ini motor dalam bentuk yang paling sederhana. Motor sebenarnya lebih kompleks daripada perangkat sederhana yang ditunjukkan di atas, tetapi prinsipnya sama.

AC Current

Bagaimana dibalik arus dalam kumparan sehingga mengubah polaritas kumparan, Anda bertanya. Yah, seperti yang mungkin Anda ketahui, perbedaan antara DC dan AC adalah bahwa dengan arus DC hanya mengalir dalam satu arah sementara dengan AC arah aliran arus perubahan secara berkala. Dalam kasus AC umum yang digunakan di sebagian besar dari Amerika Serikat, perubahan arah aliran arus 120 kali setiap detik. Arus ini disebut sebagai “60 siklus AC” atau “60 Hertz AC” untuk menghormati Mr Hertz yang pertama kali dikandung konsep arus AC. Karakteristik lain aliran arus adalah bahwa hal itu dapat bervariasi dalam kuantitas. Kita dapat memiliki 5 amp, 10 amp atau 100 ampli aliran misalnya. Murni DC, ini berarti bahwa aliran arus sebenarnya adalah 5,10, atau 100 ampli secara terus-menerus. Kita bisa membayangkan sederhana ini pada waktu-arus grafik dengan garis lurus seperti yang ditunjukkan pada Gambar 6.

Gambar 6 – Visualisasi dari DC

(6)

Figure 7 – Visualization of AC.

Motor AC listrik dasar memiliki dua bagian: “stator” dan “rotor” seperti ditunjukkan pada Gambar 8. Stator adalah komponen listrik stasioner. Ini terdiri dari sekelompok individu elektro-magnet diatur sedemikian rupa sehingga membentuk sebuah lubang silinder, dengan masing-masing satu kutub magnet

(7)

Gambar 8 – dasar komponen listrik motor AC.

Ini “medan magnet berputar stator dapat lebih dipahami dengan mengkaji Gambar 9. Seperti terlihat, stator magnet memiliki enam tiang dan rotor memiliki dua kutub. Pada waktu 1, stator kutub A-1 dan C-2 adalah kutub utara dan kutub yang berlawanan, A-2 dan C-1, adalah kutub selatan. S-tiang rotor tertarik oleh dua N-kutub stator dan N-kutub rotor tertarik oleh dua kutub selatan stator. Pada waktu 2, polaritas kutub stator berubah sehingga sekarang C-2 dan B-1 dan N-tiang dan C-1 dan B-2 adalah S-kutub. Rotor kemudian dipaksa untuk memutar 60 derajat untuk berbaris dengan kutub stator sebagaimana

ditunjukkan. Pada waktu 3, B-1 dan A-2 adalah N. Pada saat 4, A-2 dan C-1 adalah N. Seperti setiap perubahan yang dibuat, kutub rotor tertarik oleh yang berlawanan kutub pada stator. Jadi, sebagai medan magnet stator berputar, rotor dipaksa untuk memutar dengan itu.

Gambar 9 – medan magnet berputar motor AC.

(8)

hanya satu aliran arus listrik yang arah dan intensitas yang bervariasi seperti ditunjukkan oleh garis solid tunggal pada grafik. Dari waktu 0 ke waktu 3, arus mengalir dalam konduktor dalam arah positif. Dari waktu 3 sampai waktu 6, arus mengalir dalam negatif. Pada suatu waktu, saat ini hanya mengalir dalam satu arah. Tetapi beberapa generator menghasilkan tiga terpisah arus mengalir (fase) semua

ditumpangkan pada jaringan yang sama. Hal ini disebut sebagai fase tiga daya. Pada satu instan, bagaimanapun, arah dan intensitas dari masing-masing terpisah arus tidak sama dengan fase-fase lain. Hal ini diilustrasikan pada Gambar 10. Tiga fase terpisah (arus mengalir) diberi label A, B dan C. Pada waktu 1, fasa A adalah nol ampli, fase B adalah dekat maksimum ampere dan mengalir dalam arah positif, dan fase C sudah dekat secara maksimal ampere tapi mengalir ke arah negatif. Pada saat 2, ampere fasa A adalah meningkatkan dan aliran positif, fase B ampere menurun dan aliran masih negatif, dan fasa C telah turun menjadi nol amp. Siklus lengkap (dari nol sampai maksimum dalam satu arah, ke nol dan maksimum dalam arah lain, dan kembali ke nol) diperlukan satu revolusi lengkap dari generator. Oleh karena itu, siklus lengkap, dikatakan telah listrik 360 derajat. Dalam meneliti Gambar 10, kita melihat bahwa setiap fase tersebut dipindahkan 120 derajat dari dua fase lain. Oleh karena itu, kita katakan mereka 120 derajat keluar dari fase.

Gambar 10 – Pola fase yang terpisah tiga-phase power.

(9)

Gambar 11 – Metode dari tiga tahap menghubungkan daya ke enam-kutub stator.

Gambar 12 menunjukkan bagaimana medan magnet berputar yang dihasilkan. Pada time1, aliran arus pada tahap “A” adalah kutub positif dan kutub A-1 adalah N. arus dalam fase “C” adalah kutub negatif, membuat C-2 N-tiang dan C-1 adalah S . Tidak ada aliran arus pada fase “B”, jadi ini tidak kutub magnet. Pada saat 2, fase telah bergeser 60 derajat, membuat tiang C-2 dan B-1 baik N dan C-1 dan B-2

keduanya S. Dengan demikian, sebagai fase pergeseran arus mereka, resultan N dan S kutub bergerak searah jarum jam sekitar stator, menghasilkan medan magnet yang berputar. Rotor bertindak seperti sebuah bar magnet, sepanjang ditarik oleh medan magnet yang berputar.

Gambar 12 – Bagaimana daya tiga fase menghasilkan medan magnet yang berputar.

(10)

Sebaliknya, apa yang disebut “induksi” motor adalah workhorses industri. Jadi bagaimana adalah motor induksi berbeda? Perbedaan besar adalah cara yang saat ini dipasok ke rotor. Ini bukan catu daya eksternal. Seperti yang Anda bayangkan dari nama motor, sebuah teknik induksi digunakan sebagai gantinya. Induksi adalah karakteristik lain dari magnetisme. Ini adalah fenomena alam yang terjadi ketika sebuah konduktor (aluminium batangan dalam kasus rotor, lihat Figur 13) akan dipindahkan melalui medan magnet yang ada atau ketika medan magnet melewati sebuah konduktor bergerak. Dalam kedua kasus, gerakan relatif dari dua menyebabkan arus listrik mengalir dalam konduktor. Hal ini disebut sebagai “disebabkan” aliran arus. Dengan kata lain, dalam sebuah motor induksi aliran arus di rotor tidak disebabkan oleh hubungan langsung ke konduktor ke sumber tegangan, melainkan oleh pengaruh konduktor rotor memotong garis-garis fluks yang dihasilkan oleh medan magnet stator . Arus induksi yang dihasilkan dalam rotor menghasilkan medan magnet di sekeliling konduktor rotor seperti yang ditunjukkan pada Gambar 14. Ini medan magnet di setiap rotor konduktor akan menyebabkan setiap rotor konduktor untuk bertindak seperti magnet permanen di Gambar 9 contoh. Sebagai medan magnet stator berputar, karena efek dari tiga-fase catu daya AC, induksi medan magnet rotor akan tertarik dan akan mengikuti rotasi. Rotor terhubung ke poros motor, sehingga poros akan berputar dan mendorong hubungan beban. Begitulah cara kerja motor! Sederhana, bukan?

