• Tidak ada hasil yang ditemukan

Isolasi Senyawa Flavonoida Biji Buah Pinang (Areca catechu L)

N/A
N/A
Protected

Academic year: 2017

Membagikan "Isolasi Senyawa Flavonoida Biji Buah Pinang (Areca catechu L)"

Copied!
17
0
0

Teks penuh

(1)

BAB 2

TINJAUAN PUSTAKA

2.1 Biji Buah Pinang

2.1.1 Morfologi dan Manfaat Biji Buah Pinang

Tanaman pinang (Areca catechu L) di Indonesia sejak dulu telah banyak dimanfaatkan oleh masyarakat khususnya buah, yang digunakan untuk campuran makan sirih. Tanaman pinang mudah tumbuh di Indonesia, biasanya ditanam di pekarangan rumah, taman, atau tumbuh di pinggir sungai dengan bentuknya yang indah. Biji pinang disebut dengan betel nut dan ditanam secara luas di India, Sri Langka sampai ke Cina dan Philipina, di Malaysia dan Indonesia, juga diperoleh di Afrika sebelah Timur (Tanzania) (Bruneton, 1995).

Bijinya dapat dikomsumsi dalam keadaan segar atau telah dididihkan dengan air atau setelah dikeringkan (Heyne,1987). Batang langsing tingginya sampai 25 meter dan besarnya lebih kurang 15 cm. Pelepah daun berbentuk tabung, panjang 80 cm dengan tangkai daun pendek. Helaian daun panjang sampai 80 cm, anak daun 85 kali 5 cm, dengan ujung sobek dan bergigi(Steenis, 2003).

2.1.2 Sistematika Biji Buah Pinang

Tanaman pinang diklasifikasikan sebagai berikut: Kingdom : plantae

Divisi : spermatophyte Class : monocotyledonae Ordo : arecales

Famili : arecaceae/palmae Genus : areca L

(2)

2.2 Senyawa Organik Bahan Alam

Pada hakekatnya kimia bahan alam merupakan pengetahuan yang telah dikenal sejak peradaban manusia tumbuh. Contoh yang dapat segera diketahui adalah pembuatan bahan makanan, pewarnaan benda, obat-obatan atau stimulan, dan sebagainya (Sastrohamidjojo, 1996).

Sejak kira-kira pertengahan abad ke 18, telah dapat dipisahkan beberapa senyawa organik dari mahluk hidup serta hasil produksinya. Seorang ahli kimia Jerman, Karl Eilhelm Scheele (1742-1786) sangat terkenal dengan keahliannya dalam bidang ini, beliau telah berhasil memisahkan beberapa senyawa sederhana. Biogenesis dari produk alami, meskipun pada mulanya berkaitan dengan kimia organik dan biokimia, menjadi berlainan karena mempunyai tujuan yang berlainan. Kimia organik terutama mempelajari struktur, sifat-sifat kimia dan fisika, serta cara sintesisnya, baik secara alami ataupun in vitro dari zat-zat kimia tetapi cenderung untuk mengabaikan sifat-sifat khusus dari bahan alam, misalnya tentang cara pembentukan dan peran biologisnya. Biokimia, berusaha menjawab pertanyaan-pertanyaan yang paling banyak diajukan terutama tentang metabolisme primer, dan mengabaikan proses-proses sekunder misalnya tentang pembentukan alkaloid, terpena dan lain-lain (Manitto, 1981).

Dengan meningkatnya jenis dan tipe senyawa yang ditemukan di dalam berbagai bahan alam, berkembang juga sistem klasifikasi senyawa yang berasal dari bahan alam, tetapi biasanya ada 4 jenis klasifikasi yang digunakan untuk membahasnya (Nakanishi et al, 1974).

2.3 Senyawa Flavonoida

Senyawa flavonoida adalah senyawa-senyawa polifenol yang mempunyai 15 atom karbon, terdiri dari dua cincin benzene yang dihubungkan menjadi satu oleh rantai liniear yang terdiri dari tiga atom karbon (Manitto, 1992).

