DIKTAT KULIAH STRUKTUR DATA
Disusun oleh:
Sri Primaini A.
FAKULTAS ILMU KOMPUTER UNIVERSITAS INDO GLOBAL MANDIRI
PALEMBANG 2016
Halaman
BAB 1 PENGANTAR KE STRUKTUR DATA... 1
1.1 Mengapa Struktur Data Diperlukan?... 1
1.2 Tinjauan Algoritma... 1
1.3 Tipe Data... 2
1.4 Instruksi... 4
BAB 2 LARIK... 8
2.1 Deklarasi Larik... 8
2.2 Pemrosesan Larik Secara Sekuensial... 10
2.3 Larik Bertipe Terstruktur... 13
2.4 Pencarian Pada Larik... 15
2.5 Pengurutan Data... 16
BAB 3 SENARAI... 18
3.1 Alasan Menggunakan Senarai... 18
3.2 Tipe Pointer... 21
3.3 Membuat Senarai Kosong... 21
3.4 Traversal... 22
3.5 Penyisipan Elemen... 27
3.6 Menghapus Elemen... 32
3.7 Bekerja Dengan Dua atau Lebih Senarai... 36
3.8 Senarai Yang Info-nya Terstruktur... 41
3.9 Multi Linked List... 43
BAB 4 ANTRIAN... 47
4.1 Pengertian Dasar... 47
4.2 Membuat Antrian Kosong... 48
4.3 Memeriksa Apakah Antrian Kosong... 48
4.4 Menyisipkan Elemen (EnQueue)... 49
4.5 Menghapus Elemen... 50
4.6 Representasi Fisik Antrian Dengan Larik... 51
4.7 Membuat Antrian Kosong, Representasi Fisik Larik... 51
4.8 Fungsi Untuk Memeriksa Antrian Kosong, Representasi Fisik Larik... 52
4.9 Menyisipkan Elemen Antrian, Representasi Fisik Larik... 52
4.10 Menghapus Elemen Antrian, Representasi Fisik Larik... 56
4.11 Persoalan Head Maju, Menyisipkan Elemen... 59
BAB 5 TUMPUKAN... 63
5.1 Pengertian Dasar... 63
5.2 Membuat Stack Kosong... 64
5.3 Menyisipkan Elemen... 64
5.4 Menghapus Elemen Stack... 65
5.5 Memeriksa Apakah Stack Kosong... 65
5.5 Representasi Fisik Tumpukan Dengan Larik... 65
5.6 Menyisipkan Elemen Stack, Representasi Larik... 66
5.7 Menghapus Elemen Stack, Representasi Larik... 68
BAB 6 GRAF... 71
6.1 Pengertian Dasar... 71
6.2 Istilah-Istilah Pada Graf... 72
6.3 Representasi Graf... 76
6.4 Penelusuran Graf... 77
BAB 7 POHON PENCARIAN BINER (BINARY SEARCH TREE, BST)... 82
7.1 Pendahuluan... 82
7.2 Hubungan Antar Simpul Pada BST... 83
7.3 Membuat BST Kosong... 84
7.4 Penelusuran Pada BST... 84
7.5 Pencarian... 86
7.6 Menyisipkan Elemen... 86
7.7 Menghapus Elemen... 87
7.8 Menghitung Tinggi Pohon... 90
7.9 Menghitung Jumlah Simpul... 90
7.10 Menghitung Jumlah Daun... 91
DAFTAR PUSTAKA... 92
PENGANTAR KE STRUKTUR DATA
1.1 Mengapa Struktur Data Diperlukan?
Struktur data adalah cara mengorganisakan data di memori komputer.
Bagaimana data diorganisasikan (struktur data) akan menentukan unjuk kerja program yang memroses data tersebut.
Struktur data akan membuat program yang dibangun menjadi lebih efisien.
Setiap tahun teknologi perangkat keras makin baik, unjuk kerja komputer makin baik, pemrosesan makin cepat, memori tersedia makin besar. Mengapa efisiensi diperlukan?
Diskusikan!
Struktur data selalu berkaitan dengan program. Membahas program berarti membahas algoritma. Sehingga dalam setiap bahasan struktur data pasti ada bahasan algoritma. Untuk lebih memudahkan belajar struktur data, berikut akan dibahas mengenai tinjauan instruksi dan notasi algoritma secara ringkas.
1.2 Tinjauan Algoritma
Algoritma adalah urutan langkah untuk menyelesaikan masalah. Dalam konteks pemrograman algoritma adalah rancangan urutan instruksi yang nantinya akan diterjemahkan ke bahasa pemrograman dan dieksekusi oleh komputer.
Secara sederhana algoritma terdiri dari tiga bagian, yaitu:
1. Judul algoritma: memuat identitas algoritma berupa nama algoritma, keterangan mengenai proses apa yang dilakukan dalam algoritma. Jika algoritma tersebut berupa procedure atau function harus dinyatakan data yang berinteraksi dengan procedure atau function tersebut
2. Bagian deklarasi memuat deklarasi nama dan tipe data serta subprogram (procedure dan atau function) yang digunakan di dalam algoritma.
3. Bagian deksripsi berisi rancangan instruksi yang harus dieksekusi oleh komputer.
1.3 Tipe Data
Tipe data menentukan himpunan nilai yang terkandung di dalam data tersebut serta operasi apa saja yang berlaku terhadap data tersebut,
Secara garis besar ada dua macam tipe data, yaitu tipe data dasar dan tipe data bentukan. Tipe data dasar adalah tipe yang dapat langsung dipakai sedangkan tipe data bentukan harus didefinisikan terlebih dahulu dari tipe dasar yang ada.
Tipe bentukan didefinisikan jika persoalan yang akan diprogram tidak dapat didefinisikan dengan tipe dasar yang ada. Tabel I memuat tipe data dasar secara ringkas.
TABEL I TIPE DATA DASAR
Nama Tipe Rentang Nilai Operasi
boolean benar (true), dinyatakan dengan angka 1
salah (false), dinyatakan dengan angka 0
Operasi logika:
and, or, not, xor menghasilkan nilai bertipe boolean
integer Secara teoritis tidak terbatas, ditentukan oleh komputer dan compiler yang digunakan.
Operasi aritmatika:
+, -, *,div, mod menghasilkan nilai bertipe integer
Operasi perbandingan:
=, ≠, >, <, ≥, ≤ menghasilkan nilai bertipe boolean
Tabel I. Tipe Data Dasar (Lanjutan)
Nama Tipe Rentang Nilai Operasi
real Secara teoritis tidak terbatas, ditentukan oleh komputer dan compiler yang digunakan.
Operasi aritmatika:
+, -, *, /
menghasilkan nilai bertipe real Operasi perbandingan:
≠, >, <, ≥, ≤ menghasilkan nilai bertipe boolean
character Semua karakter yang dikenal oleh komputer.
