• Tidak ada hasil yang ditemukan

Penerapan Metode Branch and Bound dalam Menentukan Jumlah Produksi Optimum pada CV. Keris Sakti

N/A
N/A
Protected

Academic year: 2017

Membagikan "Penerapan Metode Branch and Bound dalam Menentukan Jumlah Produksi Optimum pada CV. Keris Sakti"

Copied!
26
0
0

Teks penuh

(1)

Basis / C 13000 10000 12000 10000 0 0 0 0 0 0 0 0 0 0 0 M M M M B

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

s1 0 1.2 1.1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55000

s2 0 0.6 0.4 0.6 0.4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 12000

s3 0 1 0.75 1 0.75 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4160

s4 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1600

s5 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 900

s6 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1250

s7 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 875

s12 M 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 1575

s13 M 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 850

s14 M 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 1245

s15 M 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 800

Zj - Cj M-13000 M-10000 M-12000 M-10000 0 0 0 0 0 0 0 -M -M -M -M 0 0 0 0 4470M

(2)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s13 s14 s15

s1 0 0 1.1 1 1 1 0 0 0 0 0 0 1.2 0 0 0 0 0 0 53110

s2 0 0 0.4 0.6 0.4 0 1 0 0 0 0 0 0.6 0 0 0 0 0 0 11055

s3 0 0 0.75 1 0.75 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2585

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 25

s5 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 900

s6 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1250

s7 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 875

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1575

s13 M 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 850

s14 M 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 1245

s15 M 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 800

Zj - Cj 0 M-10000 M-12000 M-10000 0 0 0 0 0 0 0 -13000 -M -M -M 0 0 0

2895M+20475000

(3)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s13 s15

s1 0 0 1.1 0 1 1 0 0 0 0 0 0 1.2 0 1 0 0 0 51865

s2 0 0 0.4 0 0.4 0 1 0 0 0 0 0 0.6 0 0.6 0 0 0 10308

s3 0 0 0.75 0 0.75 0 0 1 0 0 0 0 1 0 1 0 0 0 1340

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 25

s5 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 900

s6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 5

s7 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 875

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1575

s13 M 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 850

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1245

s15 M 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 1 800

Zj - Cj 0 M-10000 0 M-10000 0 0 0 0 0 0 0 -13000 -M -12000 -M 0 0 1650M+35415000

(4)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s13

s1 0 0 1.1 0 0 1 0 0 0 0 0 0 1.2 0 1 1 0 51065

s2 0 0 0.4 0 0 0 1 0 0 0 0 0 0.6 0 0.6 0.4 0 9988

s3 0 0 0.75 0 0 0 0 1 0 0 0 0 1 0 1 0.75 0 740

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 25

s5 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 900

s6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 5

s7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 75

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1575

s13 M 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 850

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1245

x4 10000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 800

Zj - Cj 0 M-10000 0 0 0 0 0 0 0 0 0 -13000 -M -12000 -10000 0 850M+43415000

(5)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 0 0 0 0 0 1.2 1.1 1 1 50130

s2 0 0 0 0 0 0 1 0 0 0 0 0 0.6 0.4 0.6 0.4 9648

s3 0 0 0 0 0 0 0 1 0 0 0 0 1 0.75 1 0.75 102.5

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 50

s6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1575

x2 10000 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 850

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 1245

x4 10000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 800

Zj - Cj 0 0 0 0 0 0 0 0 0 0 0 -13000 -10000 -12000 -10000 51915000

(6)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 0 -1.2 0 0 0 0 1.1 1 1 50100

s2 0 0 0 0 0 0 1 0 -0.6 0 0 0 0 0.4 0.6 0.4 9633

s3 0 0 0 0 0 0 0 1 -1 0 0 0 0 0.75 1 0.75 77.5

s8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 50

s6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1600

x2 10000 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 850

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 1245

x4 10000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 800

Zj - Cj 0 0 0 0 0 0 0 13000 0 0 0 0 -10000 -12000 -10000 52240000

(7)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 0 -1.2 0 -1 0 0 1.1 0 1 50095