Struktur dasar flavanoida dapat digambarkan sebagai berikut:

A C C C B

(3)

Senyawa flavonoid diduga sangat bermanfaat dalam makanan karena, berupa senyawa fenolik, senyawa ini yang bersifat antioksidan kuat. Banyak kondisi penyakit yang diketahui bertambah parah oleh adanya radikal bebas seperti superoksida dan hidroksil, dan flavonoid memiliki kemampuan untuk menghilangkan dan secara efektif ‘menyapu’ spesies pengoksidasi yang merusak itu. Oleh karena itu, makanan kaya flavonoid dianggap penting untuk mengobati penyakit-penyakit, seperti kanker dan penyakit jantung (yang dapat memburuk akibat oksidasi lipoprotein densitas-rendah) (Heinrich et al, 2009).

2.3.1 Klasifikasi Senyawa Flavonoida

Flavonoida biasanya terdapat sebagai O-glikosida. Pada senyawa tersebut satu gugus hidroksil flavonoida atau lebih terikat pada satu gula atau lebih dengan ikatan hemimasetal yang tak tahan asam. Pengaruh glikosilasi menyebabkan flavanoida menjadi kurang reaktif dan lebih mudah larut dalam air. Glukosa merupakan gula yang paling umum terlibat walaupun galaktosa, ramnosa, xilosa dan aribinosa juga sering ditemukan.

Gula dapat juga treikat pada atom karbon flavanoida dan dalam hal ini gula tersebut terikat langsung pada inti benzene dengan suatu ikatan karbon-karbon yang tahan asam. Glikosida yang demikian disebut C-glikisoda. Jenis gula yang terlibat lebih sedikit dibandingkan dengan gula O-glikosida.

Flavonoida sulfat adalah golongan flavonoida lain yang mudah larut dalam air. Senyawa ini mengandung satu ion sulfat atau lebih yang terikat pada hidroksi fenol atau gula. Secara teknis senyawa ini sebenarnya bisulfate karena terdapat sebagai garam yaitu flavon -O-SO3K. Banyak yang berupa glikosida bisulfate, bagian bisulfate

(4)

Sejumlah aglikon flavonoida mempunyai atom karbon asimetrik dengan demikian dapat menunjukkan keaktifan optic (yaitu memutar cahaya terpolarisasi datar). Yang termasuk dalam golongan flavonoida ini adalh flavonon, dihidroflavonol, katekin, petrokarpan, rotenoid, dan beberapa biflavanoida(Markham, 1988).

2.3.2 Biosintesis Flavonoida

Biosintesis senyawa flavonoid diperoleh dengan mereaksikan fragmen C6-C3 turunan

asam sikimat seperti asam p-hidroksisinamat dengan atom karbon.

C C C + (C-C0)3 C C C C CO C CO C COOH

O

Skema biosintesis dari turunan asam sikimat:

Asam sikimat → asam prefenat → asam p-hidroksifenil piruvat → asam p -hidroksifenillaktat → asam p-hidroksisinamat → flavanon. Hidroksilasi pada cincin A dan B terjadi setelah pembentukan cincin sempurna (Sirait, 2007).

Menurut Robinson (1995), flavonoid dapat dikelompokkan berdasarkan tahanan oksidasi dan keragaman lain pada rantai C3 :

1. Flavon

Flavon bersamaan dengan flavonol merupakan senyawa yang paling tersebar luas dari semua pigmen tumbuhan kuning, meskipun warna kuning tumbuhan jagung biasanya disebabkan oleh karotenoid. Senyawa ini biasanya larut dalam air panas dan alkohol, meskipun beberapa flavonoid yang termetilasi tidak larut dalam air. Flavon berbeda dengan flavonol dimana pada flavon tidak terdapat gugus 3-hidroksi. Flavon dianggap sebagai induk dalam nomenklatur kelompok senyawa flavonoid.

(5)

O

O

A C

B

2. Flavonol

Flavonol paling sering terdapat sebagai glikosida, biasanya 3-glikosida. Larutan flavonol dalam suasana basa (tetapi flavon tidak) dioksidasi oleh udara tetapi tidak begitu cepat sehingga pengunaan basa pada pengerjaannya masih dapat dilakukan

O

O OH

A C

B

3. Isoflavon

Isoflavon merupakan senyawa yang tidak begitu mencolok, tetapi senyawa ini penting sebagai fitoaleksin (senyawa pelindung) dalam tumbuhan untuk pertahanan terhadap penyakit.

O

O

A C

B

4. Flavanon

Senyawa ini terdapat hanya sedikit sekali jika dibandingkan dengan flavonoid lain. Tidak berwarna atau hanya kuning sedikit. Flavanon (dihidroflavon) sering terjadi sebagai aglikon, tetapi beberapa glikosidanya dikenal misalnya hesperidin dan naringan dari jaringan kulit buah jeruk.