Gambar 13 – Konstruksi AC motor induksi rotor.

(11)

Teori Motor DC

Pengantar

Tujuan makalah ini adalah untuk menyediakan satu dengan pemahaman DC Motors agar mereka dapat diterapkan dengan percaya diri. Makalah ini berisi informasi dasar dan informasi spesifik yang berlaku dengan Reliance Menengah dan Besar HP HP DC Motors. Karena sifat bisnis Sistem Baldor, penekanan telah ditempatkan pada motor DC Besar lini produk.

Bagian 1: Dynamo Pembangunan

Pertama generator dan motor dipanggil dynamoelertric dinamo atau mesin. Dynamo adalah dari kata Yunani dynamis yang berarti kekuasaan. Webster mendefinisikan dynamoelectric sebagai “yang berhubungan dengan konversi energi mekanik menjadi energi listrik atau sebaliknya”. Kata motor dari kata Latin yang berarti satu motus yang memberi gerak atau penggerak utama. Untuk dinamo adalah hasil dari usaha-usaha dari beberapa orang, di berbagai negara, pada pertengahan abad kesembilan belas, untuk membuat listrik bekerja untuk mereka.

Definisi

Dynamo:

Dari kata Yunani dynamis, yang berarti kekuasaan

Dynamoelectric:

Berkaitan dengan konversi oleh induksi dari energi mekanik

menjadi energi listrik atau sebaliknya

Mesin

Dynamoelectric:

Sebuah dinamo atau generator

Motor:

Dari kata Latin motus, salah satu yang memberi gerak, penggerak

utama. Suatu alat yang mengubah energi listrik menjadi energi

mekanik.

Generator:

Suatu alat yang mengubah energi mekanik menjadi energi listrik.

Meskipun istilah generator AC dan DC dalam penggunaan umum,

generator biasanya dianggap sebagai alat yang memberikan arus

DC.

Alternator:

Suatu alat yang mengubah energi mekanik menjadi energi listrik

arus bolak-balik, generator AC.

Landmark Of Electric Motor Pembangunan

Elektromagnetisme penemuan pada tahun 1820 Hans Christian Oersted, Denmark

1827 Pernyataan hukum konduksi listrik, hukum Ohm George S. Ohm, Jerman

1830 Penemuan induksi elektromagnetik Joseph Henry, Amerika

1831 Penemuan induksi elektromagnetik Michael Faraday, Inggris

(12)

Bagian 2: Electric Motor Dan Generator Dasar

Elektrodinamis Prinsip Hukum Faraday

Agar saat ini dapat diperoleh dari rangkaian listrik, sebuah gaya gerak listrik (tegangan) harus dibangun dan dipertahankan antara kedua ujung rangkaian. Gaya gerak listrik ini dapat dibentuk dalam beberapa cara, salah satunya adalah melalui generator elektromagnetik.

Michael Faraday menemukan bahwa potensial listrik dapat dibuat antar ujung-ujung sebuah konduktor dalam tiga cara berikut:

 Oleh sebuah konduktor bergerak atau memotong medan magnet stasioner. (DC Generator)

 Dengan yang bergerak memotong medan magnet stasioner konduktor. (AC Generator)

 Oleh perubahan dalam jumlah garis-garis magnetik yang dilingkupi oleh loop atau kumparan stasioner. (Transformer)

Hukum Faraday menyatakan bahwa, “EMF (gaya gerak listrik) induksi di antara ujung-ujung sebuah loop atau kumparan sebanding dengan laju perubahan fluks magnet yang dilingkupi oleh kumparan; atau EMF terinduksi antara ujung-ujung sebuah bar konduktor sebanding dengan waktu tingkat di mana fluks magnet dipotong oleh kondektur. “

Undang-undang ini menekankan laju perubahan atau menilai atau memotong fluks daripada kepadatan atau luas medan magnet.

Hukum Lenz

Hukum Lenz menyatakan bahwa, “Suatu perubahan dalam fluks magnet yang melewati atau

menghubungkan dengan, satu lingkaran atau menyebabkan kumparan induksi EMF harus dalam arah yang akan menentang setiap perubahan dalam kondisi sirkuit, oposisi ini diproduksi magnetis ketika arus mengalir sebagai tanggapan terhadap induced EMF. “

Setiap kali ada perubahan arus dalam sebuah magnetizing koil, yang bekerja untuk mengubah fluks pada kumparan, tegangan diinduksikan yang cenderung untuk mencegah perubahan. Jadi, jika kita mencoba untuk mengurangi arus yang mengalir dalam kumparan magnetizing, tegangan akan dikembangkan yang akan cenderung tetap tidak berubah saat ini. Demikian juga, jika kita berusaha untuk mendirikan sebuah arus dalam sebuah kumparan magnetizing, tegangan akan dikembangkan yang akan cenderung untuk menjaga arus dari meningkat.

Prinsip Dasar Generator Konversi Energi

Untuk menghasilkan tegangan, perlu untuk memindahkan konduktor melalui medan magnet seperti yang dinyatakan di atas. Mekanik energi yang dibutuhkan untuk memberikan gerak konduktor ini. Dengan bidang energi tetap konstan, kondektur adalah mengubah energi mekanik menjadi energi listrik. Tegangan Generasi

(13)

Gambar 1.

Tegangan Generasi

Untuk menggambarkan hal ini dengan tangan kanan Fleming aturan, ibu jari dan dua jari pertama dari tangan kanan diperluas pada sudut yang tepat untuk satu sama lain, ibu jari akan menunjukkan arah gerakan dari konduktor, jari telunjuk akan menunjukkan arah medan magnet , dan jari tengah akan menunjukkan arah tegangan atau arus.

Dengan menerapkan aturan ini, orang dapat melihat bahwa arus akan terbalik jika gerakan perubahan konduktor dari bawah ke atas. Hal ini berlaku meskipun medan magnet tidak berubah posisi. Oleh karena itu, kumparan berputar pada Gambar 2 akan menghasilkan sebuah tegangan yang terus-menerus berubah arah.