Lihat tabel kode ASCII
Operasi perbandingan:
=, ≠, >, <, ≥, ≤ menghasilkan nilai bertipe boolean
string Rangkaian karakter dengan panjang tertentu
Operasi penyambungan:
+
menghasilkan nilai bertipe string
Operasi perbandingan
=, ≠, >, <, ≥, ≤ menghasilkan nilai bertipe boolean
Tipe Data Bentukan
Didefinisikan sendiri oleh pemrogram (user defined data type), dibentuk dari satu atau lebih tipe dasar, disebut rekaman. Setiap rekaman terdiri dari satu atau lebih field. Tiap field menyimpan data dari tipe dasar atau tipe bentukan lain yang sudah didefinisikan.
Contoh 1.1: Tipe data bentukan
type Date = record <Tgl: integer, Bln: integer, Thn: integer,
type DataMhs = record <Nama: string[25], NIM: string[12], Tgl_Lahir: Date, IPK: real>
Algoritma 1.1 Contoh Tipe Data Bentukan 1.4 Instruksi
Ada tiga macam instruksi di dalam algoritma, yaitu: runtunan (sequence), pemilihan dan pengulangan.
Instruksi Runtunan
Rangkaian instruksi yang diproses secara berurutan, mulai dari instruksi pertama sampai instruksi terakhir.
Contoh 1.2:
Algoritma menukar dua bilangan bulat X dengan Y.
Algoritma MenukarXY
{membaca masukan X dengan Y, kemudian mempertukarkan X dengan Y}
Deklarasi:
X,Y: integer temp: integer Deskripsi:
read(X) read(Y) temp X X Y Y temp
Algoritma 1.2 Menukar Nilai Dua Bilangan
Instruksi Pemilihan
Ada tiga macam, yaitu pemilihan dengan satu kasus, pemilihan dengan dua kasus komplementer, dan pemilihan dengan dua atau lebih kasus.
Contoh 1.3: Pemilihan dengan satu kasus
Algoritma untuk membaca sebuah bilangan bulat dan mencetak kata “kelipatan 3” jika bilangan yang dibaca tersebut merupakan kelipatan 3.
Algoritma Kelipatan3
{membaca masukan X kemudian mencetak kata “kelipatan 3” jika bilangan tersebut merupakan kelipatan 3}
Deklarasi:
X: integer Deskripsi:
read(X)
if X mod 3 = 0 then write (“kelipatan 3”) endif
Algoritma 1.3 Mencetak “kelipatan 3” jika data masukan kelipatan tiga Contoh 1.4: Pemilihan dengan dua kasus komplementer.
Algoritma untuk membaca sebuah bilangan bulat dan mencetak pesan “bilangan ganjil” jika bilangan yang dibaca tersebut bernilai ganjil dan mencetak pesan
“bilangan genap” jika sebaliknya.
Algoritma GanjilGenap
{membaca masukan X kemudian mencetak kata “bilangan ganjil”
jika bilangan tersebut bernilai ganjil dan mencetak
“bilangan genap” jika sebaliknya}
Deklarasi:
X: integer Deskripsi:
read(X)
if X mod 2 = 1 then
write (“bilangan ganjil”) else
write(“bilangan genap”) endif
Algoritma 1.4 Menentukan ganjil atau genap
Contoh 1.5: Pemilihan dengan 2 atau lebih kasus
Algoritma yang membaca bilangan bulat kemudian menentukan apakah bilangan tersebut positif atau negatif atau sama dengan nol.
Algoritma ApakahPositif
{membaca masukan X kemudian menentukan apakah bilangan tersebut positif, atau negatif atau sama dengan 0}
Deklarasi:
X: integer Deskripsi:
read(X) if X > 0 then write (“positif”) else
if X < 0 then write (“negatif”) else
write (“nol”) endif
endif
Algoritma 1.5 Menentukan apakah bilangan positif atau negatif atau nol Instruksi Pengulangan
Ada 3 macam, yaitu dengan for-to-do, dengan while-do dan dengan repeat-until.
Contoh 1.6: Pengulangan dengan for-to-do
Algoritma untuk mencetak bilangan 1 sampai dengan 10 secara berurutan.
Algoritma CetakFor
{mencetak bilangan 1 s.d 10 secara berurutan dengan for-to-do}
Deklarasi:
k: integer Deskripsi:
for k 1 to 10 do write(k)
endfor
Algoritma 1.6 Mencetak 1 s.d. 10 dengan for-to-do Contoh 1.7: Pengulangan dengan while-do
Algoritma untuk mencetak bilangan 1 sampai dengan 10 secara berurutan.
Algoritma CetakWhile
{mencetak bilangan 1 s.d 10 secara berurutan dengan while- do}
Deklarasi:
k: integer Deskripsi:
k 1
while k ≤ 10 do write (k) k k + 1 endwhile
Algoritma 1.7 Mencetak 1 s.d.10 dengan while-do Contoh 1.8: Pengulangan dengan repeat-until
Algoritma untuk mencetak bilangan 1 sampai dengan 10 secara berurutan.
Algoritma CetakRepeat
{mencetak bilangan 1 s.d 10 secara berurutan dengan repeat- until}
Deklarasi:
k: integer Deskripsi:
k 1 repeat write(k) k k + 1 until k > 10
Algoritma 1.8 Mencetak 1 s.d.10 dengan repeat-until
BAB 2 LARIK
Salah satu alasan mengapa komputer digunakan untuk mengolah data adalah karena data yang diolah banyak dan dari tipe yang sama.
Larik (array) adalah tempat menyimpan sekumpulan elemen data dengan tipe yang sama. Setiap elemen data diacu menggunakan indeks. Indeks menunjukkan posisi relatif elemen data tersebut di dalam kumpulannya.
2.1 Deklarasi Larik
Sebelum dapat digunakan untuk menyimpan data, terlebih dulu larik harus dideklarasikan. Mendeklarasikan larik artinya memesan sejumlah tempat di memori sesuai dengan ukuran larik yang dideklarasikan. Larik bersifat statis, artinya ukuran larik harus sudah diketahui sebelum program dieksekusi dan ukuran larik tidak berubah selama program dieksekusi.
Deklarasi larik artinya mendefinisikan nama lariknya, ukuran dan tipe elemen larik tersebut. Tipe elemen larik dapat bertipe dasar atau bertipe bentukan.
Contoh 2.1: deklarasi larik sebagai variabel A: array[1..100] of integer
Algoritma 2.1 Deklarasi larik sebagai variabel
Algoritma 2.1 menunjukkan deklarasi larik A dengan 100 elemen larik, semua elemen larik bertipe integer.
Contoh 2.2: deklarasi larik sebagai tipe
type Larik = array[1..100] of integer A: Larik
Algoritma 2.2 deklarasi larik sebagai tipe
Contoh 2.3: deklarasi larik menggunakan konstanta const NMAX = 100
type Larik = array[1..NMAX] of integer A: Larik
Algoritma 2.3 Deklarasi larik menggunakan konstanta
Algoritma 2.1, Algoritma 2.2 dan Algoritma 2.3 sama-sama mendeklarasikan larik A bertipe integer dengan 100 elemen. Namun pada Algoritma 2.2 deklarasi larik melalui tipe bentukan, sedangkan pada Algoritma 2.3, banyak elemen larik tidak dideklarasikan secara langsung dengan angka melainkan menggunakan konstanta. Dengan deklarasi seperti Algoritma 2.3, jika diperlukan ukuran larik diubah maka kita hanya mengubah nilai konstanta NMAX.