O

O

A C

(6)

5. Flavanonol

Flavanonol (atau dihidroflavonol) barangkali merupakan flavonoid yang paling kurang dikenal, dan tidak dapat diketahui apakah senyawa ini terdapat sebagai glikosida. Senyawa ini stabil dalam asam klorida panas tetapi terurai oleh udara.

O

O OH

A C

B

6. Antosianin

Antosianin adalah pigmen daun bunga merah sampai biru yang biasa, banyaknya sampai 30% bobot kering dalam beberapa bunga. Antosianin terdapat juga dalam bagian lain tumbuhan tinggi kecuali fungus. Antosianin selalu terdapat dalam bentuk glikosida.

O

OH

A C

B

7. Katekin

Katekin dan proantosianidin adalah dua golongan senyawa yang mempunyai banyak kesamaan. Semuanya senyawa tanpa warna, terdapat pada seluruh dunia tumbuhan tetapi terutama dalam tumbuhan berkayu.

O

OH HO

OH

OH OH

A C

(7)

8. Leukoantosianidin

Merupakan monomer flavan 3,4-diol, leukoantosianidin jarang terdapat sebagai glikosida, namun beberapa bentuk glikosida yang dikenal adalah apiferol, dan peltoginol.

O

OH HO OH

OH OH

A C

B HO

9. Auron

Berupa pigmen kuning emas terdapat dalam bunga tertentu dan bryofita. Dalam larutan senyawa ini menjadi merah ros.

O

O CH

A B

10.Kalkon

Pada kenyataan, pengubahan kalkon menjadi flavanon terjadi dengan mudah dalam larutan asam dan reaksi kebalikannya dalam basa. Reaksi ini mudah diamati karena kalkon warnanya jauh lebih kuat daripada warna flavanon, terutama dalam larutan basa warnya merah jingga. Oleh karena itu, hidrolisis glikosida kalkon dalam suasana asam menghasilkan aglikon flavanon sebagai senyawa jadi, bukan kalkon (Robinson, 1995).

A

O

(8)

2.4Skrining Fitokimia

Banyak reagen yang dapat digunakan untuk mengetahui keberadaan dari flavonoid, meskipun beberapa juga akan bereaksi positif dengan senyawa polifenol. Reagen yang biasa digunakan adalah :

1. Shinoda Test, yaitu dengan menambahkan serbuk magnesium pada ekstrak sampel dan beberapa tetes HCl pekat, warna orange, pink, merah sampai ungu akan terjadi pada senyawa flavon, flavonol, turunan 2,3-dihidro dan xanton. Penggunaan zinc sebagai pengganti magnesium dapat dilakukan, dimana hanya flavanonol yang memberikan perubahan warna merah pekat sampai magenta, flavanon dan flavonol akan memberi warna merah muda yang lemah sampai magenta.

2. H2SO4(p), flavon dan flavonol akan memberikan perubahan larutan kuning

pekat. Kalkon dan auron menghasilkan larutan berwarna merah atau merah kebiru-biruan. Flavanon memberikan warna orange sampai merah (Cannell, 1998).

3. NaOH 10% , menghasilkan larutan biru violet

4. FeCl3 5% telah digunakan secara luas untuk mengidentifikasi senyawa fenol,

tetapi tidak dapat digunakan untuk membedakan macam-macam golongan flavonoid. Pereaksi ini memberi warna kehijauan, warna biru, dan warna hitam-biru (Robinson, 1995).

2.5Teknik Pemisahan

Teknik pemisahan memiliki tujuan untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponen-komponen lainnya. Ada 2 jenis teknik pemisahan:

(9)

2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaan-perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam satu golongan (Muldja, 1995)

Biomassa (tanaman, mikroba, laut)

Ekstraksi

Skrining

Isolasi zat aktif berdasarkan uji hayati

Skrining silang

Elusidasi Struktur

Gambar 2.3 Diagram Teknik Pemisahan (Muldja, 1995)

2.5.1 Ekstraksi

Sampel yang berasal dari tanaman setelah diidentifikasi, kemudian digolongkan menjadi spesies dan famili, sampel kemudian dikumpulkan dari bagian arialnya (daun, batang, kulit kayu pada batang, kulit batang, dan akar). Sampel ini kemudian dikeringkan dengan cara diangin-anginkan untuk menghindari penguraian komponen oleh udara atau mikroba.