Gambar 2.

Kumparan berputar dalam Medan

Magnet

1.

Tegangan induced di Pindah

Melalui Konduktor Medan

Magnet

2.

Kumparan berputar dalam

Medan Magnet

Kumparan di posisi AB, pada Gambar 2, membungkus jumlah maksimum fluks. Fluks menurun sebagai kumparan posisi bergerak menuju CD dan menjadi nol pada CD, karena bidang kumparan sejajar dengan medan magnet. Kemudian peningkatan fluks arah yang berlawanan, mencapai maksimum negatif di BA dan berkurang lagi ke nol pada DC. Fluks membalikkan dan naik kembali pada arah yang asli untuk mencapai maksimum pada AB.

Meskipun fluks maksimum pada posisi AB dan BA dan posisi nol pada CD dan DC, induksi EMF akan maksimum pada posisi CD dan DC dan posisi nol pada AB dan BA. Hal ini benar karena EMF tergantung pada tingkat perubahan laju fluks atau fluks memotong garis dan bukan pada kuantitas terlampir.

(14)

Gambar 3.

Tegangan Sine Wave Disusun oleh

rotasi dari sebuah kumparan dengan

kecepatan konstan pada medan

magnet yang seragam.

Nilai Generated Tegangan

EMF pada setiap instan waktu adalah sebanding dengan jumlah belitan dalam kumparan kali laju perubahan fluks. The C.G.S. (sentimeter gram detik) unit EMF dikenal sebagai abvolt didefinisikan sebagai nilai yang disebabkan, dalam gulungan satu putaran, ketika fluks menghubungkan dengan kumparan berubah pada tingkat satu baris atau Maxwell per detik; atau sebagai nilai yang diinduksi ketika fluks magnet dipotong oleh konduktor pada tingkat satu baris per detik. A volt sama dengan 108 abvolts atau abvolt adalah sama dengan 10-8 volt. Oleh karena itu, nilai sesaat tegangan dinyatakan sebagai:

e = N x (d / Dt) x 10

-8

mana:

e = tegangan

N = jumlah belitan

d / Dt = laju perubahan fluks

Persamaan ini dapat dikembangkan lebih lanjut untuk mendapatkan tegangan untuk pergerakan konduktor pada kecepatan konstan melalui suatu medan magnet seragam:

E = N B v tidak x 10

-8

mana:

E = tegangan

N = jumlah belitan

B = kerapatan fluks dalam baris per square inch

= Panjang konduktor dalam inci

(15)

= Sudut antara konduktor dan medan fluks

Jika konduktor bergerak langsung di lapangan pada sudut kanan, lalu = 90 ° dan = 1. Persamaan kemudian menjadi:

E = N B x 10 in

-8

Perlu dicatat bahwa persamaan ini adalah bentuk khusus dari persamaan asli dan tidak berlaku dalam semua kasus.

PRINSIP DASAR MOTOR Konversi Energi

Sebagaimana dinyatakan di atas, energi mekanik diubah menjadi energi listrik oleh gerakan konduktor melalui medan magnet. Kebalikan dari ini juga benar. Jika energi listrik dipasok ke sebuah konduktor berbohong normal medan magnet, mengakibatkan arus di konduktor, gaya mekanis sehingga energi mekanik akan diproduksi.

Memproduksi Mechanical Force

Seperti pada generator, motor memiliki hubungan tertentu antara arah fluks magnet, arah gerakan konduktor atau kekuatan, dan arah tegangan atau arus.

Karena motor adalah kebalikan dari generator, Fleming aturan tangan kiri dapat digunakan. Jika ibu jari dan dua jari tangan kiri diperluas pada sudut yang tepat untuk satu sama lain, ibu jari akan menunjukkan arah gerakan, maka telunjuk akan menunjukkan arah medan magnet, dan jari tengah akan menunjukkan arah arus . Dalam baik motor atau generator, jika arah dari setiap dua faktor diketahui, ketiga dapat dengan mudah ditentukan.

Nilai Mechanical Angkatan

Gaya yang bekerja pada sebuah konduktor membawa arus tergantung pada kerapatan medan magnet, panjang konduktor, dan nilai arus yang mengalir dalam konduktor. Dengan mengasumsikan bahwa konduktor yang terletak pada sudut kanan medan magnet, gaya yang dikembangkan dapat dinyatakan sebagai berikut:

F = (B I) / 10

mana:

F = gaya dalam dyne

B = kerapatan fluks dalam baris per sentimeter persegi

= Panjang konduktor dalam sentimeter

I = arus dalam ampere.

Pada saat yang sama torsi sedang diproduksi, konduktor bergerak dalam medan magnet dan

(16)

Contoh Perhitungan

Generator Diketahui:

N = 60 ternyata

B = 40,000 baris per square inch

= 3,0 inci

B = 6.000 baris per sentimeter persegi

= 10 cm,

Dalam generator, konduktor bergerak melalui sebuah medan magnet stasioner menghasilkan tegangan. Jika sebuah kumparan diputar melalui medan magnet seperti yang ditunjukkan pada Gambar 4, tegangan bolak-balik akan diproduksi. Untuk membuat tegangan ini tersedia untuk sebuah sirkuit eksternal

(17)

Gambar 4.

Sikat dan slip ring memberikan

tegangan AC

Gambar 5.

Kuas dan Commutator memberikan

tegangan DC

(18)

Gambar 7. Uniform DC Voltage

Sebagaimana dinyatakan di atas, tegangan yang dihasilkan dalam satu konduktor adalah:

E = N B x 10 in

-8

mana:

B = kerapatan fluks dalam baris per square inch

= Panjang konduktor dalam inci

v = kecepatan dalam inci per detik

Persamaan ini dapat dikembangkan untuk persamaan berikut mesin DC:

E = (Z / path) x x kutub x (rpm / 60) x 10

-8

mana:

Z = jumlah konduktor

= Fluks per kutub dalam garis

Persamaan ini mewakili tegangan rata-rata. Untuk mesin tertentu, itu dapat dikurangi untuk:

E = K

1

Dengan

(19)

= Fluks per kutub

S = kecepatan dalam rpm

Ke arah

1

= Semua faktor-faktor lain

Motor

Seperti dinyatakan sebelumnya, jika saat ini dipasok ke sebuah konduktor dalam medan magnet, sebuah kekuatan akan diproduksi. Gaya dikembangkan dalam satu konduktor adalah:

F = (B I) / 10

mana:

F = gaya dalam dyne

B = kerapatan fluks dalam baris per sentimeter persegi

= Panjang konduktor dalam sentimeter

I = arus dalam ampere

Persamaan ini dapat dikembangkan untuk berikut ini untuk motor DC:

