• Tidak ada hasil yang ditemukan

BAB II TINJAUAN PUSTAKA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II TINJAUAN PUSTAKA"

Copied!
12
0
0

Teks penuh

(1)

BAB II

TINJAUAN PUSTAKA 2.1 Proses Pengeringan

Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas uantuk menguapkan kandungan air yang

dipindahkan dari permukaan bahan yang dikeringkan oleh media pengering yang biasanya berupa panas. Proses pengeringan berlaku apabila bahan yang

dikeringankan kehilangan sebahagian atau keseluruhan air yang dikandungnya. Proses utama yang terjadi pada proses pengeringan adalah penguapan. Penguapan terjadi apabila air yang dikandung oleh suatu bahan teruap, yaitu apabila panas diberikan kepada bahan tersebut.

Prinsip pengeringan biasanya akan melibatkan dua kejadian yaitu panas yang diberikan pada bahan dan air harus dikeluarkan dari bahan. Dua fenomena ini menyangkut pindah panas ke dalam dan pindah massa ke luar. Yang dimaksud dengan pindah panas adalah peristiwa perpindahan energi dari udara ke dalam bahan yang dapat menyebabkan berpindahnya sejumlah massa (kandungan air) karena gaya dorong untuk keluar dari bahan (pindah massa).

Dalam pengeringan umumnya diinginkan kecepatan pengeringan yang maksimum, oleh karena itu diusahakan untuk mempercepat pindah panas dan pindah massa. Perpindahan panas dalam proses pengeringan dapat terjadi melalui dua cara yaitu pengeringan langsung dan pengeringan tidak langsung.

Pengeringan langsung yaitu sumber panas berhubungan dengan bahan yang dikeringkan, sedangkan pengeringan tidak langsung yaitu panas dari sumber panas dilewatkan melalui permukaan benda padat (conventer) dan conventer tersebut yang berhubungan dengan bahan. Setelah panas sampai ke bahan maka air dari sel-sel bahan akan bergerak ke permukaan bahan kemudian keluar. 2.2 Pengeringan Buatan

Pengeringan dengan menggunakan alat pengering dimana, suhu, kelembapan udara, kecepatan udara dan waktu dapat diatur dan di awasi.

Keuntungan Pengering Buatan:  Tidak tergantung cuaca

(2)

 Tidak memerlukan tempat yang luas  Kondisi pengeringan dapat dikontrol  Pekerjaan lebih mudah.

2.2.1 Jenis Jenis Pengeringan Buatan Berdasarkan media panasnya,

 Pengeringan adiabatis ; pengeringan dimana panas dibawa ke alat pengering oleh udara panas, fungsin udara memberi panas dan membawa air.

 Pengeringan isotermik; bahan yang dikeringkan berhubungan langsung dengan alat/ plat logam yang panas.

2.2.2 Proses pengeringnan:

 Proses pengeringan diperoleh dengan cara penguapan air

 Dengan cara menurunkan RH dengan mengalirkan udara panas disekeliling bahan

 Proses perpindahan panas; proses pemanasan dan terjadi panas sensible dari medium pemanas ke bahan, dari permukaan bahan kepusat bahan.

 Proses perpindahan massa ; proses pengeringan (penguapan), terjadi panas laten, dari permukaan bahan ke udara

 Panas sensible ; panas yang dibutuhkan/ dilepaskan untuk menaikkan /menurunkan suhu suatu benda

 Panas laten ; panas yang diperlukan untuk mengubah wujud zat dari padat kecair, cair ke gas, dst, tanpa mengubah suhu benda tersebut. 2.2.3 Faktor faktor yang mempengaruhi pengeringan.

Pada pengeringan selalu diinginan kecepatan pengeringan yang maksimal. Oleh karena itu perlu dilakukan usah- usah untuk memercepat pindah panas dan pindah massa ( pindah massa dalam hal ini adalah perpindahan air keluar dari bahan yang dikeringksan dalam proses pengeringan tersebut.