Jika telah dikeringkan, biomassa kemudian digiling menjadi partikel-partikel kecil menggunakan blender atau penggilingan. Proses penggilingan ini penting karena ektraksi efektif pada partikel kecil, dikarenakan memiliki luas permukaan yang lebih besar.

(10)

Terdapat sejumlah metode ekstraksi, yang paling sederhana adalah ekstraksi dingin (dalam labu besar berisi biomassa), dengan cara ini bahan kering hasil gilingan diekstraksi pada suhu kamar secara berturut-turut dengan pelarut yang kepolarannya makin tinggi. Keuntungan utama cara ini adalah merupakan metode ekstraksi yang mudah karena ekstrak tidak dipanaskan sehingga kemungkinan kecil bahan alam terurai. Penggunaan pelarut dengan peningkatan kepolaran secara berurutan memungkinkan pemisahan bahan alam berdasarkan kelarutannya (dan polaritasnya) dalam ektraksi. Hal ini sangat mempermudah proses isolasi. Ekstraksi dingin memungkinkan banyak senyawa terekstraksi, meskipun beberapa senyawa memiliki kelarutan terbatas dalam pelarut ekstraksi pada suhu kamar (Heinrich et al, 2009).

Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak pekat, biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator (Harborne, 1996).

2.5.2 Partisi

Metode pemisahan yang mungkin paling sederhana adalah partisi, yang banyak digunakan sebagai tahap awal pemurnian ekstrak. Partisi menggunakan dua pelarut tak bercampur yang ditambahkan kedalam ekstrak tersebut. Partisi biasanya dilakukan melalui dua tahap:

1. Air/petroleum eter ringan (heksana) untuk menghasilkan fraksi nonpolar di lapisan organik

2. Air/diklorometan atau air/kloroform atau air/etil asetat untuk membuat fraksi agak polar di lapisan organik (Heinrich et al, 2009).

2.5.3 Hidrolisis

(11)

Larutan dipanaskan selama 45 menit lalu didinginkan, kemudian ekstrak sepenuhnya dilarutkan dengan eter. Penguapan dari larutan akan mengendapkan ramnosa dan glukosa. Lapisan eter, setelah dikeringkan dengan menggunakan natrium sulfat akan didapatkan aglikon flavonoid setelah diuapkan (Mabry et al, 1970).

2.5.4 Kromatografi

Kromatografi pertama kali dikembangkan oleh seorang ahli botani Rusia Michael Tswett pada tahun 1903 untuk memisahkan pigmen berwarna dalam tanaman dengan cara perkolasi ekstrak petroleum eter dalam kolom gelas yang berisi kalsium karbonat (CaCO3). Kromatografi merupakan suatu teknik pemisahan yang menggunakan fase

diam (stationary phase) dan fase gerak (mobile phase). Teknik kromatografi telah berkembang dan telah digunakan untuk memisahkan dan mengkuantifikasi berbagai macam komponen yang kompleks, baik komponen organik maupun komponen anorganik.

Kromatografi dapat dibedakan atas berbagai macam tergantung pada pengelompokkannya. Berdasarkan pada mekanisme pemisahannya, kromatografi dibedakan menjadi: kromatografi adsorbsi, kromatografi partisi, kromatografi pasangan ion, kromatografi penukar ion, kromatografi eksklusi ukuran. Berdasarkan pada alat yang digunakan, kromatografi dapat dibagi atas: kromatografi kertas, kromatografi lapis tipis (disebut juga kromatografi planar), kromatografi cair kinerja tinggi, dan kromatogtrafi gas. Bentuk kromatografi yang paling awal adalah kromatografi kolom yang digunakan untuk pemisahan sampel dalam jumlah yang besar.

Pemisahan pada kromatografi planar pada umumnya dihentikan sebelum semua fase gerak melewati seluruh permukaan fase diam. Solut pada kedua kromatografi ini dikarakterisasi dengan jarak migrasi solut terhadap jarak ujung fase geraknya. Nilai faktor retardasi solut (Rf) dapat dihitung dengan menggunakan perbandingan dalam persamaan:

(12)

Nilai maksimum Rf adalah 1 dan ini dicapai ketika solut mempunyai perbandingan distribusi (D) dan faktor retensi sama dengan 0 yang berarti solut bermigrasi dengan kecepatan yang sama dengan fase gerak. Nilai minimum Rf adalah 0 dan ini teramati jika solut tertahan pada posisi titik awal di permukaan fase diam.