Setelah mendeklarasikan larik, komputer akan menyediakan lokasi memori sebanyak yang dideklarasikan. Gambar 2.1 mengilustrasikan lokasi memori untuk larik A.
[1]
[2]
[3]
[4]
[5]
[6]
[7]
...
...
...
...
[99]
[NMAX]
Gambar 2.1 Larik A dengan NMAX elemen
Untuk mengacu elemen larik digunakan indeks. Nilai indeks harus terdefinisi.
Indeks merupakan tipe yang memiliki keterurutan (integer atau karakter) Contoh 2.4: mengacu elemen larik
A[17], artinya mengacu elemen ke-17 dari larik A
A[k], artinya mengacu elemen ke-k dari larik A, tentu saja harga k harus sudah terdefinisi
A[k+1], artinya mengacu elemen ke-k+2 dari larik A
2.2 Pemrosesan Larik Secara Sekuensial
Pemrosesan terhadap elemen larik dilakukan secara berurutan (sekuensial) sesuai dengan indeksnya. Elemen larik diproses mulai dari elemen pertama sampai elemen terakhir (elemen dengan indeks terbesar) atau sampai elemen tertentu yang diinginkan secara berurutan.
Skema umum pemrosesan larik adalah dapat dilihat pada Algoritma 2.4 Algoritma PemrosesanLarik
{Skema pemrosesan larik secara beruntun}
Deklarasi:
const NMAX = 100 {maksimum elemen larik}
type Larik = array[1..NMAX] of integer A: Larik
k: integer {indeks larik}
Deskripsi:
for k 1 to NMAX do Proses(A[k])
endfor
Algoritma 2.4 Skema Umum Pemrosesan Larik
Proses(A[k]) adalah aksi tertentu terhadap elemen A[k], tergantung persoalan yang akan diselesaikan.
Konstanta NMAX menyatakan maksimum banyaknya elemen larik. Terkadang banyak data yang akan disimpan tidak mencapai NMAX. Misalnya ada N elemen data yang akan disimpan di dalam larik, maka dari NMAX elemen larik yang efektif terpakai untuk menyimpan ada hanya N elemen. N disebut indeks efektif larik. Tentu saja N <= NMAX. Pada Gambar 2.2, bagian larik yang diarsir adalah bagian yang digunakan untuk menyimpan data.
[1]
[2]
[3]
[4]
[5]
[6]
[7]
...
...
...
...
[N]
[99]
[NMAX]
Gambar 2.2 Larik A[1..N] elemen
Contoh 2.5: mengisi larik melalui pembacaan
Larik yang sudah dideklarasi belum terdefinisi nilainya. Kita dapat menyimpan data ke dalam larik tersebut. Data yang akan disimpan dapat diperoleh dari operasi pembacaan melalui piranti masukan (keyboard). Algoritma 2.5 adalah proses mengisi larik melalui operasi pembacaan.
Untuk menyederhanakan penulisan, maka pada contoh-contoh selanjutnya larik yang akan digunakan adalah larik seperti deklarasi pada Algoritma 2.4. Selain itu semua contoh algoritma pemrosesan larik akan disajikan dalam bentuk sub program baik dalam prosedur maupun fungsi.
procedure BacaLarik(output A: Larik, input N: integer) {mengisi elemen larik A[1..N] melalui pembacaan}
{K. Awal: N terdefinisi, yaitu banyak elemen efektif larik}
{K.Akhir: Larik A[1..N] terdefinisi Deklarasi:
k: integer {indeks larik}
Deskripsi:
for k 1 to N do read(A[k]) endfor
Algoritma 2.5 Mengisi elemen larik melalui pembacaan Gambar 2.3 mengilustrasikan keadaan larik sebelum dan setelah pembacaan.
Misalkan terdefinisi N = 10
[1] [1] 67
[2] [2] 75
[3] [3] 56
[4] [4] 89
[5] [5] 45
[6] [6] 66
[7] [7] 77
.... [8] 69
[9] 59
[N] 72
...
[NMAX] [NMAX]
(a) (b) Gambar 2.5 (a) K.Awal (b) Keadaan Akhir dari Algoritma 2.5
Contoh 2.6: menentukan harga maksimum larik
Diketahui larik A[1..N] yang sudah terdefinisi nilainya. Algoritma akan menentukan harga maksimum elemen larik.
procedure TentukanMaks(input A: Larik, input N: integer, output Maks: integer)
{menentukan harga maksimum elemen larik A[1..N] } {K. Awal: Larik A[1..N] terdefinisi}
{K.Akhir: Maks terdefinisi, yaitu harga maksimum larik}
Deklarasi:
k: integer {indeks larik}
Deskripsi:
Maks A[1]
for k 2 to N do if A[k] > Maks then Maks A[k]
endif endfor
Algoritma 2.6 Menentukan harga maksimum elemen larik 2.3 Larik Bertipe Terstruktur
Pada contoh-contoh yang sudah dibahas digunakan larik bertipe sederhana, yaitu larik bertipe integer. Elemen larik juga dapat bertipe .
Contoh 2.7: larik yang elemennya bertipe terstruktur const NMHS = 100
type DataMhs = record <NIM: string[12], Nama: string[20], IPK: real>
type LarikMhs = array[1..NMHS] of DataMhs AMhs: LarikMhs
Algoritma 2.7 Deklarasi larik bertipe terstruktur
Gambar 2.6 mengilustrasikan larik AMhs[1..N]. Misalkan terdefinisi N = 8
[1] 6789 Tiger Woods 2.8
[2] 7890 Ronaldo 3.1
[3] 5678 Roger Federer 3.0 [4] 2345 Serena Williams 2.9 [5] 1234 Taufik Hidayat 3.7 [6] 3456 Valentino Rossi 2.9 [7] 8901 Michael Jordan 3.2 [N] 4567 Schummacher 3.3
[NMAX]
Gambar 2.6 Contoh Larik Bertipe Terstruktur
Contoh 2.7: mencari data mahasiswa dengan IPK tertinggi.
Algoritma akan memberikan keluaran berupa data mahasiswa dengan IPK tertinggi. gunakan prinsip Algoritma 2.6. Jika mengacu ke Gambar 2.6, maka keluaran MhsTerbaik = <”1234”, “Taufik Hidayat”, 3.7>
procedure CariMhsTerbaik(input AMhs: LarikMhs, input N: integer,
output MhsTerbaik: DataMhs) {mencari data mahasiswa dengan IPK tertinggi } {K. Awal: Larik AMhs[1..N] terdefinisi}
{K.Akhir: MhsTerbaik terdefinisi, yaitu data mahasiswa dengan IPK tertinggi}
Deklarasi:
k: integer {indeks larik}
Deskripsi:
MhsTerbaik A[1]
for k 2 to N do
if AMhs[k].IPK > MhsTerbaik.IPK then MhsTerbaik A[k]
endif endfor
Algoritma 2.8 Mencari data mahasiswa dengan IPK tertinggi 2.4 Pencarian Pada Larik
Proses sekuensial lain yang sering dilakukan adalah pencarian terhadap elemen data tersebut.