Ada beberapa faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum, yaitu :

(a) Luas permukaan

(3)

(c) Kecepatan udara

(d) Kelembapan udara

(e) Tekanan atm dan vakum

(f) Waktu.

Dalam rancang mesin ini faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum adalah :

• Suhu

Semakin besar perbedaan suhu ( antara medium pemanas dengan bahan bahan) maka akan semakin cepat proses pindah panas

berlangsung sehingga mengakibatkan proses penguapan semaki cepat pula. Atau semkain tinggi suhu udara pengeringan maka aka semakin besar anergi panas yang dibawa ke udara yang akan menyebabkan proses pindahan panas semakin cepat sengingga pindah massa akan berlangsung juga dengan cepat.

 Kecepatan udara

Umumnya udara yang bergerak akan lebih banyak mengambil uap air dari permukaan bahan yang dikeringkan. Udara yang bergerak adalah udara yang mempunyai kecepatan gerak yang tinggi yang berguna untuk mengambil uap air dan menghilangkan uapa air dari permukaan bahan yang dikeringkan, sehingga dapat mencegah terjadinya udara jenuh yang dapat memperlambat penghilangan air.

 Kelembaban Udara (RH)

Semakin lembab udara di dalam ruang pengering dan sekitarnya maka akan semakin lama proses pengerngan berkangsung kering, begitu juga sebaliknya. Karena udara kering dapat mengabsobsi dan menahan uap air. Setiap bahan mempunyai keseimbangan kelembaban nisbi ( RH keseimbangan) masing- maasin, yaitu kelembaban pada suhu tertentu dimana bahan tidak akan kehilangan air ( pindah) ke atmosfir atau tidak akan mengambil uap air dari atmosfir.

(4)

Jika RH udara < RH keseimbangan maka bahan masih dapat dikeringkan

Jika RH udara > RH keseimbangan maka bahan malahan akan menarik uap air dari udara.

 Waktu

Semakin lama waktu (batas tertentu) pengeringan maka akan semakin cepat proses pengeringan selesai. Dalam pengeringan diterapkan konsep HTST ( High Temperature Short Time), short time dapat menekan biaya pengeringan.

2.3 Pompa Kalor (Heat Pump)

Pompa kalor (heat pump) adalah suatu perangkat yang mentransfer panas dari media suhu rendah ke suhu tinggi. Pompa kalor merupakan perangkat yang sama dengan mesin pendingin (Refrigerator), perbedaannya hanya pada tujuan akhirnya. Mesin pendingin bertujuan menjaga ruangan pada suhu rendah (dingin) dengan membuang panas dari ruangan. Sedangkan pompa kalor bertujuan

menjaga ruangan berada pada suhu yang tinggi (panas). Hal ini di ilustrasikan seperti pada gambar 2.1.

Ruang Panas (ruang yang dimanfaatkan) Ruang Panas R Ruang dingin (ruang yang dimanfaatkan) Wnet, in (required input) QH QL (desired output) Ruang Dingin HP W net, in (required input) QL QH (desired output)

(5)

Gambar 2.1 Refrigerator dan pompa kalor (heat pump) Sumber: (Cengel and Boles 2006)

Pompa kalor memanfaatkan sifat fisik dari penguapan dan pengembunan dari suatu fluida yang disebut dengan refrigeran. Pada aplikasi sistem pemanas, ventilasi dan pendingin ruangan, pompa kalor merujuk pada alat pendinginan kompresi-uap yang mencakup saluran pembalik dan penukar panas sehingga arah aliran panas dapat dibalik. Secara umum, pompa kalor mengambil panas dari udara atau dari permukaan. Beberapa jenis pompa kalor dengan sumber panas udara tidak bekerja dengan baik setelah temperatur jatuh di bawah -5oC (23oF) (http://id.wikipedia.org/wiki/Pompa_kalor n.d.).