s2 0 0 0 0 0 0 1 0 -0.6 0 -0.6 0 0 0.4 0 0.4 9630

s3 0 0 0 0 0 0 0 1 -1 0 -1 0 0 0.75 0 0.75 72.5

s8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 50

s10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1600

x2 10000 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 850

x3 12000 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1250

x4 10000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 800

Zj - Cj 0 0 0 0 0 0 0 13000 0 12000 0 0 -10000 0 -10000 52300000

(8)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 0 -1.2 -1.1 -1 0 0 0 0 1 50040

s2 0 0 0 0 0 0 1 0 -0.6 -0.4 -0.6 0 0 0 0 0.4 9610

s3 0 0 0 0 0 0 0 1 -1 -0.75 -1 0 0 0 0 0.75 35

s8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s9 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 50

s10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1600

x2 10000 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 900

x3 12000 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1250

x4 10000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 800

Zj - Cj 0 0 0 0 0 0 0 13000 10000 12000 0 0 0 0 -10000 52300000

(9)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 0 -1.2 -1.1 -1 -1 0 0 0 0 49965

s2 0 0 0 0 0 0 1 0 -0.6 -0.4 -0.6 -0.4 0 0 0 0 9580

s3 0 0 0 0 0 0 0 1 -1 -0.75 -1 -0.75 0 0 0 0 -21.25

s8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s9 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 50

s10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1600

x2 10000 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 900

x3 12000 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1250

x4 10000 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 875

Zj - Cj 0 0 0 0 0 0 0 13000 10000 12000 10000 0 0 0 0 52300000

(10)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 -1.4667 0.26667 0 0.46667 0.1 0 0 0 0 49996.17

s2 0 0 0 0 0 0 1 -0.5333 -0.0667 0 -0.0667 0 0 0 0 0 9591.333

s5 0 0 0 0 0 0 0 -1.3333 1.33333 1 1.33333 1 0 0 0 0 28.33333

s8 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s9 0 0 0 0 0 0 0 1.33333 -1.3333 0 -1.3333 -1 0 1 0 0 21.66667

s10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1600

x2 10000 0 1 0 0 0 0 1.33333 -1.3333 0 -1.3333 -1 0 0 0 0 871.6667

x3 12000 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1250

x4 10000 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 875

Zj - Cj 0 0 0 0 0 0 0 -13333 0 -13333 0 0 0 0 0 53266667

(11)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 -1.4667 0 0 0.46667 0.1 -0.2667 0 0 0 49989.5

s2 0 0 0 0 0 0 1 -0.5333 0 0 -0.0667 0 0.0667 0 0 0 9593.001

s5 0 0 0 0 0 0 0 -1.3333 0 1 1.33333 1 -1.3333 0 0 0 -4.99992

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s9 0 0 0 0 0 0 0 1.33333 0 0 -1.3333 -1 1.3333 1 0 0 54.99917

s10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1575

x2 10000 0 1 0 0 0 0 1.33333 0 0 -1.3333 -1 1.3333 0 0 0 904.9992

x3 12000 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1250

x4 10000 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 875

Zj - Cj 0 0 0 0 0 0 13333 0 0 -13333 0 333 0 0 0 53274992

(12)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 -1.4667 0 0 0 0.1 -0.2667 0 -0.4667 0 49987.17

s2 0 0 0 0 0 0 1 -0.5333 0 0 0 0 0.0667 0 0.0667 0 9593.334

s5 0 0 0 0 0 0 0 -1.3333 0 1 0 1 -1.3333 0 -1.3333 0 -11.6666

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s9 0 0 0 0 0 0 0 1.33333 0 0 0 -1 1.3333 1 1.3333 0 61.66567

s6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1575

x2 10000 0 1 0 0 0 0 1.33333 0 0 0 -1 1.3333 0 1.3333 0 911.6657

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 1245

x4 10000 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 875

Zj - Cj 0 0 0 0 0 0 13333 0 0 0 0 333 0 1333 0 53281657

(13)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 0 0 -1.1001 0 -1.0001 1.20006 0 1.00006 0 50000