Proses Sorpsi

Sorpsi merupakan proses pemindahan solut dari fase gerak ke fase diam, sementara itu proses sebaliknya (pemindahan solut dari fase diam ke fase gerak) disebut dengan desorpsi. Kedua proses ini (sorpsi dan desorpsi) terjadi secara terus menerus selama pemisahan kromatografi karenanya sistem kromatografi berada dalam keadaan kesetimbangan dinamis.

Solut akan terdistribusi diantara dua fase yang bersesuaian dengan perbandingan distribusinya (D) untuk menjaga keadaan kesetimbangan ini. Ada 4 jenis mekanisme sorpsi dasar dan umumnya 2 atau lebih mekanisme ini terlibat dalam satu jenis kromatografi. Keempat jenis tersebut adalah adsorpsi, partisi, pertukaran ion, dan eksklusi ukuran.

Adsorben

Silika gel merupakan jenis adsorben (fase diam) yang penggunaannya paling luas. Permukaan silika gel terdiri atas gugus Si-O-Si dan gugus silanol (Si-OH). Gugus silanol bersifat sedikit asam dan polar karenanya gugus ini mampu membentuk ikatan hidrogen dengan solut-solut yang agak polar sampai sangat polar.

Adanya air dari atmosfer yang diserap oleh permukaan silika gel mampu mendeaktifkan permukaan silika gel karena air akan menutup sisi aktif silika gel. Hal seperti ini dapat diatasi dengan memanaskan pada suhu 1050C, meskipun demikian reprodusibilitasnya sulit dicapai kecuali jika suhu dan kelembapan benar-benar dijaga secara hati-hati.

(13)

Tabel 2.1 Daftar Adsorben pada Kromatografi. (Gandjar dkk ,2007)

No Nama Adsorben Sifat Adsorben

1 Alumina Paling polar

2 Karbon aktif Sangat polar

3 Silika gel polar

4 Selulosa polar

5 Resin-resin polimerik (stiren/difenil benzen) Paling non polar

2.5.4.1Kromatografi Lapis Tipis

Dalam kromatografi lapis tipis (KLT), adsorben diletakkan tepat pada satu sisi plat atau kaca atau saluran plastik ataupun aluminium. Adsorben yang paling sering digunakan adalah silika gel dan alumina. Beberapa mikroliter larutan sampel yang akan dianalisa ditotolkan pada plat sebagai titik kecil yang tunggal dengan menggunakan pipa mikrokapilaritas. Plat dikembangkan dengan meletakkannya didalam botol ataupun chamber pengembang yang berisi sejumlah kecil pelarut. Pelarut akan menaiki plat dengan adanya gaya kapilar, dan membawa senyawa dari sampel dengan itu. Senyawa yang berbeda dipisahkan dari dasarnya pada saat interaksi mereka dengan lapisan adsorben. Plat KLT yang biasa digunakan adalah plat dengan ukuran pori silika 60 Å dan ketebalan lapisan 25 µm dalam penyangga poliester atau aluminium. Beberapa dengan menggunakan atau tanpa menggunakan indikator fluorosensi yang sesuai untuk analisa cepat dari ekstrak kasar tanaman dan digunakan sebagai dasar dari langkah preparatif.

Plat biasa dapat digunting dengan menggunakan gunting atau kertas cutter untuk mengambil ukuran yang diinginkan. Deteksi noda yang dihasilkan dapat menggunakan lampu ultraviolet ataupun dengan menyemprot dengan menggunakan reagen yang sesuai (Cseke et al, 2006).

2.5.4.2Kromatografi Kolom

(14)

Ukuran keseluruhan kolom sungguh beragam, tetapi biasanya panjangnya sekurang-kurangnya 10 kali garis tengah dalamnya dan mungkin saja sampai 100 kalinya. Ukuran kolom dan banyaknya penjerap yang dipakai ditentukan oleh bobot campuran sampel yang akan dipisahkan.

Untuk pemisahan normal, bobot sampel biasanya 30:1 ternyata memadai jika pemisahan tidak terlalu sukar. Ukuran partikel penjerap pada kolom biasanya lebih besar daripada untuk KLT. Walau pun banyak jenis penjerap telah dipakai untuk kolom, alumina dan silika gel adalah penjerap yang paling berguna dan mudah didapat.