2.3.1 Siklus Refrigerasi kompresi uap

Siklus refrigerasi kompresi uap merupakan silkus yang paling umum digunakan untuk mesin pendingin dan pompa kalor. Komponen utama dari sebuah siklus kompresi uap adalah :

1. Kompresor

Pada sistem mesin refrigerasi, kompresor berfungsi seperti jantung. Kompresor berfungsi untuk mensirkulasikan refrigeran dan menaikan tekanan refrigerant agar dapat mengembun di kondensor pada temperatur di atas temperatur udara sekeliling.(www:Google/Komponen Utama Siklus Kompresi

Uap)

Berdasarkan cara kerjanya, kompresor yang biasa dipakai pada sistem

refrigerasi dapat dibagi menjadi: .

(6)

KOMPRESOR

RECIPROCATING

ROTARY EJEKTOR TURBO

VANE SCROLL ROLLING

PISTON SCREW CENTRIFUGAL AXIAL

Gambar 2. 2 Pembagian Kompresor (Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal : 46)

Kompresor yang memerangkap refrigeran dalam suatu ruangan yang terpisah dari saluran masuk dan keluarnya, kemudian dimampatkan. Kompresor ini dapat dibagi lagi menjadi:

a. Kompresor torak (reciprocating) b. Kompresor putar (rotary)

c. Kompresor sudu luncur (rotary vane atau sliding vane) d. Kompresor ulir (screw)

e. Kompresor gulung (Scroll) 2. Kondensor,

Kondensor berfungsi sebagai untuk membuang kalor ke lingkungan, sehingga uap refrigeran akan mengembun dan berubah fasa dari uap ke cair. Sebelum masuk ke kondenser refrigeran berupa uap yang bertemperatur dan bertekanan tinggi, sedangkan setelah keluar dari kondenser refrigeran berupa cairan jenuh yang bertemperatur lebih rendah dan bertekanan sama (tinggi) seperti sebelum masuk ke kondenser.

3. Katup Ekspansi,

Komponen utama yang lain untuk mesin refrigerasi adalah katup ekspansi. Katup ekspansi ini dipergunakan untuk menurunkan tekanan dan untuk mengekspansikan secara adiabatik cairan yang bertekan dan bertemperatur tinggi sampai mencapai tingkat tekanan dan temperatur rendah, atau mengekspansikan

(7)

refrigeran cair dari tekanan kondensasi ke tekanan evaporasi, refrigeran cair diinjeksikan keluar melalui oriffice, refrigeran segera berubah menjadi kabut yang tekanan dan temperaturnya rendah.

Selain itu, katup ekspansi juga sebagai alat kontrol refrigerasi yang berfungsi : 1. Mengatur jumlah refrigeran yang mengalir dari pipa cair menuju

evaporator sesuai dengan laju penguapan pada evaporator.

2. Mempertahankan perbedaan tekanan antara kondensor dan evaporator agar penguapan pada evaporator berlangsung pada tekanan kerjanya.

4. Evaporator,

berfungsi melakukan perpindahan kalor dari ruangan yang didinginkan ke refrigeran yang mengalir di dalamnya melalui permukaan dindingnya.

Siklus refrigerasi kompresi uap ini dapat digambarkan seperti gambar berikut: Ruang panas Condenser QH Evaporator Katup ekspansi Dingin Proses refrigerasi Compressor Win (a) Skema

(8)

Gambar 2.3 Skema, diagram T-s dan diagram P-h dari siklus refrigrasi kompresi uap (Cengel and Boles 2006)

Dari gambar diatas, Siklus ini terdiri dari 4 proses, yaitu:

1-2 : Proses kompresi

Proses berlangsung dalam kompresor dan berlangsung secara isentropik adiabatik. Refrigeran meninggalkan evaporator dalam wujud uap jenuh dengan temperatur dan tekanan rendah, kemudian masuk dalam kompresor, selanjutnya oleh kompresor uap dinaikkan tekanannya menjadi uap

bertekanan dan temperaturnya meningkat.