Contoh 2.8: mencari keberadaan X di dalam larik integer A[1..N] versi 1.
Jika diketahui larik A[1..N], algoritma akan mencari keberadaan X di dalam larik. Jika X ada di dalam larik maka algoritma akan memberikan keluaran true, jika tidak maka akan memberikan keluaran false.
Mengacu ke Gambar 2.5(b), misalkan X yang dicari = 60, maka Found = false, misalkan X yang dicari = 77, maka Found = true
procedure CariX(input A:: Larik, input N: integer, output Found: boolean)
{mencari keberadaan X di dalam larik integer A[1..N] } {K. Awal: Larik A[1..N] terdefinisi, X terdefinisi}
{K.Akhir: Jika X ditemukan maka Found = true, jika tidak maka Found = false}
Deklarasi:
k: integer {indeks larik}
Deskripsi:
Found false k 1
while not Found and k ≤ N do if A[k] = X then
Found true else
k k + 1 endif
endwhile
Algoritma 2.9 Mencari keberadaan X di dalam larik integer A[1..N] versi 1
Contoh 2.9: mencari keberadaan X di dalam larik integer A[1..N] versi 2.
Jika diketahui larik A[1..N], algoritma akan mencari keberadaan X di dalam larik. Jika X ada di dalam larik maka algoritma akan memberikan keluaran IdX berupa nilai integer yaitu indeks tempat X ditemukan.Jika tidak maka IdX = -1.
Mengacu ke Gambar 2.5(b), misalkan X yang dicari = 60, maka IdX = -1, misalkan X yang dicari = 77, maka IdX = 7
procedure CariIdX(input A:: Larik, input N: integer, output IdX: integer)
{mencari keberadaan X di dalam larik integer A[1..N] } {K. Awal: Larik A[1..N] terdefinisi, X terdefinisi}
{K.Akhir: Jika X ditemukan maka IdX adalah tempat X ditemukan, jika tidak maka IdX = -1}
Deklarasi:
k: integer {indeks larik}
Found: boolean Deskripsi:
Found false k 1
while not Found and k ≤ N do if A[k] = X then
Found true else
k k + 1 endif
if Found then IdX k else
IdX -1 endif
Algoritma 2.10 Mencari keberadaan X di dalam larik integer A[1..N] versi 2
2.5 Pengurutan Data
Mengurutkan data adalah pekerjaan yang sering dilakukan dalam pemrosesan data. Ada berbagai metode pengurutan data seperti metode gelembung, metode seleksi, metode sisip dan metode-metode lain yang memerlukan kajian struktur
data lanjutan. Pada buku ini akan dibahas metode pengurutan yang paling sederhana, yaitu metode gelembung.
procedure Pengurutan(input/output A: Larik, input N: integer)
{mengurutkan elemen larik A[1..N]dari kecil ke besar dengan metode gelembung }
{K. Awal: Larik A[1..N] terdefinisi}
{K.Akhir: Larik A[1..N] terurut dari kecil ke besar}
Deklarasi:
i,k: integer temp: integer
Deskripsi:
for i 1 to N-1 do for k N downto i+1 do if A[k] < A[k-1] then temp A[k]
A[k] A[k-1]
A[k-1] temp endif
endfor endfor
Algoritma 2.11 Mengurutkan data dari kecil ke besar dengan metode gelembung Soal Latihan
1. Buat algoritma untuk mencari harga minimum larik A[1..N]
2. Buat algoritma untuk menentukan indeks tempat harga minimum larik A[1..N] berada.
3. Buat algoritma untuk mengurutkan elemen larik A[1..N] dari besar ke kecil 4. Buat algoritma untuk mengurutkan elemen larik mahasiswa dari kecil ke
besar berdasarkan NIM
BAB 3 SENARAI
Seringkali persoalan yang dihadapi terlalu sulit untuk direpresentasikan menggunakan struktur data yang tersedia, sehingga kita perlu membangun sendiri struktur data yang disebut user-defined data structured. Struktur data standard yang sering digunakan adalah senarai (list), tumpukan (stack), antrian (queue), graf (graph) dan pohon (tree).
3.1 Alasan Menggunakan Senarai
Misalkan satu perusahaan besar akan mengadakan pertemuan antar kantor cabang perusahaan. Ada 500 orang yang akan menjadi peserta pertemuan yang akan tinggal di lima hotel yang berbeda. Setiap peserta diberi kebebasan untuk memilih hotel tempatnya menginap. Mungkin saja ke-500 peserta akan tinggal di satu hotel yang sama (ke-4 hotel lainnya kosong), atau 500 peserta tersebut akan tersebar di 5 hotel yang berbeda. Panitia pertemuan perlu membuat daftar peserta menurut hotel dan meminta kita untuk membuat program untuk keperluan tersebut. Kita dapat menggunakan larik untuk masing-masing hotel, jadi diperlukan lima larik yang masing-masing didefinisikan untuk menampung jumlah maksimum peserta.
Penggunaan larik untuk setiap hotel akan menghabiskan tempat sia-sia, karena 5 hotel dikalikan 500 peserta = 2500 elemen larik. Akan data 2000 elemen larik yang tidak terpakai. Idealnya, informasi mengenai peserta harus disimpan sedemikian rupa sehingga hanya yang diperlukan saja yang dideklarasikan.
Perhatikan Gambar 3.1.
H1 H2 H3 H4 H5
[1] [1] [1] [1] [1]
[2]
[3]
[500] [500] [500] [500] [500]
Gambar 3.1. Lima larik untuk merepresentasi 5 hotel
Jika persoalan tersebut direpresentasikan dengan senarai seperti terlihat pada Gambar 3.2.
H1 H2 H3 H4 H5
2 3 4 5 6 7 8 9 10 11 12
1 . . . 499 500
Gambar 3.2. Senarai dari Gambar 1
Dengan senarai cukup disediakan sebuah larik dengan 500 elemen yang digunakan untuk merepresentasikan lima daftar (list) peserta yang menginap di lima hotel.
3.2 Tipe Pointer
Dari Gambar 3.2 terlihat bahwa setiap elemen larik, selain menyimpan data juga menyimpan “alamat” (dalam Gambar 3.2 berupa indeks) sebagai penunjuk (pointer) posisi elemen larik yang mengikutnya. Elemen yang menyimpan data dan “alamat” seperti ini disebut elemen senarai. Jadi senarai adalah sekumpulan elemen bertipe sama, setiap elemen terdiri dari dua bagian, yaitu bagian yang menyimpan informasi dan bagian yang menyimpan alamat elemen berikutnya.
