• Tidak ada hasil yang ditemukan

Pertemuan 13 GARIS SINGGUNG DAN GARIS NORMAL

N/A
N/A
Protected

Academic year: 2022

Membagikan "Pertemuan 13 GARIS SINGGUNG DAN GARIS NORMAL"

Copied!
18
0
0

Teks penuh

(1)

Pertemuan 13

GARIS SINGGUNG DAN GARIS NORMAL

♦ Persamaan Garis Singgung melalui titik ( , )

y - = m (x - )

♦ Persamaan Garis Normal melalui titik ( , )

y - = (x - )

♦ Panjang Subtangens =

x

1

y

1

y 1 x 1

x

1

y

1

y 1 x 1

m

− 1

m

Y

1

(2)

♦ Panjang subnormal =

♦ Pemakaian Diferensial di bidang Mekanika

ARTI DERIVATIF SECARA GEOMETRI DAN EKSTREM FUNGSI

1. Arti Derivatif Secara Geometri

1. Garis singgung

Kita perhatikan hal-hal berikut pada Gb. 4.1



∆ +

+ x,y y) Q(x

y)

P(x, di kurva y = f(x)



 P ke bergerak Q

m tetap/dia

P akibatnya : x → 0

y → 0

β → α

tg β → tg β = x y

Y 1

m

g

P

Q

Gb.4.1 f(x)

y =

∆x

∆y T

α β x

(3)

karena ∠QPT = β maka tg β =

∆x

∆y

Pada saat Q berimpit dengan P garis g menjadi garis singgung kurva di P, maka tg β = x

∆y

→ tg α = 0

0 tidak tertentu. Padahal tg α itu ada dan tertentu, karena merupakan

gradien garis singgung di P, harga itulah merupakan

∆x limit∆y

0

∆x . Maka dapat kita ambil pengertian sebagai berikut :

karena ∆y = yQ – yP = (y + ∆y) – y = f(x + ∆x) – f(x) maka tg α = limittg

0

∆x β =

∆x limit∆y

0

∆x =

∆x f(x)

∆x) limitf(x

0

∆x

− +

tg α = dx dy =

∆x f(x)

∆x) limitf(x

0

∆x

− +

Bentuk tersebut sesuai dengan definisi derivatif fungsi secara kalkulus, yang berarti turunan pertama suatu fungsi merupakan gradien garis singgung di setiap titik dari kurva tersebut (dalam selang kontinu).

Contoh.

1. Tentukan gradien garis singgung grafik y = x2 – 5x + 6 di titik yang absisnya = 2 dan persamaan garis singgung tersebut.

Jawab.

y’ = 2x –5 , m = 2x – 5 x =

2 → m = -1 → gradien garis singgung x = 2 → y = 4 – 10 + 6 = 0

y = 0

Jadi persamaan garis singgung : y – 0 = -1(x – 2) y = -x + 2

2. Tentukan persamaan garis singgung kurva x2 + y2 = 25, di titik yang absisnya = 3 dan ordinatnya positif.

Jawab.

x = 3 → 9 + y2 = 25 → y = ±4

yang memenuhi ketentuan y = 4

(4)

x2 + y2 = 25 → 2x + 2y. y’ = m = - y x



=

= 4 y

3

x → m = - 4 3

Jadi persamaan garis singgung kurva : y – 4 = - 4

3(x –3) atau 3x + 4y – 25 = 0 3. Tentukan persamaan garis singgung kurva x2 – 2xy + y2 – x + 3y + 2 = 0 di titik (0,-

2).

Jawab.