T = 11,73 x (Z / path) x x kutub x I

Sebuah

x 10

-10

mana:

T = torsi dalam ft-lb

Z = jumlah konduktor

= Fluks per kutub dalam garis

I = arus dalam ampere

Untuk mesin tertentu, ini dapat dikurangi dengan:

T = K

2

IA

mana:

= Fluks per kutub dalam garis

Di

Sebuah

= Arus dalam ampere

Ke arah

2

= Semua faktor-faktor lain

Ke arah2 tidak sama dengan K1 untuk tegangan. Torsi di atas bukan output torsi dari poros, melainkan

(20)

Output tenaga kuda dari setiap motor dapat dinyatakan sebagai:

HP = T x N / C

mana:

T = output torsi dalam ft-lb

N = kecepatan dalam rpm

Konstanta C = 5.252

Konstruksi Umum DC

Tipikal generator atau motor DC biasanya terdiri dari: Sebuah inti angker, sebuah celah udara, tiang, dan kuk yang membentuk rangkaian magnetik; yang angker berkelok-kelok, berliku-liku lapangan, sikat dan komutator yang membentuk rangkaian listrik dan bingkai , akhirnya lonceng, bantalan, sikat mendukung dan poros yang menyediakan dukungan mekanis. Lihat gambar 8.

Gambar 8. Empat Kutub DC Motor

Armature Core atau Stack

Stack yang angker terdiri magnetik tipis dicap dari laminasi baja lembaran baja dengan blanking mati. Slot menekan laminasi dengan slot mati. Kadang-kadang kedua operasi ini dilakukan sebagai satu. The laminasi yang dilas, terpaku, melesat atau terikat bersama.

Armature Winding

(21)

unit generator atau motor. Angker berliku yang biasanya terdiri dari kawat tembaga, baik bulat atau persegi panjang dan terisolasi dari tumpukan angker.

Lapangan Polandia

Core tiang dapat dibuat dari baja padat coran atau dari laminasi. Pada celah udara, biasanya tiang penggemar keluar ke apa yang dikenal sebagai kepala tiang atau tiang sepatu. Hal ini dilakukan untuk mengurangi keengganan dari celah udara. Biasanya kumparan lapangan terbentuk dan ditempatkan pada tiang core dan kemudian seluruh perakitan sudah terpasang untuk kuk.

Field Coils

Lapangan adalah mereka kumparan gulungan, yang terletak di kutub dan mengatur medan magnet dalam mesin. Mereka juga biasanya terdiri dari kawat tembaga yang terisolasi dari kutub. Bidang kumparan shunt dapat berupa gulungan (secara paralel dengan angker berliku) atau gulungan seri (di seri dengan gulungan angker) atau kombinasi keduanya.

Kuk

Beban adalah cincin baja yang melingkar, yang mendukung lapangan, tiang mekanis dan menyediakan jalur magnetik yang diperlukan di antara tiang. Beban dapat padat atau dilaminasi. Dalam banyak mesin-mesin DC, beban juga berfungsi sebagai bingkai.

Komutator

Komutator adalah penyearah mekanis, yang mengubah tegangan AC yang berputar ke DC tegangan konduktor. Terdiri dari sejumlah segmen biasanya sama dengan jumlah slot. Segmen atau komutator batang bantalan terbuat dari perak, tembaga dan dipisahkan dari satu sama lain oleh isolasi mika. Kuas dan Brush Holder

Kuas melakukan arus dari komutator ke sirkuit eksternal. Ada banyak jenis kuas. Pemegang kuas biasanya kotak logam yang berbentuk persegi panjang. Pemegang kuas pegas yang memegang sikat kontak dengan komutator. Setiap sikat biasanya memiliki tembaga fleksibel shunt atau dikepang, yang meluas ke kabel memimpin. Sering kali, seluruh sikat perakitan adalah terisolasi dari frame dan dibuat bergerak sebagai satu unit tentang komutator untuk memungkinkan penyesuaian.

Interpoles

Interpoles mirip dengan lapangan utama terletak di kutub dan beban antara kutub medan utama. Mereka telah gulungan secara seri dengan gulungan armature. Interpoles memiliki fungsi mengurangi efek reaksi angker di zona commutating. Mereka menghilangkan kebutuhan untuk menggeser sikat perakitan. Frame, Akhiri Bells, Shaft, dan Bearings

Frame dan akhir biasanya lonceng baja, aluminium atau magnesium coran digunakan untuk mewadahi dan mendukung bagian-bagian mesin dasar. Yang angker dipasang pada poros baja, yang didukung antara dua bantalan. Bantalan yang baik lengan baju, bola atau roller tipe. Mereka biasanya dilumasi oleh lemak atau minyak.

Back End, Front End

Akhir beban motor adalah Back End. Akhir beban yang berlawanan, paling sering akhir komutator, adalah Front End dari motor.

Gulungan angker

Ring program Winding

(22)

sisi. Ada dua jalur antara positif dan sikat negatif dan tegangan per path adalah tegangan yang dihasilkan mesin. Setiap jalan memberikan setengah dari arus keluaran.

Gambar 9.

Dua program Pole Ring Winding

Gambar 10.

Equivalent Circuit, Dua program

Pole Ring Winding

Drum Winding

Jenis Drum berkelok-kelok yang terbuat dari gulungan, salah satu yang diilustrasikan pada Gambar 11. Bagian lurus kumparan adalah bagian yang berputar melalui medan magnet di mana tegangan terinduksi. Oleh karena itu, setiap satu kumparan memiliki dua konduktor. Hal ini memiliki keuntungan atas program Cincin berliku di mana hanya satu sisi dari masing-masing kumparan digunakan sebagai konduktor aktif. Ada dua kelas drum gulungan tergantung bagaimana kumparan yang terhubung ke komutator.

Gambar 11.

Jenis drum Winding Coil

Lap Winding

Ketika mengakhiri sambungan dari kumparan dibawa ke bar yang bersebelahan seperti ditunjukkan pada Gambar 12, satu putaran atau paralel terbentuk berkelok-kelok. Dalam jenis ini berkelok-kelok, ada banyak jalan melalui angker karena ada kutub di mesin. Oleh karena itu, untuk mendapatkan

(23)

berguling keluar datar. Hal ini agak mudah untuk memahami tetapi kontinuitas dari gulungan rusak. Berliku putaran paling cocok untuk tegangan rendah, arus tinggi peringkat karena jumlah jalur paralel.

Gambar 12.

Lap Winding terhubung ke

komutator bar

Gambar 13.