Dalam pengujian besarnya daya kompresor untuk melakukan kerja dapat juga ditentukan dengan rumus:

...(handbook of industrial drying, third edition)

(2.1) Dimana :

= daya listrik kompresor (Watt)

= tegangan listrik (Volt)

= kuat arus listrik (Ampere)

(9)

= sudut antara daya nyata dan daya aktif (0,6 – 0,8)

2-3 : Proses kondensasi (pengembunan)

Proses berlangsung dalam kondensor. Refrigeran yang berasal dari kompresor dengan tekanan tinggi dan temperatur tinggi masuk kedalam kondensor untuk mengubah wujudnya menjadi cair. Terjadi pertukaran kalor antara refrigeran dengan lingkungan (udara) sehingga panas berpindah dari refrigeran ke udara pendingin yang menyebabkan uap refrigeran

mengembun menjadi cair.

Besarnya kalor per satuan waktu yang di lepaskan di kondensor dinyatakan sebagai:

...(2

.2)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012, hal :5)

Dimana :

= besarnya kalor dilepas di kondensor (kJ/kg)

= entalpi refrigeran saat masuk kondensor (kJ/kg)

= entalpi refrigeran saat keluar kondensor (kJ/kg)

= laju aliran refrigeran pada sistem (kg/s)

3-4 : Proses ekspansi

Refrigeran (dalam wujud cair jenuh) mengalir melalui katup ekspansi. Refrigeran mengalami ekspansi pada entalpi konstan dan berlangsung secara irreversibel. Terjadi penurunan tekanan dan temperatur.

(10)

Proses terjadi didalam evaporator da berlangsung secara isobar isothermal (tekanan konstan dan temperatur konstan). Refrigeran (fasa campuran uap-cair) mengalir melalui evaporator. Panas dari lingkungan diserap refrigeran melalui evaporator.

Proses ini berlangsung di evaporator secara isobar isotermal. Refrigerant dalam wujud cair bertekanan rendah menyerap kalor dari lingkungan / media yang di dinginkan sehingga wujudnya berubah menjadi gas bertekanan rendah.

Besarnya kalor yang diserap evaporator adalah :

... ...(2.3)

(Teknik Pendingin & Pengkondisian Udara ,Dr. Eng. Himsar Ambarita, 2012,hal :5)

Dimana :

= kalor yang di serap di evaporator ( kW )

= efek pendinginan (efek refrigerasi) (kJ/kg)

= harga entalpi ke luar evaporator (kJ/kg)

= harga entalpi masuk ke evaporator (kJ/kg)

= laju aliran refrigeran pada sistem (kg/s) 2.3.2 Pengering Pompa Kalor

Prinsip kerja pengering pakaian pompa kalor diilustrasikan seperti gambar 2.4. Pompa kalor memberikan panas dengan mengekstraksi energi dari udara sekitar. Panas kering udara diproses memasuki belakang drum dan berinteraksi dengan cucian. Udara lembab yang hangat dari drum diproses melalui layar serat dan melalui evaporator dimana sebagian besar kelembaban akan di hilangkan sebelum mengalir melalui kondensor dan kembali ke drum.

(11)

Load Cell Rh T Rh T Rh T 1 2 3 C Rh T RhT RhT 1 2 3 Komputer (Data Logger) EL-USB (Rh & Temperatur)

Gelas Ukur air Kondensor Kompresor Kipas Kipas Katup Ekspansi Evaporator Anemometer

Gambar 2.4 Diagram pengering pakaian pompa kalor

Melalui skema siklus refrigrasi kompresi uap, panas yang dikeluarkan oleh kondensor dimanfaatkan untuk mengeringkan pakaian. Udara panas dari

kondensor dialirkan ke ruang pengeringan, selanjutnya udara hasil pengeringan menjadi lembab (basah). Udara dari ruang pengeringan kemudian dialirkan ke evaporator untuk didinginkan dan dikeringkan, udara tersebut selanjutnya akan menuju kondensor untuk dipanaskan. Demikian seteruanya siklus dari udara pengering tersebut bersikulasi. Skema dari pengering pakaian ini terlihat pada gambar 2.5.