2x – 2y – 2xy’ + 2y.y’ – 1 + 3y’ = 0



=

= 2 y

0

x → 4 – 4 'y = m = 3

Jadi persamaan garis singgung : y + 2 = 3(x-0) atau y = 3x – 2 4. Tentukan garis singgung kurva :



=

= t2

y

3 4t

x , di t = 2

Jawab.

t = 2 → x = 5 dan y = 4

dx dy =

x y =

4 2t =

2

1t → m = 2 1 t

t = 2 → m = 1

Jadi persamaan garis singgung : y – 4 = 1

2. Garis Normal

g = garis singgung di P l ⊥ g di P

P

g

x B C

A

I

y =f(x)

Gb.4.2

(5)

1 P

g

(3,1)

B C A

l disebut garis normal di P

Bila g dan l memotong sumbu X di A dan C, sedang B proyeksi P pada sumbu X, maka : AP = panjang garis singgung di P atau panjang tangen di P

AB = panjang sub tagen di P PC = panjang normaldi P BC = panjang sub normal di P

Contoh.

1. Titik P dengan absis = 3 terletak di kurva y=x2 −5x+7 Tentukan : a). persamaan garis singgung di P

b). persamaan garis normal di P c). panjang tangen dan sub tagen di P d). panjang normal dan subnormal di P Jawab.

a). x=3→ y =9−15+7→P(3,1) 5 x 2 tg m , 5 x dx 2

dy = − = α= −

x=3→ m=1 garis singgung di P : y−y1 =m(x−x1)

y−1= x−3 → y=x−2

b). garis normal di P : (x x ) m

y 1

y− 1 =− − 1 y−1=−(x−3)y=−x+4 c).

Gb.4.3

(6)

misalkan grafik seperti di atas g : y=x−2 potong → A ( 2, 0 )

y=0

0 y

4 x y : l

= +

= potong → C ( 4 , 0 )

maka panjang tangen = |AP| = (3−2)2 +(1−0)2 = 2 panjang sub tangen = |AB| = |xB_ xA | = 1

d). Selanjutnya : panjang normal = | PC | =

(

3−2

) (

2 + 1−0

)

2 = 2 panjang sub normal = | xC - xB| = 1

2. Tentukan persamaan garis singgung kurva y = -6 + 5x - x2 yang bergradien m = - 3

Jawab.

dx

dy= -2x + 5 = -3 2x = 8

x=4 y = -2

P (4,-2)

Jadi garis singgung tersebut y + 2 = -3(x – 4) 3x + y –10 = 0

3. Tentukan persamaan normal kurva y2 = 4x yang gradiennya = 2 Jawab. y2 = 4x 2y.

dx dy4

dx dy=

y

2 → ini gradien garis singgung, karena garis

normal ⊥ garis singgung, maka gradien garis singgung = - 2 1

4 2 y

1 y

2 =− → =−

y2= 4x 16 = 4x x= 4 P(4,-4) Jadi garis normal : y + 4 = 2(x –4 )

Y= 2x –12

(7)

4. Tentukan persamaan garis singgung kurva y2= 2(x+2) yang sejajar garis x -2y = 0 Jawab. x-2y = 0m=

2 1

P(0,2)

0 x ) 2 x ( 2 y

2 y 2 2

.1 y 2 2 yy 2 ) 2 x ( 2 y

2 ' 2

=

+

=

=

=

=

+

=

Jadi garis singgung : y –2 = x 2

1 →x−2y+4=0

5. Tentukan persamaan garis singgung kurva y = x3 8

1 yang melalui A(0, -2).

Jawab. Perhatikan istilahnya “garis singgung melalui A”, berarti A tidak pada kurva;

tetapi kalau “garis singgung pada /di A” titik A pada kurva.

Misal g: y +2 = m (x –0)

y =mx-2garis singgung melalui A

3 ' 2 x12

8 m 3 8x

y 3 8x

y=1 → = → = sedang P pada g dan pada kurva.