Gambar 3.3 menunjukkan senarai secara lojik
Info Next
First (a)Elemen Senarai
(b) Senarai Kosong First
(c) Senarai Dengan 3 Elemen
Gambar 3.3. (a) Elemen Senarai, (b) Senarai Kosong, (c)Senarai Dengan 3 Elemen
Secara algoritmik, definisi senarai dapat dilihat pada Algoritma 3.1.
Deklarasi global:
type TInfo = integer {atau tipe terdefinisi lainnya}
type Address = pointer to Elemen
type Elemen = record <Info: TInfo, Next: Address>
type Senarai = record <First: Address>
P: Address L: Senarai
{First menyimpan alamat elemen pertama senarai}
{P adalah variabel yang menyimpan alamat sebuah elemen}
{Cara akses:
Info(P): mengakses info elemen yang alamatnya P
Next(P): mengakses alamat elemen setelah elemen dengan alamat P}
procedure Alokasi(output P: Address)
{memesan satu unit penyimpan untuk dijadikan elemen senarai}
{K. Awal: - }
{K.Akhir: P terdefinisi, siap digunakan sebagai elemen list}
procedure DeAlokasi(input P: Address) {K. Awal: P terdefinisi}
{K.Akhir: P dikembalikan ke sistem}
Algoritma 3.1. Deklarasi Senarai
TInfo adalah tipe terdefinisi yang merepresentasikan informasi yang akan disimpan di dalam elemen .
Tipe Address adalah tipe yang menyimpan alamat elemen, bisa berupa indeks larik ataupun alamat memori, tergantung nanti bagaimana senarai direpresentasikan.
Senarai dikenali melalui alamat elemen pertamanya. Dengan demikian jika didefinisikan First adalah alamat elemen pertama, maka elemen berikut dapat diakses secara berurutan melalui Next.
Mengapa harus senarai? Senarai adalah struktur data yang dinamis, ukurannya (banyak elemen) dapat berubah selama eksekusi program. Menghemat memori
Setiap elemen menyimpan “alamat” elemen berikutnya. Ada dua cara untuk merepresentasikan alamat. Jika senarai dibangun menggunakan larik, maka alamat adalah indeks larik. Jika senarai dibangun langsung dari memori, maka alamat adalah alamat memori.
Tipe pointer adalah fasilitas bahasa yang digunakan untuk menangkap ekivalensi dari alamat memori.
Notasi algoritmik untuk tipe pointer adalah sebagai berikut:
Nama tipe: pointer to
Rentang nilai: alamat sel memori
Konstanta: Nil, untuk menyatakan alamat tidak terdefinisi Operator perbandingan: = dan ≠, menghasilkan nilai boolean
Operasi Dasar Terhadap Senarai 1. Create: membuat senarai kosong
2. Traversal: mengunjungi elemen senarai mulai dari elemen pertama sampai elemen terakhir atau elemen tertentu yang diinginkan dan melakukan pemrosesan
3. Insert: menyisipkan elemen 4. Delete: menghapus elemen
5. Bekerja dengan 2 senarai atau lebih 3.3 Membuat senarai kosong
procedure Create(output L: Senarai) {membuat senarai kosong}
{K. Awal: - }
{K.Akhir: tercipta sebuah list kosong, L.First = Nil}
Deklarasi:
Deskripsi:
L.First = Nil
Algoritma 3.2. Membuat Senarai Kosong
3.4 Traversal
Ada dua skema, yaitu skema repeat-until yang memeriksa apakah senarai kosong dan skema while-do tidak memeriksa apakah senarai kosong atau tidak.
Traversal dengan skema repeat - until
procedure Traversal1(input L: Senarai) {traversal list dengan kasus senarai kosong}
{K. Awal: L terdefinisi, mungkin kosong}
{K.Akhir: Semua elemen senarai dikunjungi dan diproses}
Deklarasi:
P: Address Deskripsi:
if L.First = Nil then write (“senarai kosong”) else
Inisialisasi P L.First repeat Proses(P) P Next(P) until P = Nil endif
Algoritma 3.3. Traversal Dengan Kasus Kosong Traversal dengan skema while-do
procedure Traversal2(input L: Senarai)
{traversal list tanpa penanganan kasus senarai kosong}
{K. Awal: L terdefinisi, mungkin kosong}
{K.Akhir: Semua elemen senarai dikunjungi dan diproses}
Deklarasi:
P: Address Deskripsi:
Inisialisasi P L.First while P ≠ Nil do Proses(P) P Next(P) endwhile P = Nil
Algoritma 3.4. Traversal Tanpa Kasus List Kosong
Contoh 3.1: Mencetak semua info elemen senarai
Untuk mencetak semua info elemen senarai berarti harus dilakukan traversal terhadap senarai mulai dari elemen pertama sampai elemen terakhir. Proses yang dilakukan adalah pencetakan.
procedure Cetak(input L: Senarai)
{Mencetak semua info elemen senarai. Jika senarai kosong cetak pesan “senarai kosong”}
{K. Awal: L terdefinisi, mungkin kosong}
{K.Akhir: Semua elemen senarai dikunjungi dan info-nya dicetak}
Deklarasi:
P: Address Deskripsi:
if L.First = Nil then write (“list kosong”) else
P L.First repeat
write (Info(P)) P Next(P) until P = Nil endif
Algoritma 3.5. Mencetak Info Semua Elemen Contoh 3.2: Menghitung banyak elemen
Traversal senarai dan menghitung banyak elemen. Setiap kali sebuah elemen dikunjungi berarti banyak elemen bertambah 1.
Perhatikan ilustrasi berikut:
First First
NEl = 3 NEl = 0
Gambar 3.4. Menghitung Banyak Elemen
procedure HitElemen(input L: Senarai, output NEl: integer) {Menghitung banyak elemen senarai}
{K. Awal: L terdefinisi, mungkin kosong}
{K.Akhir: NEl terdefinisi, yaitu banyak elemen senarai } Deklarasi:
P: Address Deskripsi:
NEl 0 P L.First while P ≠ Nil do NEl NEl + 1 P Next(P) endwhile
Algoritma 3.6. Menghitung Banyak Elemen Contoh 3.3
Buat algoritma untuk menghitung banyak elemen senarai yang info-nya ganjil Perhatikan ilustrasi berikut:
First
NGj = -99
First
NGj = 2
First
NGj = 0
58 73 47 74 60 80
Gambar 3.5. Menghitung Banyak Elemen Ganjil
procedure HitGanjil(input L: Senarai, output NGj: integer) {Menghitung banyak elemen senarai yang info-nya ganjil}
{K. Awal: L terdefinisi, mungkin kosong}
{K.Akhir: NGj terdefinisi, yaitu banyak elemen senarai yang bernilai ganjil. Jika senarai kosong,
maka NGj = -99 } Deklarasi:
P: Address Deskripsi:
if L.First = Nil then NGj -99
else NGj 0 repeat
if Info(P) mod 2 = 1 then NGj NGj + 1
endif
P Next(P) until P = Nil endif
Algoritma 3.7. Menghitung Banyak Elemen yang Info-nya Ganjil Contoh 3.4 : Pencarian
Pencarian adalah menelusuri (traversal) elemen senarai mulai dari elemen pertama sampai elemen yang dicari ditemukan atau sampai elemen terakhir jika yang dicari tidak ditemukan. Proses yang dilakukan selama penelusuran adalah membandingkan apakah info elemen senarai yang dikunjungi sama dengan yang dicari. Jika sama berarti yang dicari ditemukan dan penelusuran dihentikan. Jika info elemen yang dikunjungi tidak sama dengan yang dicari maka penelusuran dilanjutkan ke elemen berikutnya. Ada dua macam algoritma pencarian, yaitu (1) hasil pencarian berupa nilai boolean, true jika yang dicari ditemukan dan false yang dicari tidak ditemukan. (2) Hasil pencarian berupa alamat elemen yang dicari tersebut ditemukan, nil jika yang dicari tidak ditemukan.