Gambar 2.5 Skema pengeringan Sumber: (Pal U.S 2010) 2.4 Kinerja Alat Pengering

(12)

Kinerja alat pengering salah satunya dapat ditentukan dari efisiensi pengeringan. Efisiensi pengeringan merupakan perbandingan antara energi yang digunakan untuk menguapkan kandungan air abahan dengan energi untuk memanaskan udara pengering. Efisiensi pengeringan biasanya dinyatakan dalam persen. Semakin tinggi nilai efisiensi pengeringan maka alat pengering tersebut semakin baik.

2.4.1 Efisiensi Pengeringan

Perhitungan efisiensi pengeringan dapat dilakukan dengan menggunakan persamaan:

... (2.4)

(Dipl. Ing (FH) D. Butz, Dipl. Ing (FH) M. Schwarz, Fachhochschule Fulda, Food

technology 2004 hal :142) Dimana:

Qp adalah energi yang digunakan untuk pengeringan (kJ)

Q adalah energi untuk memanaskan udara pengering (kJ) 2.4.2 Spesific Moisture Extraction Rate (SMER)

Nilai laju ekstraksi air spesifik atau specific moisture extraction rate (SMER) merupakan perbandingan jumlah air yang dapat diuapkan dari bahan dengan energi listrik yang digunakan tiap jam atau energi yang dibutuhkan untuk menghilangkan 1 kg air . Dinyatakan dalam kg/kWh.

Perhitungan SMER menggunakan persamaan (Mahlia, Hor and Masjuki 2010): SMER =

(

T T

)

Wc x Cp x m X out in udara − + ... (2.5) Dimana :

Mudara = laju aliran massa udara ( kg/s)

Cp = Panas Jenis udara (kJ/kg)

Tin = Temperatur udara masuk evaporator (0C)

Tout = Temperatur udara keluar evaporator (0C)

Wc = Daya kompressor (kW) 2.4.3 Specific Energy Consumption (SEC)

Gambar

Gambar 2. 2 Pembagian Kompresor (Teknik Pendingin &amp; Pengkondisian Udara  ,Dr. Eng
Gambar 2.3 Skema, diagram T-s dan diagram P-h dari siklus refrigrasi  kompresi uap (Cengel and Boles 2006)
Gambar 2.5 Skema pengeringan  Sumber: (Pal U.S 2010)  2.4  Kinerja Alat Pengering

Referensi

Dokumen terkait

Produk asam asetat ini memiliki pasar yang cukup luas seperti industri Purified Terephtalic Acid (PTA), industri etil asetat, industri tekstil, industri benang karet dan juga

Pusat Informasi Perubahan Iklim BMKG menyediakan informasi berupa data dan peta spasial dari proyeksi perubahan parameter suhu dan curah hujan untuk seluruh wilayah Indonesia

Hal ini menunjukkan bahwa soal sudah sesuai dengan aspek yang ditentukan oleh direktorat PSMA (2010) yaitu aspek materi, konstruksi dan bahasa/ budaya.Namun untuk

Indeks resiko total yang merupakan nilai untuk menentukan apakah bendungan berfungsi dengan baik, diperoleh dari kombinasi nilai bobot kondisi lapangan (CF i ) dengan

Untuk mengukur peubah laten endogen kepuasan digunakan indikator antara lain pelanggan sangat puas dengan kartu prabayar GSM Simpati dibandingkan dengan operator lain (Y12),

Penelitian tindakan kelas mempunyai beberapa karakteristik, yaitu: (1) an inquiry of practice from within (penelitian berawal dari permasalahan praktis yang dialami

Dengan memanjatkan puji syukur kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan penulisan laporan skripsi yang

Berdasarkan rumusan masalah, cara kerja konsep solusi adalah sebagai berikut: akan dibuat sistem alat yang akan bekerja secara otomatis dengan menggunakan bantuan GPS