2 m 3

2 dan x 1 y 2 3y y

2 8x 3.1 y

2 .x 8x y 3 2 mx y

8x y 3 Maka

1 1

1 1

3 1 1

1 2 1 1

1 1

3 1 1

=

=

=

=

=

=

=

=

Jadi g: y = 2 23 −x

Catatan : Bila secara analisis telah dimengerti, maka indeks pada x dan y tidak perlu ditulis, seperti contoh berikut.

x 1y1

P g

A(0,-2)

(8)

6. P(-1,0) dan kurva : y2 = 4x , Tentukan persamaan garis melalui P menyinggung kurva.

Jawab. y2 = 4x

y m m

y

yy 2

2 . 4

2 ' = → = → =

m 1 x 2

1) m m(x

1) 2 m(x y P malalui Garis

2

= +

=

→ +

=

1 x y : g

1 x y : g 2 ada singgung

garis Jadi

1 m

1 m 1 m 4m

8 4

m 1 4 2 m 4x 2 y

2 1

2 1 2

2

2 2

2

= +

=

=

=

=

=



 −

 =

 

→

=

Catatan: ada 2 garis singgung bila titik di pihak luar kurva ada 1 garis singgung bila titik pada kurva

ada 0 garis singgung bila titik di pihak dalam kurva.

(9)

2. Ekstrem Fungsi 1. Pengertian

Kita anggap turunan pertama, kedua, dan ketiga suatu fungsi masih merupakan fungsi juga.

y1 = f (x) y2 = g (x) y3 = h (x)

Kaitan istilah :

dll dll

X sumbu dengan

potong titik

nol harga

terendah

minimum

tertinggi

maksimum

puncak

ekstrem

va grafik/kur

fungsi

Kita bicarakan fungsi y = f(x) dengan gambarnya. Yang akan kita bicarakan hanya titik –titik puncak (stasioner), belok datar dan belok miring (disebut titik belok karena arah berubah grafik fungsi turunan pertama mencapai ekstrem,

yaitu : Q1 ,B1 ,C1 ).

gb. 4.4

y = F (x)

y1= f (x)

y2= g (x)

y3= h (x) A

P

B C

Q

+ +

+ +

+ + +

+

+ B1

Q1 C 1

h(x) (x) g (x) f (x) F y g(x), (x) f (x) F y f(x), (x) F y F(x),

y= '= ' = ''= '' = ' = '''= ''' = '' = ' =

(10)

0 y , Q naik C T

P

A 1

 >



P-B-T turun, y1 < 0 P= Titik tertinggi relatif T= Titik terendah relatif Q= Titikbelok mendatar B,C = Titik belok miring Pada P, T, Q →y1 = 0 , dan









→ =

>

<

0 y

0 Q y

pada

0 y T pada

0 y P pada

'' '

'' '' ''

Pada B dan C





→ =

0 y

0 y

'' '

''

0 y dan , 0 y dari diperoleh x

x x

1 1

Q T P

=

 =



0 y dari diperoleh x

x ''

C

B =

(a) = grafik fungsi yang dicari ekstrem dan titik beloknya (b) = grafik fungsi turunan pertama

(c) = grafik fungsi turunan kedua (d) = grafik fungsi turunan ketiga

Ciri-ciri titik-titik tersebut (lihat gambar) sebagai berikut : P titik tertinggi/maksimum, y1 = 0 , y''<0

T titik terendah/minimum, y1 = 0 , y''>0 Q titik belok datar, y1= 0 , y''= 0 , y' ''>0

B titik belok miring ke kiri, y1< 0 , y'' = 0 , y' ''> 0 C titik belok miring ke kanan, y1< 0 , y''= 0 , y' ''< 0

(11)

Sebenarnya masih ada lagi titi-titik khusus yaitu :

'

y = +∞ → titik tertinggi / maksimum

y' = - ∞ → titik terendah / minimum

y' = tak tentu → titik terasing

Tetapi titik D, E, dan F di sini tidak di bicarakan.

Dari uraian dapatdi simpulkan :







=

>

<

=

=

0 y

0 '' bila y datar belok

0 '' y bila imum min

0 '' y bila maksimum :

cukup Syarat

0 ' y datar belok / ekstrem perlu

Syarat )

x ( F y

'' '

y =





 ≠



>

<

=

→ y 0

0 ' y kanan miring

0 ' y kiri miring : cukup Syarat

0 y miring elok

b perlu Syarat )

X (

F '''

''

2. Aplikasi Ekstrem Fungsi

Yang baru saja kita bicarakan adalah tentang ekstrem fungsi, kita kenakan pada grafik fungsi tersebut yangdi gambarkan sebagai ordinat puncak dan titik belok.

