• Tidak ada hasil yang ditemukan

haji-esmailirea. 182KB Jun 04 2011 12:08:44 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "haji-esmailirea. 182KB Jun 04 2011 12:08:44 AM"

Copied!
4
0
0

Teks penuh

(1)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

A CLOSED-FORM EXPRESSION FOR SECOND-ORDER RECURRENCES

E. HAJI-ESMAILI and S. H. GHADERI

Abstract. This paper introduces a closed-form expression for the second-order recurrence relation an=c1an−1+c2an−2, in whichc1 andc2 are fixed constants and the value of two arbitrary terms an−pandan−q are known wherepandqare positive integers andp > q. This expression is

an= S(p+ 1)

S(p−q+ 1)

an−q−(−c2)(p−q) S(q+ 1) S(p−q+ 1)

an−p

where

S(n) =

[n/2]

X

i=0

“ni i

” cn−2i

1 ci2.

1. Introduction

The Fibonacci and Lucas numbers are famous for possessing fabulous properties. For example, the ratio of Fibonacci numbers converges to the golden ratio, and the sum and differences of Fibonacci numbers are Fibonacci numbers. Nevertheless, many of these properties can be stated and proved for a much more general class of sequences, namely, second-order recurrences [1, 2], defined by

an =c1an−1+c2an−2, in which c1 and c2 are fixed constants. Lucas in his foundation paper [3]

studied these sequences.

Received November 16, 2010; revised March 15, 2011.

2010Mathematics Subject Classification. Primary 11B37, 11B39.

Key words and phrases.Second-order recurrence; characteristic polynomial; closed-form solution.

(2)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

One of the difficulties in using recurrence relations is the need to compute all intermediate values up to the required term. In general, to overcome this for ad-order linear recurrence

an=c1an−1+c2an−2+. . .+cdan−d

we can statean=Pdi=1kirin, whereri are the roots of the characteristic polynomial

P(t) =td−c1td−1−c2td−2−. . .−cd= d Y

i=1

(t−ri)

and the constantski are evaluated by looking at the initial values [4]. For the Fibonacci numbers, this solution reduces to the well-known Binet formula.

We recall the polynomial identity

[n/2]

X

i=0

(−1)i

n−i

i

(xy)i(x+y)n−2i=xn+xn−1y+. . .+yn= x n+1

−yn+1

x−y

observed in [7]. Sury stated that since P i≥0

n−i i

satisfies the same recursion as the Fibonacci sequence and starts withF2 andF3, it follows by induction thatP

i≥0

n−i i

=Fn+1, and he used

this polynomial to obtain the Binet formula [6]. He also used this identity to derive trigonometric expressions for the Fibonacci and Lucas numbers [5].

In this paper, the second-order recurrencesan=c1an−1+c2an−2are studied and this polynomial

(3)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

2. Closed-form expression for second-order recurrences

Letc1 andc2 be fixed constants. Consider the linear recurrence

an =c1an−1+c2an−2

For this recursion, the characteristic polynomial isp(t) =t2

−c1t−c2. Let αand β be its roots; hencean=k1αn+k2βn for certain constantsk1 andk2. From the equalities

an−p=k1αn−p+k2βn−p

an−q =k1αn−q+k2βn−q

we can solve fork1 andk2and obtain finally that

an=

αp−βp

αp−q −βp−q

an−q−

(αβ)p−q(αq −βq)

αp−q −βp−q

an−p.

In order to simplify this expression further, we rearrange it to form the aforementioned polynomial identity. We also apply the equalityαβ=−c2; thus

an =

αp−βp

α−β

αp−q −βp−q

α−β

an−q−

(−c2)p−q

αq−βq

α−β

αp−q −βp−q

α−β

an−p.

Asα+β=c1 andαβ=−c2, the polynomial identity results in

αn+1

−βn+1

α−β =

[n/2]

X

i=0

n−i

i

(4)

◭◭ ◭ ◮ ◮◮

Go back

Full Screen

Close

Quit

Thus if we denoteS(n) =P[n/2] i=0

n−i i

cn1−2ici2, we have

an=

S(p+ 1)

S(p−q+ 1)

an−q−(−c2)(p

−q) S(q+ 1) S(p−q+ 1)

an−p.

1. Benjamin A. T. and Quinn J. J.,The Fibonacci Numbers Exposed More Discretely, Mathematics Magazine,76 (2003), 182–192.

2. Kalman D. and Mena R.,The Fibonacci Numbers-Exposed, Mathematics Magazine,76(2003), 167–181. 3. Lucas E.,Th´eorie des fonctions num´eriques simplement p´eriodiques, Amer. J. Math.1(1878), 184–240, 289–321. 4. Niven I., Zuckerman H. S. and Montgomery H. L.,An Introduction to the Theory of Numbers, John Wiley and

Sons, Inc., New York, Chichester, Brisbane, Toronto and Singapore, (1991), 197–206.

5. Sury B., Trigonometric Expressions for Fibonacci and Lucas Numbers, Acta Math. Univ. Comenianae, 79 (2010), 199–208.

6. ,A parent of Binet’s formula?, Mathematics Magazine,77(2004), 308–310. 7. ,On a curious polynomial identity, Nieuw Arch. Wisk.,11(1993), 93–96.

E. Haji-Esmaili, Shahrood University of Technology, Shahrood 3619995161, I.R.Iran,

e-mail:[email protected]

S. H. Ghaderi, Shahrood University of Technology, Shahrood 3619995161, I.R.Iran,

Referensi

Dokumen terkait

[r]

KELOMPOK KERJA (POKJA) PENGADAAN BARANG/ JASA PADA PSBRW MEOHAI

Tahapan preprocessing adalah proses untuk mendapatkan pengetahuan dari data, dalam tahap preprocessing pengetahuan tersebut berarti diambil dari dokumen dengan

Metode Value Engineering sangat efektif untuk dilakukan dalam usaha penghematan biaya pada suatu proyek konstruksi, khususnya pada proyek pembangunan gedung Kantor

[r]

Code Windows merupakan sebuah jendela yang digunakan untuk menuliskan kode program dari kontrol yang kita pasang pada jendela form dengan cara memilih terlebih dahulukontrol

Pada acara penjelasan pekerjaan dokumen pengadaan yang diikuti oleh 36 (Tiga puluh enam) peserta yang telah mendaftar, sampai dengan waktu akhir penjelasan terdapat 3 (Tiga)

Pada petani sayur dan petani padi ada perbedaan yang nyata terhadap akses informasi pertanian, nformasi pertanian yang dibutuhkan oleh petani sayur adalah pemasaran,