s2 0 0 0 0 0 0 1 0 0 -0.4 0 -0.4 0.60001 0 0.60001 0 9598.001

s3 0 0 0 0 0 0 0 1 0 -0.75 0 -0.75 1.00002 0 1.00002 0 8.750144

s4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 25

s9 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 49.99884

s6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 5

s11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 75

x1 13000 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1575

x2 10000 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 900

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 1245

x4 10000 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 875

Zj - Cj 0 0 0 0 0 0 0 0 10000 0 10000 -13000 0 -12000 0 53165000

(14)

x1 x2 x3 x4 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 0 1 0 -1.2 0 -0.2 0 -0.1 1.20006 0 -0.2 0 49989.5

s2 0 0 0 0 0 0 1 -0.6 0 0.05002 0 0.05002 0.60001 0 0 0 9592.751

s8 0 0 0 0 0 0 0 0.99998 0 -0.75 0 -0.75 1.00002 0 1 0 8.749969

s4 0 0 0 0 0 0 0 -1 1 0.75 0 0.75 1 0 -1 0 16.25003

s9 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 49.99884

s6 0 0 0 0 0 0 0 0.99998 0 -0.75 1 -0.75 0 0 2 0 13.74997

s11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 49.99884

x1 13000 1 0 0 0 0 0 0.99998 0 -0.75 0 -0.75 -1 0 1 0 1583.75

x2 10000 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 900

x3 12000 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 1245

x4 10000 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 875

Zj - Cj 0 0 0 0 0 0 0 0 250 0 250 -13000 0 0 0 53278750

Karena baris Zj - Cj ≥ 0, maka permasalahan telah optimal.

Berdasarkan perhitungan awal metode simpleks, diperoleh nilai x1 = 1583,75, x2 = 900, x3 = 1245, dan x4 = 875 dengan z = 53278750.

(15)

x1≤1583 x1≥1584

Iterasi 002

z = 53278000

x1=1583;x2=900;x3=1245,75;x4=875

Iterasi 023

z = 53278670

x1=1584;x2=900;x3=1245;x4=874,67

x1≥1583

x4≤874

x3≤1246 x3≥1247 x4≥875

z = 53278750

x1=1583,75;x2=900;x3=1245;x4=875

x4≤874

x3≤1245 x3≥1246 x4≥875

x1≤1582

Iterasi 024

z = 53278500

x1=1584,5;x2=900;x3=1245;x4=874

Iterasi 049

z = 53278670

x1=1584;x2=899,67;x3=1245;x4=875

Iterasi 003

z = 53269000

x1=1583;x2=900;x3=1245;x4=875

Iterasi 004

z = 53277750

x1=1582,75;x2=900;x3=1246;x4=875

Iterasi 005

z = 53277000

x1=1582;x2=900;x3=1246,75;x4=875

Iterasi 065

z = 53277670

x1=1583;x2=900;x3=1246;x4=874,67

Iterasi 006

z = 53268000

x1=1582;x2=900;x3=1246;x4=875

Iterasi 007

z = 53276750

x1=1581,75;x2=900;x3=1247;x4=875

Iterasi 066

z = 53277000

x1=1583;x2=900;x3=1246,5;x4=874

Iterasi 077

z = 53277670

x1=1583;x2=899,67;x3=1246;x4=875

(16)