Pengertian ekstrem fungsi banyak di gunakan dalam bidang fisika, kimia, biologi, ekonomi, kerekayasaan dan sebagainya.

Biasanya masalah-masalah/persoalan yang bersifat kuantitatif yang dapat di fungsikan, dengan demikian dapat di cari ekstremnya. Dala hal ini arti ekstrem aplikasinya dapat berarti terbanyak- tersedikit, terjauh- terdekat, terbesar-terkecil, dan sebagainya. Berikut ini bebrapa contoh kegunaan pengertian ekstem.

Contoh.

D

E

(12)

1. Petruk dan bagong membagi uang Rp 1000,-. Bila bagian petruk dan bagong dikalikan mencapai ekstem. Berapakah bagian masing-masing ? Dan berapakah ekstrem tersebut ? Ekstrem maksimum atau ekstrem minimum ?

Jawab. Masalah tersebut kita matematikkan demikian :

misalnya uang petruk = p dan uang bagong = b , maka p + b = 1000 kalau p . b = z berarti z = (1000-b).b = -b2+1000b .

z sebagai fungsi dari b.

z mencapai ekstrem bila 0 2b 1000 0 db

dZ = →− + =

b = 500 p = 500 2 0

db z d

2 2

<

=

Jadi uang masing-masing adalah Rp. 500,-

Ekstrem dasil kali uang mereka adalah Rp. 250.000,- Dan jenis ekstrem adalah maksimum karena z '' = -2 < 0

Catatan : Dengan sendirinya bila pengertian fungsi dan ekstrem fungsi sudah di pahami benar-benar, maka untuk menyelesaikan persoalan tersebut tidak sepanjang itu.

2. Kawat sepanjang seratus meter di potong menjadi dua, yang satu di bentuk lingkaran dan yang lain di bentuk bujur sangkar. Tentukan panjang masing-masing agar jumlah luas daerah lingkaran dan bujur sangkar tersebut maksimum (π =

7 22).

Jawab.

- Potongan kawat AC di bentuk lingkaran Gb. 4.5 (a)

- Potongan kawat CB dibentuk bujur sangkar Gb. 4.5 (b)

A C B

(a) (b)

Gb. 4.5

x x

R

(13)

14 x

7 4 R

R 50

0 R 50 R 4

2 0 . 1 2 R 25 1 2 R dR 2

dL

2 R 25 1 R

L x

R L L

L L

2 R 25 1 x

100 x 4 R 2 P P

x L R

L

x 4 P R

2 P

2 2

2 2 2

1 2 1

2 2 2

1

2 1

=

= π →

= +

= π +

=

 

− π



 

 − π

+ π

=



 

 − π

+ π

=

→ +

π

=

→ +

=

π

=

= + π

= +

= π

=

= π

=

Jadi panjang masing-masing P1 = 2πR = 44 m dan P2 = 4x = 56 m

3. Sebuah container, volumenya 72 m3 , panjang = 2 . lebar.

Tentukan ukuran container tersebut agar bahan yang digunakan sehemat-hematnya.

Jawab . misal container seperti Gb. 4.6

2 2

x y 36 72 y 2x

V= = → =

Bahan sehemat-hematnya kita artikan

luas minimum.

L = 2.2x2 +2.xy+2.2xy

L x

x 216 4 x L

.36 x x 4 .36 x 2 x

4 2 + 2 + 2 → = 2 +

=

4 y

; 3 x 27

x x 0

x 216 8

L1 = − 2 = → 3 = → = =

Jadi ukuran container te rsebut panjang = 6 meter lebar = 3 meter tinggi = 4 meter 2x

x y

GB. 4.6

(14)

4. Sebuah kaleng susu berbentuk silinder, luas silinder = 924 cm2.

Tentukan ukuran silinder, agar isi silinder tersebut sebanyak-banyaknya

π = 7 22 . Jawab : misalnya silinder seperti Gb. 4.7

Luas = 2πR2 + 2πRt = 924 t = R

R

462 2

π π

3 2 2 2

R R 462 V

R R .462 R t R V

π

=

π π π

= π

=

14 7 t

49 t 462

7 R 154 49

R 0

R 3 462

V1 2 2

= π

π

=

=

π =

=

= π

=

Jadi ukuran silinder tersebut R = 7 cm dan tinggi 14 cm.