Fraksi kolom yang mengandung senyawa yang sama (diperiksa dengan KLT) atau tampaknya berasal dari satu puncak (memakai pendeteksian sinambung) digabungkan, dan pelarutnya diuapkan, lebih baik dengan tekanan rendah. Jika pelarut dan penjerap murni. Maka fraksi-fraksi pun murni (Gritter dkk, 1991).

2.6 Teknik Spektroskopi

Teknik analisis modern mencakup berbagai teknik analisis instrumen elektronika yang dikembangkan untuk mengukur parameter fisika dan kimia alami yang khas dan tetap dari atom atau molekul. Parameter khas yang bermakna untuk analisis adalah absorpsi dan emisi energi radiasi elektromagnet oleh atom atau molekul. Teknik analisis spektroskopi berasaskan antaraksi radiasi elektromagnet dengan komponen atom atau molekul yang menghasilkan fenomena bermakna sebagai parameter analisis.

Karena pada setiap teknik spektroskopi antaraksi radiasi elektromagnet dengan komponen atom/ molekul khas dan tidak semuanya sama, uraian teknik analisis didahului dengan mekanisme antaraksi tersebut, serta fenomena yang dipakai sebagai parameter analisisnya (Satiadarma dkk, 1995).

2.6.1 Spektroskopi Ultraviolet (UV-Vis)

(15)

Dari masing-masing flavonoid yang mengandung jumlah dari golongan hidroksil aglikon, pola substituen glikosida, dan golongan asil aromatik bahan alam.Saat ini penggunaan Spektroskopi UV-Visible paling sering digunakan dalam aplikasi untuk analisa kuantitatif, dan nilai dari metode ini dapat mengurangi perbandingan informasi yang banyak dari teknik spektroskopi yang lainnya seperti NMR dan MS (Anderson, 2006).

Spektrum flavonoid biasanya ditentukan dalam larutan dengan pelarut metanol (MeOH, AR atau yang setara) atau etanol (EtOH), meski perlu diingat bahwa spektrum yang dihasilkan dalam etanol kurang memuaskan sehingga pada umumnya pelarut metanol yang digunakan untuk menentukan serapan pita yang dihasilkan.Perubahan penyulihan pada cincin A cenderung tercerminkan pada serapan pita II, sedangkan perubahan penyulihan pada cincin B dan C cenderung lebih jelas tercermin pada serapan pita I (Markham, 1988).

Ciri spektrum khas jenis flavonoid utama dengan pola oksigenasi yang setara disajikan pada tabel 2.2 dibawah ini:

Tabel 2.2 Rentangan Serapan Spektrum UV-Visible golongan Flavonoida

No Pita II (nm) Pita I (nm) Jenis Flavonoida

1 250-280 310-350 Flavon

2 250-280 330-360 Flavonol (3-OH tersubstitusi)

3 250-280 350-385 Flavonol (3-OH bebas)

4 245-274 310-330 bahu Isoflavon

5 275-295 300-330 bahu Flavanon dan dihidroflavonol

6 230-270

(kekuatan rendah)

340-390 Khalkon

7 230-270

(kekuatan rendah)

380-430 Auron

8 270-280 465-560 Antosianidin dan antosianin

(16)

2.6.2 Spektroskopi Inframerah (FT-IR)

Spektrum inframerah suatu molekul adalah hasil transisi antara tingkat energi getaran (vibrasi) yang berlainan. Inti-inti atom yang terikat oleh ikatan kovalen mengalami getaran (vibrasi) atau osilasi (oscillation) dengan cara serupa dengan dua bola yang terikat oleh suatu pegas.

Bila molekul menyerap radiasi inframerah, energi yang diserap menyebabkan kenaikan dalam amplitudo getaran atom-atom yang terikat itu. Jadi molekul ini berada dalam keadaan vibrasi tereksitasi , energi yang diserap ini akan dibuang dalam bentuk panas bila molekul itu kembali ke keadaan dasar. Panjang gelombang eksak dari absorpsi oleh suatu tipe ikatan, bergantung pada macam getaran dari ikatan tersebut. Oleh karena itu, tipe ikatan yang berlainan (C-H, C-C, C=O, C=C, O-H, dan sebagainya) menyerap radiasi inframerah pada panjang gelombang yang berlainan. Dengan demikian spektrometri inframerah dapat digunakan untuk mengidentifikasi adanya gugus fungsi dalam suatu molekul. Banyaknya energi yang diserap juga beraneka ragam dari ikatan ke ikatan. Ini disebabkan sebagian oleh perubahan dalam momen dipol (µ≠0) pada saat energi diserap.