Simplex Lap Winding, Edaran Form

Gambar 14. Simplex Lap Winding, Pengembangan Formulir

Wave Winding

(24)

tapi itu perlu perjalanan beberapa kali di sekitar angker dan untuk melewati setengah total berliku dalam rangka untuk menelusuri jalan antara positif dan sikat negatif. Berliku gelombang paling cocok untuk tegangan tinggi arus peringkat rendah karena hanya memiliki dua jalur.

Gambar 15.

Wave Winding terhubung ke komutator bar

Gambar 16.

Simplex Wave Winding, Edaran

Form

Gambar 17. Simplex Wave Winding, Pengembangan Formulir

Slots dan Coils

(25)

Slot Pitch

Slot lapangan mengacu pada jumlah slot direntang oleh masing-masing kumparan. Sebagai contoh, pada Gambar 18, bagian atas kumparan di slot 1 mempunyai dasar dalam slot 4, oleh karena itu, slot lapangan adalah 1-4 atau 3. Sejak bagian atas kumparan secara langsung di bawah kutub utara dan bagian bawah secara langsung di bawah kutub selatan, yang berkelok-kelok dikenal sebagai lapangan penuh berliku. Dalam banyak kasus, karena berbagai alasan, lapangan dikurangi menjadi kurang dari lapangan penuh. Sebagai contoh, jika kumparan pada Gambar 6 membentang 2 slots bukannya tiga, yang berkelok-kelok akan menjadi dua pertiga lapangan yang berkelok-kelok.

Gambar 18.

Coil Sides di Amature Slots

Gulungan medan

Lapangan gulungan memberikan eksitasi yang diperlukan untuk mengatur medan magnet dalam mesin. Ada berbagai jenis gulungan medan yang dapat digunakan dalam generator atau rangkaian motor. Selain gulungan medan berikut jenis, bidang magnet permanen digunakan pada beberapa produk DC yang lebih kecil. Lihat Gambar 19 untuk jenis berkelok-kelok.

Shunt luka – DC Operasi

(26)

Senyawa luka – DC Operasi

Khas Speed – Torque

CurveCompound luka (stabil shunt)

motor menggunakan sebuah

gulungan medan secara seri dengan

angker di samping lapangan shunt

untuk memperoleh suatu kompromi

dalam kinerja antara rangkaian dan

jenis shunt motor. Jenis ini

menawarkan kombinasi awal yang

baik torsi dan kecepatan stabilitas.

Standar peracikan adalah sekitar

12%. Peracikan berat hingga 40

hingga 50% dapat diberikan untuk

torsi awal tinggi khusus aplikasi,

seperti hoists dan crane.

Seri luka – DC Operasi

Khas Speed – Torque CurveLuka

series motor memiliki angker

terhubung secara seri dengan

lapangan. Meskipun mulai

(27)

Permanent Magnet – DC Operasi

Khas Speed – Torque CurveMotor

magnet permanen tidak memiliki

lapangan dan luka luka konvensional

angker dengan komutator dan sikat.

Motor ini memiliki torsi awal yang

sangat baik, dengan peraturan

kecepatan tidak sebagus senyawa

motor. Namun, peraturan kecepatan

dapat ditingkatkan dengan berbagai

desain, dengan nilai lebih rendah

torsi yang sesuai untuk suatu

bingkai. Karena lapangan permanen,

motor kerugian kurang dengan

efisiensi operasi yang lebih baik.

Motor ini dapat mengerem secara

dinamis dan terbalik di beberapa

angker tegangan rendah (10%),

tetapi seharusnya tidak plug terbalik

dengan tegangan armature penuh.

Membalikkan arus bisa tidak lebih

tinggi daripada arus armature yang

terkunci.

Gambar 19. Gulungan medan

Terpisah Excited Winding

Ketika bidang terhubung ke sumber daya eksternal, ini adalah bidang bersemangat secara terpisah. Straight Shunt Winding

Berkelok-kelok ini terhubung secara paralel dengan angker. Lilitan shunt biasanya terdiri dari sejumlah besar belitan kawat ukuran kecil. Ini adalah berkelok-kelok yang baik untuk membalikkan aplikasi karena menyediakan jumlah yang sama torsi di kedua arah. Torsi / kurva saat ini adalah non-linear di atas beban penuh. Luka shunt motor sering memiliki karakteristik kecepatan meningkat dengan meningkatnya beban. Series Winding

Berkelok-kelok ini tersambung secara seri dengan angker. Serangkaian berliku biasanya terdiri dari sejumlah kecil belitan kawat ukuran besar. Dengan ini berkelok-kelok, motor dapat menghasilkan mulai tinggi dan kelebihan torsi. Desain ini tidak digunakan untuk aplikasi dengan beban ringan atau tidak ada kondisi beban.

Compound Winding

Berkelok-kelok ini terdiri dari shunt seri berkelok-kelok dan berliku. Hal ini juga dikenal sebagai senyawa eksitasi. Berliku seri dapat dirancang sebagai rangkaian awal hanya atau sebagai seri mulai dan

jalankan.

Stabil Shunt Winding

(28)

mesin luka. Sebuah menstabilkan berliku digunakan untuk menjamin kecepatan terkulai dengan berlebihan. Ini juga menambah torsi dalam satu arah operasi dan mengurangi dari torsi dalam arah sebaliknya operasi dan di regenerasi.

Kompensasi shunt Winding

Kompensasi shunt shunt motor memiliki berkelok-kelok dan berliku seri wajah tiang terbuat dari konduktor besar ditempatkan di slot dalam menghadapi lapangan utama kutub. Arah arus dalam gulungan

kompensasi adalah lawan dari arus dalam konduktor angker lewat di bawah tiang. Fluks yang dihasilkan oleh gulungan kompensasi menetralkan fluks dari konduktor angker lewat di bawah tiang sehingga distorsi dari fluksi celah udara dapat dikurangi. Kompensasi shunt motor menjaga kecepatan konstan atau diatur dengan baik pada semua beban, tidak ada beban melalui overload. Tidak seperti shunt stabil berkelok-kelok, berliku-liku wajah tiang menambah torsi baik di depan dan berbalik arah rotasi.

Kompensasi shunt gulungan, karena masalah biaya dan kesulitan konstruksi, diberikan hanya pada motor besar, biasanya 840 frame dan lebih besar.

Switching

Tegangan maksimum dari sebuah angker berliku dapat diperoleh bila kuas berada dalam kontak dengan orang-orang konduktor, yang di tengah-tengah antara kutub. Ini akan menghasilkan kemungkinan terbesar jumlah konduktor memotong garis-garis magnetik dalam satu arah antara yang positif dan sikat negatif. Posisi sikat ini dikenal sebagai posisi netral tidak ada beban dari kuas. Arus dalam suatu kumparan armature berbalik arah sebagai sisi kumparan berpindah dari satu tiang ke lain yang berlawanan polaritas, sedangkan fungsi dari komutator ini adalah untuk menjaga arus searah.