Perhatikan ilustrasi pada Gambar 3.6.
(1) Keluaran berupa nilai boolean
First
Found = false First
Found = true
First
Found = false
58 73 47 74 60 80
Misalkan X yang dicari = 73
(2) Keluaran berupa alamat
First
PX = Nil First
PX
First
58 73 47 74 60 80
Misalkan X yang dicari = 73
PX = Nil
Gambar 3.6. Pencarian
procedure Search1(input L: Senarai, input X: TInfo, output Found: boolean)
{Mencari apakah X ada di dalam elemen senarai}
{K. Awal: L terdefinisi, mungkin kosong, X terdefinisi yaitu info yang dijadikan dasar pencarian}
{K.Akhir: Jika X ditemukan maka Found = true,
Jika X tidak ditemukan maka Found = false}
Deklarasi:
P: Address Deskripsi:
Found false P L.First
while not Found and P ≠ Nil do if Info(P) = X then
Found true else
P Next(P) endif
endwhile
Algoritma 3.8. Pencarian Dengan Keluaran Boolean
procedure Search2(input L: Senarai, input X: TInfo, output PX: Address)
{Mencari apakah X ada di dalam elemen senarai}
{K. Awal: L terdefinisi, mungkin kosong, X terdefinisi yaitu info yang dijadikan dasar pencarian}
{K.Akhir: Jika X ditemukan maka PX adalah alamat elemen tempat X ditemukan
Jika X tidak ditemukan maka PX = Nil}
Deklarasi:
P: Address Deskripsi:
Found false; P L.First while not Found and P ≠ Nil do if Info(P) = X then
Found true else
P Next(P) endif
endwhile if Found then PX P else PX Nil endif
Algoritma 3.9. Pencarian Dengan Keluaran Alamat 3.5 Penyisipan Elemen
1. Penyisipan sebagai elemen pertama 2. Penyisipan sebagai elemen tengah 3. Penyisipan sebagai elemen terakhir Penyisipan Sebagai Elemen Pertama
First
P
First
58 73 60 58 73
60
Sebelum Penyisipan Setelah Penyisipan
Gambar 7. Penyisipan Sebagai Elemen Pertama
procedure InsertFirst(input/output L: Senarai, input P: Address)
{Menyisipkan P sebagai elemen pertama senarai}
{K. Awal: L terdefinisi, mungkin kosong, P terdefinisi yaitu alamat elemen yang akan disisipkan}
{K.Akhir: P menjadi elemen pertama senarai}
Deklarasi:
Deskripsi:
Next(P) L.First L.First P
Algoritma 3.10. Menyisipkan Sebagai Elemen Pertama Penyisipan Sebagai Elemen Tengah
First
P
First
60 73 60 58 73
58
Sebelum Penyisipan Setelah Penyisipan
Prev Prev
P
Gambar 8. Penyisipan Sebagai Elemen Tengah
procedure InsertAfter(input/output P, Prev: Address) {Menyisipkan P setelah elemen dengan alamat Prev}
{K. Awal: Prev terdefinisi, P terdefinisi yaitu alamat elemen yang akan disisipkan}
{K.Akhir: P menjadi elemen setelah elemen dengan alamat Prev}
Deklarasi:
Deskripsi:
Next(P) Next(Prev) Next(Prev) P
Algoritma 3.11. Menyisipkan Sebagai Elemen Tengah
Penyisipan Sebagai Elemen Terakhir
First
P
First
60 73 60 73 50
58
Sebelum Penyisipan Setelah Penyisipan
Last Last
P
Gambar 3.9. Penyisipan Sebagai Elemen Terakhir
procedure InsertLast(input/output L: Senarai, input P: Address)
{Menyisipkan P sebagai elemen terakhir}
{K. Awal: L terdefinisi, mungkin kosong P terdefinisi yaitu alamat elemen yang akan disisipkan}
{K.Akhir: P menjadi elemen terakhir senarai}
Deklarasi:
Last: Address Deskripsi:
if L.First = Nil then L.First P
else
Last L.First
while Next(Last) ≠ Nil do Last Next(Last) endwhile
Next(Last) P endif
Algoritma 3.12. Menyisipkan Sebagai Elemen Terakhir
Contoh 3.5: Pencarian dan Penyisipan
Buat algoritma untuk mencari keberadaan X di dalam senarai. Jika X tidak ditemukan, maka alokasikan sebuah elemen dengan alamat P, simpan X sebagai Info(P) dan sisipkan P sebagai elemen pertama senarai. Perhatikan Gambar 3.10.
First
P First
58 73 60 58 73
K. Awal K.Akhir
Mis. X = 60 Kasus (1) jika X tidak ditemukan
First First
58 73 58 73
K. Awal K.Akhir
Mis. X = 73 Kasus (2) jika X ditemukan
Gambar 3.10. Pencarian dan Penyisipan procedure CaridanSisip(input/output L: Senarai, input X: TInfo)
{mencari keberadaan X, jika tidak ditemukan maka alokasikan sebuah elemen dengan alamat P, simpan X sebagai Info(P) dan sisipkan P sebagai elemen pertama senarai}
{K. Awal: L terdefinisi, X terdefinisi}
{K.Akhir: Jika X tidak ditemukan, maka X menjadi elemen pertama senarai}
Deklarasi:
P, Q: Address Found: boolean Deskripsi:
Q L.First Found false
while not Found and Q ≠ Nil do if Info(Q) = X then
Found true else
Q Next(Q) endif
endwhile
if not Found then
Alokasi(P) Info(P) X Next(P) Nil InsertFirst(L, P) endif
Algoritma 3.13. Pencarian dan Penyisipan Contoh 3.6: Penyisipan sebagai elemen ke-k
Tulis algoritma untuk menyisipkan elemen sebagai elemen ke-k senarai L.
Perhatikan Gambar 3.11.