Ikatan nonpolar (seperti C-H atau C-C) menyebabkan absorpsi lemah, sedangkan ikatan polar (seperti misalnya O-H, N-H, dan C=O) menunjukkan absorpsi yang lebih kuat.

Suatu ikatan dalam sebuah molekul dapat mengalami berbagai vibrasi molekul. Secara umum terdapat dua tipe vibrasi molekul:

1. Streching (vibrasi regang/ulur): vibrasi sepanjang ikatan sehingga terjadi perpanjangan atau pemendekan ikatan.

2. Bending (vibrasi lentur/tekuk): vibrasi yang disebabkan oleh sudut ikatan sehingga terjadi pembesaran atau pengecilan sudut ikatan.

(17)

2.6.3 Spektroskopi Resonansi Magnetik Inti Proton (1H-NMR)

Setelah spektroskopi inframerah, spektroskopi resonansi magnetik inti (NMR) adalah yang metode yang paling penting digunakan dalam kimia organik. Dalam spektroskopi inframerah mengandung infromasi mengenai adanya gugus fungsi pada molekul, sedangkan spektroskopi NMR memberikan informasi mengenai jumlah dari masing-masing hidrogen.

Kemampuan terhebat resonansi inti magnetik timbul karena tidak semua proton dalam molekul memiliki resonansi yang identik pada frekuensi yang sama. Hal ini sesuai dengan fakta bahwa berbagai macam proton dalam molekul dikelilingi oleh elektron dan memiliki sedikit perbedaan dalam lingkungan elektronik dari satu dan yang lainnya. Proton akan terlindungi oleh elektron yang mengelilingi mereka. Dalam daerah magnetik, peredaran elektron valensi dari daerah penghasil proton yang bertentangan dengan daerah magnetik yang berlaku. Pergeseran kimia dalam unit δ ditunjukkan dalam jumlah resonansi proton yang bergeser dari TMS dalam bagian per juta (ppm) dari frekuensi dasar spektroskopi

δ=frekuensi spektrometer dalam MHzpergeseran dalam Hz

Unsur dasar dari spektrometer nmr adalah ilustrasi skematis. Sampel dilarutkan dalam pelarut yang tidak memiliki proton (biasanya CCl4) dan dalam

Gambar

Gambar 2.3 Diagram Teknik Pemisahan (Muldja, 1995)
Tabel 2.1 Daftar Adsorben pada Kromatografi. (Gandjar dkk ,2007)
Tabel 2.2 Rentangan Serapan Spektrum UV-Visible golongan Flavonoida

Referensi

Dokumen terkait

Kemajuan teknologi terutama pada bidang teknologi informasi pada satu dasawarsa terakhir ini telah berubah sangat cepat dimana komputer pada beberapa dasawarsa yang lalu hanya

[r]

Situs ini dibuat dengan menggunakan PHP yang menggunakan konsep server-side web scripting, sebagai servernya digunakan Apache Web Server, dan sebagai databasenya digunakan MySQL

Penulisan ilmiah ini membahas tentang pembuatan sistem pakar yang digunakan untuk mendiagnosa suatu penyakit seputar masalah pada masa kehamilan dan persalinan, dalam suatu

Penginputan DAPODIK PAUD,DIMAS dan LKP Pengembangan aplikasi E- monitoring PAUD- DIKMAS Bimtek Pengelolaan DAPODIK TOT Tim DAPODIK pusat, provinsi dan kab/kota Pengolahan

Panitia Pengadaan pada Dinas Kebersihan dan Pertamanan Kota Bandar Lampung akan melaksanakan Lelang Sederhana dengan pascakualifikasi untuk paket pekerjaan pengadaan

Berkaitan dengan masalah kejahatan yang berbasis teknologi, ternyata pernah terjadi kekosongan hukum ( rechtsvacuum ) karena kesulitan dalam merumuskan delik (salah satu

Menurut saya salah satu pengambat untuk pembelajaran baca tulis Alquran ini adalah alokasi waktu yang kurang mbak, karena materi yang akan diajarkan itu banyak sekali,