Pembalikan ini sekarang dikenal sebagai pergantian. Komutator bertindak sebagai saklar untuk menjaga arus yang mengalir dalam satu arah. Namun, tingkat perubahan yang cepat dalam arah arus dalam kumparan tertentu menginduksi sebuah tegangan yang cukup dalam kumparan yang cenderung untuk menjaga arus yang mengalir dalam arah yang asli. Oleh karena itu, pembalikan saat ini tertunda

menyebabkan laju perubahan dipercepat dekat akhir periode pergantian. Hal ini menghasilkan busur jika pembalikan tidak selesai sebelum istirahat sikat kontak dengan kumparan yang terlibat. Setiap lengkung merugikan pengoperasian mesin dan harus menetral.

Armature Reaksi

(29)

Gambar 20. MMF and Flux Wave Shape due to Main Field only

Gambar 21. MMF dan Flux Gelombang Shape karena hanya Amature Reaksi

Gambar 22. Flux Wave Shape, efek gabungan

Brush Shifting

(30)

menggeser sikat melawan arah rotasi karena aliran arus adalah berlawanan dengan tegangan induksi. Jumlah pergeseran yang diperlukan tergantung pada beban sehingga pergeseran tertentu tidak akan memuaskan untuk semua beban. Salah satu efek dari pergeseran kuas adalah bahwa komponen demagnetization reaksi angker diperkenalkan. Dengan kata lain, ketika kuas dialihkan, reaksi yang angker tidak hanya akan mendistorsi fluks medan utama tetapi juga akan langsung menentang lapangan utama. Ini akan mengakibatkan penurunan fluks medan. Efek lainnya adalah bahwa jika kuas

dipindahkan cukup jauh, adalah mungkin untuk mengurangi jumlah ternyata efektif karena akan ada tegangan bertentangan satu sama lain di antara dua kuas.

Pada generator komponen yang demagnetization reaksi angker akan merugikan karena akan ada penurunan tegangan yang dihasilkan dengan meningkatnya beban. Namun, dalam sebuah motor, efeknya akan bermanfaat karena kecepatan akan cenderung tetap konstan.

Interpoles

Metode lain untuk memerangi tegangan induksi yang disebabkan oleh pembalikan arus adalah

penggunaan interpoles. Para interpoles terletak di titik netral geometris tengah antara kutub utama dan memberikan pembalikan medan magnet kekuatan dan polaritas yang tepat. Mereka menghilangkan perlunya sikat pergeseran dan, karena ini, efek demagnetization reaksi angker dihilangkan. Para interpole harus memiliki cukup kekuatan untuk mengatasi reaksi angker dan menyediakan lapangan membalik Oleh karena itu, terhubung secara seri dengan gulungan armature. Ketika angker arus meningkat dalam proporsi yang sama. Dalam generator, yang interpole harus memiliki polaritas yang sama seperti tiang berikutnya dalam arah rotasi sementara di sebuah motor yang interpole harus memiliki polaritas yang sama seperti tiang terakhir.

Karakteristik generator

Tidak Load Curve Saturasi

(31)

Gambar 23. Tidak Load Curve Saturasi

Gambar 23,1

(32)

Gambar 23,2

Tidak Load Curve Saturasi

Generator Build Up

Generator membangun biasanya mengacu pada kenaikan bertahap tegangan pada terminal angker ketika mesin diri bersemangat dan dioperasikan dengan kecepatan normal. Hal ini diilustrasikan pada Gambar 25 dengan mengacu pada garis resistensi lapangan yang menunjukkan bagaimana arus medan bervariasi sebagai tegangan bidang bervariasi. Kemiringan garis ini adalah bidang resistensi pada temperatur konstan. Naik tegangan dimulai dengan magnetisme sisa besi lapangan. Hal ini memberikan tegangan kecil keluaran E1 yang makan kembali ke lapangan sebagai 1. 1 meningkatkan fluks

memberikan tegangan yang sedikit lebih besar, E2 . Dan2 menyebabkan 2 mengalir. Proses ini berlanjut

(33)

Gambar 25. DC Motor Curves

Output tegangan persamaan tegangan telah dinyatakan sebagai:

E = K

1

S.

Namun, ini adalah dihasilkan tegangan dan bagian dari itu harus digunakan untuk mengatasi IR tetes dalam mesin, yang disebabkan oleh perlawanan itu dari angker, lapangan seri, interpoles, sikat, dll Jika resistensi itu digabungkan bersama-sama dan disebut angker perlawanan, maka output tegangan pada terminal generator dapat dinyatakan sebagai:

(34)

E = dihasilkan tegangan

Di

sebuah

= Amature saat

R

sebuah

= Amature rangkaian hambatan

Ke arah

1

= Konstanta mesin

= Fluks per kutub

S = kecepatan.

Karakteristik eksternal

Kurva yang menunjukkan hubungan antara tegangan keluaran dan arus keluaran dikenal sebagai karakteristik eksternal. Ditunjukkan pada Gambar 24 adalah kurva karakteristik eksternal untuk generator dengan berbagai jenis eksitasi. Jika generator, yang secara terpisah bersemangat, digerakkan dengan kecepatan konstan dan memiliki arus medan tetap, tegangan keluaran akan berkurang dengan

peningkatan arus beban seperti pada gambar. Penurunan ini disebabkan oleh angker angker reaksi penolakan dan efek. Jika fluks medan tetap konstan, tegangan yang dihasilkan akan cenderung tetap konstan dan tegangan keluaran akan sama dengan yang dihasilkan tegangan drop minus inframerah dari rangkaian armature. Namun, komponen demagnetizing reaksi angker cenderung mengurangi fluktuasi, sehingga menambah faktor tambahan, yang mengurangi tegangan keluaran.

Gambar 24. Generator DC Curves

(35)

berkurang karena efek reaksi angker dan angker IR jatuhkan, tegangan lapangan juga berkurang yang selanjutnya mengurangi fluks. Juga dapat dilihat bahwa di luar nilai kritis tertentu, maka generator shunt menunjukkan tren pembalikan nilai-nilai saat ini dengan penurunan tegangan. Titik ini arus keluaran maksimum dikenal sebagai titik breakdown. Pada kondisi sirkuit pendek, satu-satunya fluksi yang tersedia untuk menghasilkan arus magnet residual dari angker.

Membangun tegangan pada rangkaian generator, rangkaian eksternal harus tersambung dan hambatan direduksi menjadi nilai yang relatif rendah. Karena angker adalah seri dengan lapangan, arus beban harus mengalir untuk memperoleh fluks di lapangan. Sebagai tegangan dan arus beban naik resistensi dapat ditingkatkan ke nilai normal. Sebagai kurva karakteristik eksternal menunjukkan, tegangan output yang dimulai dari nol, mencapai puncaknya, dan kemudian jatuh kembali ke nol.