K. Awal L.First
58
P
Kasus (1) Senarai kosong K. Akhir
L.First
58
K. Awal L.First
58
P
Kasus (2) Senarai tidak kosong, k = 1
K. Akhir L.First
58
65 47 65 47
K. Awal L.First
58 65 47
Kasus (3) Senarai tidak kosong, k ≠ 1
36
P, k =2
K. Akhir L.First
58 36 65
47
P
Gambar 3.11 Penyisipan Sebagai Elemen Ke-k
procedure SisipK(input/output L: Senarai, input P: Address, input k: integer)
{menyisipkan P sebagai elemen ke-k pada senarai L}
{K. Awal: L terdefinisi, P terdefinisi, k terdefinisi >= 1}
{K.Akhir: P menjadi elemen ke-k senarai L}
Deklarasi:
Q, PrevQ: Address m: integer
Deskripsi:
if (L.First = Nil or k = 1 then InsertFirst(L,P)
else
Q L.First; PrevQ Nil m = 1
while Q ≠ Nil and m<k do PrevQ Q
Q Next(Q) m m + 1 endwhile
InsertAfter(P, PrevQ) endif
Algoritma 3.14. Penyisipan Sebagai Elemen ke-k 3.6 Menghapus Elemen
1. Menghapus Elemen Pertama 2. Menghapus Elemen Tengah 3. Menghapus Elemen Terakhir
Menghapus Elemen Pertama
First
60 58 73
Setelah Penghapusan First
60 58 73
P
Gambar 3.12. Menghapus Elemen Pertama
procedure DeleteFirst(input/output L: Senarai, output P:Address)
{menghapus elemen pertama senarai}
{K. Awal: L terdefinisi, tidak kosong}
{K.Akhir: P adalah alamat elemen yang dihapus}
Deklarasi:
Deskripsi:
P L.First
L.First Next(L.First)
Algoritma 3.14. Menghapus Elemen Pertama Menghapus Elemen Tengah
First
60 58 73
Sebelum Penghapusan Setelah Penghapusan
First
60 58 73
P Prev
Prev
Gambar 3.13. Menghapus Elemen Tengah
procedure DeleteAfter(input/output P, Prev: Address) {menghapus elemen setelah elemen dengan alamat Prev}
{K. Awal: Prev terdefinisi}
{K.Akhir: P adalah alamat elemen yang dihapus}
Deklarasi:
Deskripsi:
P Next(Prev)
Next(Prev) Next(Next(Prev))
Algoritma 3.14. Menghapus Elemen Tengah
Menghapus Elemen Terakhir
First
60 58 73
Sebelum Penghapusan Setelah Penghapusan
First
60 58 73
P PrevLast
PrevLast Last Last
Gambar 3.14. Menghapus Elemen Terakhir procedure DeleteLast(input/output L: Senarai, output P:Address)
{menghapus elemen terakhir senarai}
{K. Awal: L terdefinisi, tidak kosong}
{K.Akhir: P adalah alamat elemen yang dihapus}
Deklarasi:
Last, PrevLast: Address Deskripsi:
PrevLast Nil Last L.First
while Next(Last) ≠ Nil do PrevLast Last
Last Next(Last) endwhile
P Last
Next(PrevLast) Nil
Algoritma 3.15. Menghapus Elemen Terakhir
Contoh 3.7: Hapus X
Buat algoritma untuk elemen yang info-nya = X. Perhatikan Gambar 3.14.
First
60 58 73
K. Awal K.Akhir
Kasus (1) jika X tidak ditemukan
Kasus (2) jika X ditemukan First
60 58 73
First
60 58 73
Mis. X = 70
Mis. X = 58
P First
60 58 73
Gambar 3.15. Pencarian dan Penghapusan
procedure HapusX(input/output L: Senarai,
input X: TInfo, output P: Address) {mencari keberadaan X, jika ditemukan maka hapus elemen X}
{K. Awal: L terdefinisi, X terdefinisi}
{K.Akhir: Jika X ditemukan P adalah alamat elemen yang dihapus. Jika X ditemukan, maka P = Nil}
Deklarasi:
PrevQ, Q: Address Found: boolean Deskripsi:
Q L.First; PrevQ Nil Found false
while not Found Q ≠ Nil do if Info(Q) = X then Found true else
PrevQ Q Q Next(Q) endif
endwhile
if Found then {X ditemukan}
if PrevQ = Nil then DeleteFirst(L,P) else
DeleteAfter(P, PrevQ) endif
else {X tidak ditemukan}
P Nil endif
Algoritma 3.17. Mencari dan Menghapus
3.7 Bekerja Dengan Dua atau Lebih Senarai 1. Penyambungan Senarai (Konkat) 2. Penggabungan Senarai (Merger) 3. Salin Senarai (Copy)
4. Balik Senarai (Reverse)
5. Mengambil Info Tertentu (Query)
Penyambungan Senarai (Konkat)
Menyambung senarai L1 dengan senarai L2. Senarai L1 berada “di depan”
L2.First
42 29
K. Awal
K.Akhir L1.First
60 58 73
L1.First
60 58 73 42 29
Gambar 3.16. Penyambungan Senarai
procedure Konkat(input/output L1: Senarai, input L2: Senarai) {menyambung senarai L1 dengan senarai L2, dengan senarai L1 berada di depan}
{K. Awal: L1, L2 terdefinisi}
{K.Akhir: L2 tersambung dengan L1}
Deklarasi:
P: Address Deskripsi:
P L1.First
while Next(P) ≠ Nil do P Next(P)
endwhile
Next(P) L2.First
Algoritma 3.18. Menghapus Elemen Tengah
Penggabungan Senarai (Merger)
Menggabung senarai L1 dan L2 yang info-nya terurut dari kecil ke besar, L3 adalah hasil penggabungan dan info-nya tetap terurut.