5. Tentukan koordinat puncak grafik dengan persamaan

2 x x

1 x 3 x y 2 2

2

− +

= −

Jawab : 0

) 2 x x (

) 1 x 2 )(

1 x 3 x 2 ( ) 3 x 4 )(

2 x x ' (

y 2 2

2

2 =

− +

= −

Pembilang bila disederhanakan = x 2 – 10x + 7

x 2 – 10x + 7 = 0 → x1 =5+3 2 x2 =5−3 2 3 2 1 2 y 3 2

1 2

y1 = − 2 = +

+

=

+ 2

3 1 2 , 2 3 5 Q 3 2

1 2 , 2 3 5 P

Bila ditanyakan tertinggi / terendah, ditinjau : y’’ nya.

6. Tentukan maksimum / minimum

6 x 2

2 x ) x

x ( f

2

= −

Gb. 4.7 R t

(15)

Jawab : 0 )

6 x 2 (

2 . ) 2 x x ( ) 1 x 2 ( ) 6 x 2 0 (

) x ( '

f 2

2 =

→ −

=

2 41 imum min ) x ( f 2 0

) 1 5 ( '' f 5 x

2 maksimum 1 )

x ( f 2 0

) 1 1 ( '' f 1

x

) 3 x ( '' 4 f dicari bila ) ,

6 x 2 (

10 x 12 x ) 2 x ( ' f

2 41 ) 5 ( f 2 , ) 1 1 ( f

5 x , 1 x 0 5 x 6 x 0

10 x 12 x 2

0 4 x 2 x 2 6 x 14 x 4

2 1

3 2

2

2 1

2 2

2 2

=

>

=

=

=

<

=

=

= −

− +

= −

=

=

=

=

= +

= +

= + +

− +

7. Pada daerah setengah lingkungan dengan jari-

jari R dibuat empat segi panjang, seperti Gb.4.8.

Tentukan luas maksimum daerah empat segi panjang tersebut.

Jawab : misal sisi-sisi empst segi panjang tersebut x dan y

Maka 2 2 2

2

2 y R y 2 R x

2

x 1  = → = −

 

 +

Luas = x . y = 2x. R2 −x2

D C

A M B

x

y

R

Gb. 4.8

(16)

ABCD 2

2 ABCD 2

2 2 2 2

2 2 2

2

2 1 2 2 2

2

R maksimum L

2R R 1 . 2 2R .1 2 maksimum L

Jadi

2 2R x 1

x x R x

R x x

R

0 ) x 2 .(

) x R 2( .1 x 2 x R 2 dx 0

dL

=

=

=

=

=

=

+

=

Dapat dibayangkan bahwa luas mencapai maksimum bila y = 2x atau panjang = 2 kali lebar.

8. Pada lingkaran berjari-jari R` dibuat segitiga singgung ABC sama kaki (AC=BC) seperti Gb. 4.9. Tentukan luas minimum segitiga tersebut.

Jawab. misal AB = 2x dan CP = t, maka CN = t-R

CQN∆ ∞ CPB∆

Gb. 4.9

R Q

R

A x B

C

N

(17)

3 R 3 ABC . L 3

R R 3

R 3

R . 3 R 3 . L 2 Jadi

3 R x R

3 x

) R x (

x 2 . R x 2 R x 6 ).

R x 0 ( L

R x

R x t. 2 x ABC L

R x

xR t 2

) tR 2 t ( x t R

t x tR 2 t

R

t x R ) R t (

R t

x CQ

R

2 2

2 2

3 2 2

2 2 2

3 2

2 2 1

2 2

3

2 2 2

2 2 2

2

2 2

=

− =

=

=

=

→ −

=

= −

=

= −

=

− =

− =

→ −

=

Dapat juga sudut segitiga diambil sebagai variabel.