Kombinasi dari medan shunt lapangan dan serangkaian memberikan yang terbaik karakteristik eksternal seperti yang diilustrasikan pada Gambar 24. Jatuh tegangan, yang terjadi di mesin shunt, yang diimbangi dengan tegangan naik, yang terjadi di mesin seri. Penambahan dalam jumlah yang memadai ternyata offset seri IR yang angker angker drop dan efek reaksi, menghasilkan rata-senyawa generator yang memiliki tegangan yang hampir konstan. Jika lebih seri berubah ditambahkan, tegangan akan naik dengan beban dan mesin dikenal sebagai over-senyawa generator.

Voltage Regulation

Peraturan tegangan adalah perubahan tegangan terminal dengan perubahan arus beban dengan kecepatan konstan. Sebuah generator memiliki peraturan yang baik jika perubahan tegangan antara tanpa beban dan beban penuh kecil. Jika perubahan besar, peraturan yang miskin. Dinyatakan dalam bentuk persamaan:

Persen Voltage Regulation = (ENL – EFL ) / EFL x 100 atau untuk beberapa mesin senyawa, Persen Voltage

Regulation = (EFL – ENL ) / EFL x 100

Gambar 24 menunjukkan bahwa regulasi mesin yang terpisah gembira adalah lebih baik daripada mesin shunt. Namun, peraturan yang terbaik adalah senyawa yang diperoleh dengan mesin. Mesin seri praktis tidak ada peraturan sama sekali dan, karenanya, memiliki sedikit aplikasi praktis.

Motor Karakteristik Motor Operasi

Seperti yang dinyatakan sebelumnya, sebuah konduktor bergerak melalui sebuah medan magnet karena tindakan motor juga menghasilkan tegangan yang berlawanan dengan tegangan yang diberikan. Ini adalah EMF kembali. Kemudian untuk motor tindakan persamaan tegangan adalah:

V = E + I

Sebuah

R

Sebuah

= K

1

S + I

Sebuah

R

Sebuah

mana:

V = diterapkan atau terminal tegangan

E = kembali EMF

(36)

R

Sebuah

= Angker rangkaian hambatan’s

Ke arah

1

= Konstanta mesin

= Fluks per kutub

S = kecepatan

Ketika membandingkan persamaan ini dengan persamaan tegangan generator, dapat dilihat bahwa dalam generator tegangan yang dihasilkan lebih tinggi dari tegangan terminal sementara di sebuah motor yang sebaliknya adalah benar. Oleh karena itu, selama tegangan yang dihasilkan kurang dari tegangan terminal, mesin beroperasi sebagai motor dan mengambil daya dari sisi listrik, tetapi ketika tegangan yang dihasilkan menjadi lebih besar daripada tegangan terminal, mesin menjadi generator, pasokan listrik , dan membutuhkan energi mekanik untuk tetap beroperasi.

Bagian belakang atau counter EMF bertindak sebagai kontrol untuk jumlah arus mekanis yang dibutuhkan untuk setiap beban. Ketika beban mekanik meningkat, efek pertama adalah pengurangan kecepatan. Namun pengurangan kecepatan juga menyebabkan penurunan di belakang EMF, sehingga membuat tersedia peningkatan tegangan untuk arus dalam armature. Oleh karena itu, saat ini meningkat yang pada gilirannya akan meningkatkan torsi. Karena tindakan ini, yang sangat sedikit penurunan dalam kecepatan cukup untuk memenuhi peningkatan permintaan torsi. Juga, daya input diatur ke jumlah yang diperlukan untuk mensuplai motor kerugian dan output.

Speed Torque Curves

Kecepatan kurva torsi untuk tiga bentuk eksitasi ditunjukkan pada Gambar 25. Dalam bersemangat shunt motor, perubahan kecepatan sedikit dan, karenanya, dianggap motor kecepatan konstan. Juga, fluks medan hampir konstan dalam shunt motor dan torsi bervariasi hampir langsung dengan arus armature. Dalam motor seri kecepatan penurunan dengan peningkatan torsi jauh lebih besar. Hal ini disebabkan oleh fakta bahwa fluks medan meningkat dengan meningkatnya arus, sehingga cenderung untuk mencegah penurunan kembali EMF yang sedang disebabkan oleh penurunan kecepatan. Fluks medan bervariasi dalam serangkaian torsi motor dan bervariasi sebagai kuadrat dari arus angker sampai saturasi tercapai. Setelah mencapai kejenuhan, kurva cenderung mendekati garis lurus tren dari shunt motor. Beban yang tidak kecepatan motor seri biasanya terlalu tinggi untuk keamanan dan, oleh karena itu, tidak boleh dioperasikan tanpa beban memadai.

Senyawa kecepatan motor memiliki karakteristik torsi yang terletak antara shunt dan motor seri.

Speed Peraturan

Kecepatan peraturan adalah perubahan kecepatan dengan perubahan beban torsi, kondisi lain yang konstan. Sebuah motor memiliki peraturan yang baik jika tidak ada perubahan antara kecepatan beban dan beban penuh kecepatan kecil.

Persen Speed Peraturan = (SNL – SFL) / SFL x 100 A shunt motor memiliki kecepatan yang baik peraturan

(37)

Juga, memperlambat dari seri motor lebih baik untuk mulai berat beban. Namun, untuk banyak aplikasi yang shunt motor lebih disukai.

Motor Starting

Ketika angker tidak berputar, bagian belakang EMF adalah nol dan tegangan total tersedia untuk mengirimkan arus melalui armature. Karena resistensi angker rendah, arus yang sangat besar akan mengalir jika tegangan yang diaplikasikan di bawah kondisi ini. Oleh karena itu, perlu untuk memasukkan perlawanan tambahan secara seri dengan angker sampai kecepatan yang memuaskan dicapai di mana EMF belakang akan mengambil alih untuk membatasi input.

Kerugian Dan Efisiensi

Gesekan dan Windage

Kerugian tersebut termasuk bantalan gesekan, gesekan kuas, dan windage. Mereka juga dikenal sebagai kerugian mekanis. Mereka adalah konstan pada kecepatan tertentu, tetapi bervariasi dengan perubahan kecepatan. Power kerugian akibat gesekan meningkat dengan kuadrat dari kecepatan dan yang

disebabkan oleh peningkatan windage sebagai kubus dari kecepatan. Armature Tembaga Kerugian

Ini adalah aku2 R kerugian dari rangkaian angker, yang meliputi angker berkelok-kelok, komutator, dan

sikat. Mereka bervariasi secara langsung dengan perlawanan dan sebagai kuadrat dari arus. Lapangan Tembaga Kerugian

Ini adalah aku2 R kerugian dari rangkaian medan yang dapat mencakup gulungan medan shunt, gulungan

medan seri, interpole gulungan dan setiap shunts digunakan dalam kaitannya dengan gulungan ini. Mereka bervariasi secara langsung dengan perlawanan dan sebagai kuadrat dari arus.