x1≤1579 x 1≥1580 Iterasi 008

z = 53273000

x1=1581;x2=900;x3=1247,75;x4=875

Iterasi 086

z = 53276670

Iterasi 009

z = 53267000

x1=1581;x2=900;x3=1247;x4=875

Iterasi 010

z = 53275750

x1=1580,75;x2=900;x3=1248;x4=875

Iterasi 087

z = 53276000

x1=1582;x2=900;x3=1247,5;x4=874

Iterasi 097

z = 53276670

Iterasi 011

z = 53275000

x1=1580;x2=900;x3=1248,75;x4=875

Iterasi 106

z = 53275670

x1=1581;x2=900;x3=1248;x4=874,67

Iterasi 012

z = 53266000

x1=1580;x2=900;x3=1248;x4=875

Iterasi 013

z = 53274750

x1=1579,75;x2=900;x3=1249;x4=875

Iterasi 107

z = 53275000

x1=1581;x2=900;x3=1248,5;x4=874

Iterasi 118

z = 53275670

x1=1581;x2=899,67;x3=1248;x4=875

Iterasi 014

z = 53274000

x1=1579;x2=900;x3=1249,75;x4=875

Iterasi 127

z = 53274670

x1=1580;x2=900;x3=1249;x4=874,67

(17)

Iterasi 015

z = 53265000

x1=1579;x2=900;x3=1249;x4=875

Iterasi 016

z = 53273750

x1=1578,75;x2=900;x3=1250;x4=875

Iterasi 128

No Feasible Solution

Iterasi 129

No Feasible Solution

x1≥1579

x1≤1578

Iterasi 017

z = 53264000

x1=1578;x2=900;x3=1250;x4=875

Iterasi 018

z = 53273670

x1=1579;x2=900;x3=1250;x4=874,67

x4≥ 875

x4≤ 874

Iterasi 019

z = 53267000

x1=1579;x2=900;x3=1250;x4=874

Iterasi 020

z = 53273670

x1=1579;x2=899,67;x3=1250;x4=875

x2 ≥ 900

x2 ≤ 899

Iterasi 021

z = 53267000

x1=1579;x2=899;x3=1250;x4=875

Iterasi 022

No Feasible Solution

(18)

x2≥900

Iterasi 026

z = 53272000

x1=1584;x2=900;x3=1245;x4=874

Iterasi 027

z = 53277330

x1=1584;x2=900;x3=1246;x4=873,33

Iterasi 037

z = 53278250

x1=1585,25;x2=900;x3=1245;x4=873

Iterasi 042

z = 53278330

x1=1585;x2=899,33;x3=1245;x4=874

Iterasi 028

z = 53277000

x1=1584;x2=900;x3=1246,25;x4=873

Iterasi 031

z = 53277330

x1=1584;x2=899,33;x3=1246;x4=874

Iterasi 029

z = 53274000

x1=1584;x2=900;x3=1246;x4=873

Iterasi 030

z = 53276000

x1=1584;x2=900;x3=1247;x4=872

Iterasi 032

z = 53277000

x1=1584;x2=899;x3=1246,25;x4=874

Iterasi 035

No Feasible Solution

Iterasi 025

z = 53278000

x1=1584;x2=900;x3=1245,75;x4=874

Iterasi 036

z = 53278330

x1=1585;x2=900;x3=1245;x4=873,33

x3≥1247

x3≤1246

Iterasi 033

z = 53274000

x1=1584;x2=899;x3=1246;x4=874

Iterasi 034

z = 53276000

x1=1584;x2=898;x3=1247;x4=874

(19)

Iterasi 049

x1≥1586

x1≤1585

x3≥1246

x3≤1245

Iterasi 038

z = 53278000

x1=1585;x2=900;x3=1245,25;x4=873

Iterasi 041

z = 53278000

x1=1586;x2=900;x3=1245;x4=872

Iterasi 043

z = 53278250

x1=1585,25;x2=899;x3=1245;x4=874

Iterasi 048

No Feasible Solution

Iterasi 039

z = 53275000

x1=1585;x2=900;x3=1245;x4=873

Iterasi 040

z = 53277000

x1=1585;x2=900;x3=1246;x4=872

Iterasi 044

z = 53278000

x1=1585;x2=899;x3=1245,25;x4=874

Iterasi 047

z = 53278000

x1=1586;x2=898;x3=1245;x4=874

x3≥1246

x3≤1245

Iterasi 045

z = 53275000

x1=1585;x2=899;x3=1245;x4=874

Iterasi 046

z = 53277000

x1=1585;x2=898;x3=1245;x4=874

x2≥900

x2≤899

Iterasi 050

z = 53278500

x1=1584,5;x2=899;x3=1245;x4=875

Iterasi 065

No Feasible Solution

(20)