9. Lingkaran berjari-jari R, dibuat trapesium

singgung sama kaki seperti Gb. 4.10.

Tentukan luas minimum daerah trapesium tersebut.

Jawab : diambil variabel-variabel seperti pada gambar, berarti :

α α =

= dan b R tg

tg a R

o

2 2 2 1

2

2

45 0

2 cos

2 0 sin

2 cos 2 . R L 4

2 sin

R 4 cos

sin sin

R cos 2 trapesium L

tg tg R 1 2 tg

tg R R R 2 trapesium L

) b a ( R 2 ) b 2 a 2 ( R 2 2. trapesium 1 L

= α

= α

α = α

=− α →

=

 

α + α α

= α



 

 + α

= α



 

 + α

= α

+

= +

=

Jadi L minimum = 4R2 (trapesium berupa bujur sangkar).

A B

C D

P

R N

a b Q

R α

α

Gb. 4.10

(18)

10. Segitiga ABC, sisi c sama dengan jari-jari lingkaran luarnya (R).

Tentukan luas maksimum ∆ ABC tersebut.

Jawab. c = 2R sin γ

o o

o.sin75 R sin 75 75

sin R maksimum ABC

L Jadi

75 0 150 2 0 ) 150 ( sin

0 ) 150 ( sin . cos ) 150 ( cos . sin

0 ) 150 ( sin . cos R ) 1 ( . ) 150 ( cos . sin R d 0

dL

) 150 ( sin . sin R ABC Luas

sin . sin R ABC Luas

2 .1 sin . sin R 2 ABC Luas

) rumus ( sin . sin . sin R 2 ABC Luas

150 ,

30 2 sin 1 sin

R 2 R

2 2 2

0 o o

0 0

0 2

0 2

0 2

2 2 2

o o

=

=

= α

=

α

= α +

α

= α

α

α

α

= α

α

+

α

α

α =

α

α

=

β α

=

β α

=

γ β α

=

= β + α

= γ

= γ

γ

=

) 3 2 ( 4R L 1

) 3 2 ( 4R ) 1 150 cos 1 ( 2R L 1

2

2 o

2

+

=

+

=

=

segitiga sama kaki (AC = BC)

Referensi

Dokumen terkait

Pada program pengabdian yang dilaksanakan ini, bertujuan untuk mencegah penularan virus COVID-19 terhadap warga yang akan mengikuti kegiatan posyandu di Puskesmas

Tingkat kecerahan yang semakin rendah menandakan sumbangan warna merah cukup tinggi, berarti mengidentifikasikan kandungan pigmen pada sumber bahan mahkota bunga mawar

Sisa Lebih Pembiayaan Anggaran Tahun Berkenaan (SILPA) 0.00 Surplus of Fincance Bugetary in the Current year.. Sumber : Biro Keuangan Kantor Gubernur Provinsi NTB Source

(2007) yang menyatakan akuntabilitas mempunyai peranan yang signifikan terhadap kinerja manajerial. Setiap equalizer mempunyai relevansi dengan atribut tata kelola. Model

Kejadian trombositopenia terbesar berdasarkan onset demam yaitu pemeriksaan angka trombosit yang dilakukan pada hari ke 4-6 demam sebesar 72,87%.. Trombosit terendah ditemukan

Mampu mengembangkan pengetahuan, teknologi, dan atau seni baru di dalam bidang keilmuannya atau praktik profesionalnya melalui riset, hingga menghasilkan karya kreatif, original,

Pada soal nomor 3 terdapat tiga mahasiswa yang salah dalam pemahaman konsep, tiga orang tidak menyelesaikan jawaban yang sudah diisi, enam orang.. 32 melakukan

koordinasi gerak yang baik* Melakukan gerakan variasi dan kombinasi teknik Cara memegang raket, teknik footwork, posisi berdiri, servis, pukulan atas dan pukulan bawah