Core Kerugian

Ini adalah arus eddy histeresis dan kerugian dalam armature. Dengan perubahan terus-menerus arah fluks dalam besi angker, pengeluaran energi yang dibutuhkan untuk membawa besi melalui loop histeresis lengkap. Ini adalah kerugian histeresis. Juga karena besi merupakan konduktor dan berputar dalam medan magnet, tegangan akan dihasilkan. Hal ini, pada gilirannya, akan mengakibatkan arus yang bersirkulasi kecil yang dikenal sebagai arus eddy. Jika inti yang solid yang digunakan untuk angker, maka kerugian arus eddy akan tinggi. Mereka dikurangi dengan menggunakan laminasi tipis, yang terisolasi dari satu sama lain. Histeresis dan kerugian arus eddy bervariasi dengan kerapatan fluksi dan kecepatan. Efisiensi

Untuk generasi atau motor, efisiensi sama dengan output dibagi dengan input. Namun, dalam generator, input mekanis sementara output listrik. Dalam sebuah motor yang sebaliknya adalah benar, karena itu:

Motor Efisiensi = (Input – Rugi) / Input

Generator Efisiensi = Output / (Output + Rugi)

Bagian 3: Horsepower Dasar

(38)

bahwa kuda rata-rata bekerja di tingkat kaki 22.000 pound per menit. Watt memutuskan, untuk beberapa alasan tidak diketahui, untuk menambahkan 50% ke angka ini dan tingkat rata-rata 33.000 kaki kuda di pon per menit.

Yang penting adalah bahwa sekarang ada sistem di tempat untuk mengukur tingkat melakukan kerja. Dan ada satuan daya, tenaga kuda.

Jika mesin uap telah dikembangkan suatu tempat lain di dunia, di mana kuda itu tidak ada binatang beban, kita mungkin rating lembu motor di kekuasaan atau kekuatan unta. Hari ini, motor juga dinilai dalam Watts output.

hp = lb x FPM / 33.000

hp = ft-lb x rpm / 5.252

kW = hp x 0,7457

hp

Metrik

= Hp x 1,0138

Horsepower seperti yang didefinisikan oleh Watt, adalah sama untuk AC dan DC motor, mesin bensin, anjing kereta, dll

Pada overload, torsi meningkat pada beberapa tingkat lebih rendah daripada peningkatan akibat arus saturasi

D2 L dan Torque

258AT = 324 D

2

L

259AT = 378 D

2

L

Dengan diameter frame yang sama, yang 259AT memiliki 17% lebih D2 L dan dengan demikian 17%

lebih dan 17% lebih Torque. Torsi motor meningkat dengan peningkatan besi dan tembaga, dikombinasikan dengan saat ini. Ini dapat dikatakan bahwa dibutuhkan besi dan tembaga untuk

(39)

Kecepatan dan DC Motors Motor DC shunt luka

Dengan beban motor, temperatur dan arus medan tetap konstan, kecepatan armature dikendalikan oleh tegangan.

E = ((Z / a) x x P x (N / 60) x 10

-8

) + (I, R

sebuah

R & I

ip

R & I

b

)

Jumlah dari penurunan tegangan rangkaian angker dapat digambarkan sebagai IR

N = (E – IR) / K

Speed contoh: desain motor diberikan G6219, bingkai MC3212, 50 hp, 1150 rpm, 500 volt angker, 85 ampli beban penuh, 0,432 resistansi sirkuit angker panas, 0,206 angker rangkaian resistansi dingin

Dan

jatuh

= IR = 85 amp x 0.432 = 36,72 volt

500 v lengan – 36,72 v drop = 463,28 bekerja volt

Volt per rpm = 463,28 / 1150 rpm = 0,40285

N

kecepatan dasar

= 1150 rpm = (500 v – 36.72 v) / 0.40285

Dengan 250 v pada angker, ada bekerja 213,28 volt (250-36,72)

213,28 / 0,40285 = 529 rpm (bukan 1 / 2 kecepatan, 575 rpm)

N = 529 rpm = (250 v – 36.72 v) / 0.40285

N = (E – IR) / Ke arah = (E – IR) / 0,40285

K perubahan dengan perubahan beban dan suhu

HP

Metrik

= HP x 1,0138

kW = HP x 0,7457

Sumber: http://www.maintanance.wordpress.com

Gambar

Gambar 2 – Aliran arus listrik dalam suatu konduktor konsentris set up garis fluks  magnet  di sekitar  konduktor.
Gambar 3 – garis magnet di sekitar konduktor arus  berangkat dari N-tiang dan re-enter pada S-tiang.
Gambar 4 – The kutub dari sebuah  elektro -magnetik kumparan berubah ketika arah aliran arus  perubahan.
Gambar 6 – Visualisasi dari DC
+6

Referensi

Dokumen terkait

b.. Melihat analisis, potensi, dan pesaing, memberikan keyakinan yang besar bahwa usaha ini akan memberikan peluang yang cukup besar untuk berkembang.

Lima Gerakan Awet Muda Tibet juga melancarkan aliran energi di tulang punggung sehingga penyaluran energi ke or-gan-organ penting tubuh yang berhubungan dengan

Berbagai proses interaksi sosial yang dilakoninya selama ini, baik sebagai pemain Opera Batak (aktor dan penari) di era tahun 1960-an, pemain musik gondang hasapi dari tahun 1984,

terutama berkenaan dengan program pendidikan yang ditempuh dan rencana karir yang dicita-citakannya; (4) siswa menguasai cara-cara belajar yang baik, cara bergaul yang sehat,

Rosliana (1998) dalam skripsinya yang berjudul Alih Kode dan Campur Kode Pada Penutur Bahasa Indonesia, mengatakan bahwa alih kode dan campur kode adalah merupakan peristiwa

Sistem Informasi Manajemen Arsip Dokumen Surat Keputusan dan Sertifikat adalah sebuah website berbasis PHP yang mampu menyimpan, dan fasilitas untuk mencetak

Namun kalau dilihat dari kerjasama dengan bidan sebelumnya maka yang bekerjasama hanya 5 orang, dengan demikian maka sebenarnya sudah 8 orang dukun bayi yang pernah

Jokioisissa heinäkuussa kesinä 1935 ja 1936. Anzahl der Hummeln je ha in den verschiedenen Anbaugebieten des Rotklees in Jokioinen im Juli 1935 und 1936. Flavaintovuosi ja alueen