x1≥1586

Iterasi 051

z = 53278000

x1=1584;x2=899;x3=1245,5;x4=875

Iterasi 058

z = 53278330

x1=1585;x2=898,33;x3=1245;x4=875

Iterasi 052

z = 53272000

x1=1584;x2=899;x3=1245;x4=875

Iterasi 053

z = 53277330

x1=1584;x2=898,33;x3=1246;x4=875

Iterasi 059

z = 53278250

x1=1585,25;x2=898;x3=1245;x4=875

Iterasi 064

No Feasible Solution

Iterasi 055

z = 53274000

x1=1584;x2=898;x3=1246;x4=875

Iterasi 056

z = 53276000

x1=1584;x2=897;x3=1247;x4=875

Iterasi 061

z = 53275000

x1=1585;x2=898;x3=1245;x4=875

Iterasi 062

z = 53277000

x1=1585;x2=897;x3=1246;x4=875 Iterasi 054

z = 53277000

x1=1584;x2=898;x3=1246,25;x4=875

Iterasi 057

No Feasible Solution

Iterasi 060

z = 53278000

x1=1585;x2=898;x3=1245,25;x4=875

Iterasi 063

z = 53278000

x1=1586;x2=897;x3=1245;x4=875

(21)

x3≥1248

x3≥1248

x4≥874

x2≥900

x2≤899

x3≤1247

x3≤1247

x4≤873

Iterasi 069

z = 53276000

x1=1583;x2=900;x3=1247,25;x4=873

Iterasi 072

z = 53276330

x1=1583;x2=899,33;x3=1247;x4=874

Iterasi 070

z = 53273000

x1=1583;x2=900;x3=1247;x4=873

Iterasi 071

z = 53275000

x1=1583;x2=900;x3=1248;x4=872

Iterasi 073

z = 53276000

x1=1583;x2=899;x3=1247,25;x4=874

Iterasi 076

No Feasible Solution Iterasi 067

z = 53271000

x1=1583;x2=900;x3=1246;x4=874

Iterasi 068

z = 53276330

x1=1583;x2=900;x3=1247;x4=873,33

Iterasi 074

z = 53273000

x1=1583;x2=899;x3=1247;x4=874

Iterasi 075

z = 53275000

x1=1583;x2=898;x3=1248;x4=874

(22)

x2≥899

x2≤898

x3≥1248

x3≤1247

x3≥1247

x3≤1246

Iterasi 078

z = 53277000

x1=1583;x2=899;x3=1246,5;x4=875

Iterasi 085

No Feasible Solution

Iterasi 079

z = 53271000

x1=1583;x2=899;x3=1246;x4=875

Iterasi 080

z = 53276330

x1=1583;x2=898,33;x3=1247;x4=875

Iterasi 081

z = 53276000

x1=1583;x2=898;x3=1247,25;x4=875

Iterasi 084

No Feasible Solution

Iterasi 082

z = 53273000

x1=1583;x2=898;x3=1247;x4=875

Iterasi 083

z = 53275000

x1=1583;x2=897;x3=1248;x4=875

(23)

x3≥1249

x3≥1249

x4≥874

x2≥900

x2≤899

x3≤1248

x3≤1248

x4≤873

Iterasi 090

z = 53275000

x1=1582;x2=900;x3=1248,25;x4=873

Iterasi 093

z = 53275330

x1=1582;x2=899,33;x3=1248;x4=874

Iterasi 091

z = 53272000

x1=1582;x2=900;x3=1248;x4=873

Iterasi 092

z = 53274000

x1=1582;x2=900;x3=1249;x4=872

Iterasi 094

z = 53275000

x1=1582;x2=899;x3=1248,25;x4=874

Iterasi 076

No Feasible Solution Iterasi 088

z = 53270000

x1=1582;x2=900;x3=1247;x4=874

Iterasi 089

z = 53275330

x1=1582;x2=900;x3=1248;x4=873,33

Iterasi 095

z = 53272000

x1=1582;x2=899;x3=1248;x4=874

Iterasi 096

z = 53274000

x1=1582;x2=898;x3=1249;x4=874

(24)

x2≥899

x2≤898

x3≥1249

x3≤1248

x3≥1248

x3≤1247

Iterasi 098

z = 53276000

x1=1582;x2=899;x3=1247,5;x4=875

Iterasi 105

No Feasible Solution

Iterasi 099

z = 53270000

x1=1582;x2=899;x3=1247;x4=875

Iterasi 100

z = 53275330

x1=1582;x2=898,33;x3=1248;x4=875

Iterasi 101

z = 53275000

x1=1582;x2=898;x3=1248,25;x4=875

Iterasi 104

No Feasible Solution

Iterasi 102

z = 53272000

x1=1582;x2=898;x3=1248;x4=875

Iterasi 103

z = 53271000

x1=1582;x2=897;x3=1249;x4=875

(25)

x3≥1250

x3≥1250

x4≥874

x2≥900

x2≤899

x3≤1249

x3≤1249

x4≤873

Iterasi 110

z = 53274000

x1=1581;x2=900;x3=1249,25;x4=873

Iterasi 113

z = 53274330

x1=1581;x2=899,33;x3=1249;x4=874

Iterasi 111

z = 53271000

x1=1581;x2=900;x3=1249;x4=873

Iterasi 112

z = 53273000

x1=1581;x2=900;x3=1250;x4=872

Iterasi 114

z = 53274000

x1=1581;x2=899;x3=1249,25;x4=874

Iterasi 117

No Feasible Solution Iterasi 108

z = 53269000

x1=1581;x2=900;x3=1248;x4=874

Iterasi 109

z = 53274330

x1=1581;x2=900;x3=1249;x4=873,33

Iterasi 115

z = 53271000

x1=1581;x2=899;x3=1249;x4=874

Iterasi 116

z = 53273000

x1=1581;x2=898;x3=1250;x4=874

(26)

x2≥899

x2≤898

x3≥1250

x3≤1249

x3≥1249

x3≤1248

Iterasi 119

z = 53275000

x1=1581;x2=899;x3=1248,5;x4=875

Iterasi 126

No Feasible Solution

Iterasi 120

z = 53269000

x1=1581;x2=899;x3=1248;x4=875

Iterasi 121

z = 53274330

x1=1581;x2=898,33;x3=1249;x4=875

Iterasi 122

z = 53274000

x1=1581;x2=898;x3=1249,25;x4=875

Iterasi 125

No Feasible Solution

Iterasi 123

z = 53271000

x1=1581;x2=898;x3=1249;x4=875

Iterasi 124

z = 53270000

x1=1581;x2=897;x3=1250;x4=875

Referensi

Dokumen terkait

Universitas Sumatera Utara.. Berdasarkan Tabel 5.50. dan Trend Sailing Time di atas, maka dilakukan suatu analisis deskriptif pada data Sailing Time kapal MT. Maiden

Dengan demikian, metode Branch and Bound lebih efektif dibandingkan dengan metode Gomory dalam menentukan jumlah produksi yang optimal, karena hasil yang

Universitas Sumatera Utara... Universitas

Toba Pulp Lestari, Tbk dengan menggunakan metode fuzzy-mamdani. Medan: Jurusan Matematika Universitas

Aplikasi Game Theory dalam Menentukan Strategi Pemasaran Optimum pada Perusahaan Asuransi [Skripsi].. Medan: Universitas Sumatera Utara,

Analisis Metode Branch and Bound Dalam Mengoptimalkan Jumlah Produksi Roti (Studi Kasus : PT. Ramah Jaya Bakery).. Medan : Universitas

Algoritma branch and bound membatasi penyelesaian optimal yang akan menghasilkan bilangan pecahan dengan cara membuat cabang atas dan bawah bagi masing-masing

Universitas Sumatera Utara... Universitas