L2.First
50 75
K. Awal
K.Akhir L1.First
45 60 80
L3.First
45 50 60 75 80
Gambar 3.16. Penggabungan Senarai
procedure Merger(input L1,L2: Senarai, output L3: Senarai)
{Menggabung senarai L1 dengan L2 yang info-nya terurut dari kecil ke besar. Senarai L3 merupakan penggabungan, tetap terurut}
{K. Awal: L1, L2 terdefinisi, info-nya terurut dari kecil ke besar}
{K.Akhir: L3 terdefinisi merupakan hasil penggabungan L1 dengan L2 dan tetap terurut}
Deklarasi:
P1,P2,Q: Address Deskripsi:
P1 L1.First P2 L2.First Create(L3)
while P1 ≠ Nil and P2 ≠ Nil do Alokasi(Q)
Next(Q) Nil
if Info(P1) < Info(P2) then Info(Q) Info(P1)
P1 Next(P1) else
Info(Q) Info(P2) P2 Next(P2) endif
InsertLast(L3,Q) endwhile
while P1 ≠ Nil do
Alokasi(Q) Next(Q) Nil Info(Q) Info(P1) InsertLast(L3,Q) P1 Next(P1) endwhile
while P2 ≠ Nil do Alokasi(Q) Next(Q) Nil Info(Q) Info(P1) InsertLast(L3,Q) P2 Next(P2) endwhile
Algoritma 3.19. Penggabungan Senarai Salin Senarai (Copy)
Membuat salinan senarai L1 ke L2
K. Awal K.Akhir
L1.First
45 60 80
L2.First
45 60 80
Gambar 3.17. Menyalin Senarai
procedure Copy(input L1: Senarai, output L2: Senarai) {menyalin senarai L1 ke senarai L2}
{K. Awal: L1terdefinisi}
{K.Akhir: L2 terdefinisi, merupakan salinan dari L1}
Deklarasi:
P,Q: Address Deskripsi:
Create(L2) P L1.First while P ≠ Nil do Alokasi(Q) Next(Q) Nil Info(Q) Info(P) InsertLast(L2,Q) P Next(P) endwhile
Algoritma 3.20. Penggabungan Senarai
Balik Senarai (Reverse)
Membalik senarai L1, hasilnya adalah senarai L2
K. Awal K.Akhir
L1.First
45 60 80
L2.First
80 60 45
Gambar 3.18. Balik Senarai
procedure Reverse(input L1: Senarai, output L2: Senarai) {menyalin senarai L1 ke senarai L2 secara terbalik}
{K. Awal: L1terdefinisi}
{K.Akhir: L2 terdefinisi, merupakan balikan dari L1}
Deklarasi:
P,Q: Address Deskripsi:
Create(L2) P L1.First while P ≠ Nil do Alokasi(Q) Next(Q) Nil Info(Q) Info(P) InsertFirst(L2,Q) P Next(P) endwhile
Algoritma 3.21. Membalik Senarai
Mengambil Info Tertentu (Query)
Contoh 3.8: diketahui senarai L1, akan diambil elemen senarai yang info-nya <
X, hasilnya disimpan di senarai L2
K. Awal
K.Akhir L1.First
70 53 80
L2.First
53 40 54
40 54 65
Mis. X = 55
Gambar 3.19. Mengambil Info Tertentu
procedure QueryX(input L1: Senarai, input X: TInfo, output L2: Senarai)
{menyalin senarai L1 yang info-nya < X ke senarai L2 } {K. Awal: L1terdefinisi}
{K.Akhir: L2 terdefinisi, merupakan hasil query, semua info- nya < X}
Deklarasi:
P,Q: Address Deskripsi:
Create(L2) P L1.First while P ≠ Nil do if Info(P) < X then Alokasi(Q)
Next(Q) Nil Info(Q) Info(P) InsertLast(L2,Q) endif
P Next(P) endwhile
Algoritma 3.22. Mengambil informasi tertentu
3.8 Senarai yang Info-nya Terstruktur
Tipe informasi yang disimpan di dalam elemen senarai dapat merupakan tipe terstruktur, seperti terlihat pada Algoritma 3.23.
Deklarasi global:
type DataMhs = record
<Nama: string[20], NIM: string[12], IPK: real>
type Address = pointer to Elemen
type Elemen = record <Info: DataMhs, Next: Address>
type Senarai = record <First: Address>
L: Senarai
P: Address
{First menyimpan alamat elemen pertama senarai}
{P adalah variabel yang menyimpan alamat sebuah elemen}
{Cara akses:
Info(P).Nama: mengakses Nama dari elemen yang alamatnya P Info(P).NIM: mengakses NIM dari elemen yang alamatnya P Info(P).IPK: mengakses IPK dari elemen yang alamatnya P Next(P): mengakses alamat elemen setelah elemen dengan alamat P}
procedure Alokasi(output P: Address)
{memesan satu unit penyimpan untuk dijadikan elemen senarai}
{K. Awal: - }
{K.Akhir: P terdefinisi, siap digunakan sebagai elemen list}
procedure DeAlokasi(input P: Address) {K. Awal: P terdefinisi}
{K.Akhir: P dikembalikan ke sistem}
Algoritma 3.23. Deklarasi Senarai Terstruktur
Contoh 3.9:
Diketahui senarai yang info elemennya bertipe data mahasiswa. Buat algoritma untuk mencetak semua data mahasiswa yang IPK-nya ≥3.0. Jika senarai kosong, cetak pesan “senarai kosong”. Jika tidak ada mahasiswa yang IPK-nya ≥3.0 maka cetak pesan “tidak ada mahasiswa yang IPK-nya≥3.0”
procedure Cetak3(input L: Senarai)
{mencetak semua data mahasiswa yang IPK-nya ≥ 3.0}
{K. Awal: L terdefinisi, mungkin kosong}
{K.Akhir: Semua data mahasiswa yang IPK-nya ≥ 3.0 dicetak Jika senarai kosong cetak “senarai kosong”
Jika tidak ada data mahasiswa yang IPK-nya ≥ 3.0, cetak “tidak ada mahasiswa yang IPK-nya ≥ 3.0” } Deklarasi:
P: Address Cetak: boolean Deskripsi:
if L.First = Nil then write (“Senarai Kosong”) else
P L.First Cetak false repeat
if (Info(P).IPK ≥ 3.0) then write (Info(P))
Cetak true endif
P Next(P) until P = Nil if not Cetak then
write (“tidak ada mahasiswa yang IPK-nya≥ 3.0”) endif
endif
Algoritma 3.24. Mencetak Data Mahasiswa Yang IPK-nya ≥ 3.0
3.9 Multi Linked List
Senarai yang elemennya senarai
Contoh 3.10: Senarai data pegawai dan anak-anaknya Deklarasi:
type DataAnak = record <Id_Anak: string[9], Nama: string[25], Tgl_Lahir: Date>
type AddressA = pointer to CellA
type CellA = record < InfoA: DataAnak, NextA: AddressA>
type DataPeg = record <NIP: string[12], Nama: string[25], Tgl_Lahir: Date
Departemen: character >
type AddressP = pointer to CellP
type CellP = record < InfoP: DataPeg, NextP: AddressP, NextA: AddressA>
type ListPeg = record <FirstP: AddressP>
L: ListPeg
Algoritma 3.25 Deklarasi Senarai Pegawai Dengan Anak-Anaknya
Gambar 3.20 memberikan ilustrasi mengenai senarai data pegawai dan anak- anaknya.
Untuk mengetahui data orang tua (pegawai) dari seorang anak, apakah identitas orang tua (NIP) perlu disimpan juga di dalam DataAnak? Diskusikan.
NextP NextA InfoP Elemen CellP
NextA InfoA Elemen CellA
FirstP
NextP
Pegawai1
NextP
Pegawai2
NextP
Pegawai3 PegawaiN
Anak1Pegawai1
Anak1Pegawai1
Anak1Pegawai1 Anak1Pegawai1
Anak1Pegawai1
Anak1Pegawai1 NextA
NextA NextA
NextA
NextA
Gambar 3.20 Senarai Data Pegawai dan Anak-anaknya Soal Latihan Bab 3
1. Buat algoritma untuk mencetak semua info elemen senarai yang bernilai genap. Jika senarai kosong, maka cetak pesan “tidak ada elemen”. Jika senarai tidak kosong maka semua info yang bernilai genap dicetak. Jika tidak ada info yang bernilai genap, maka cetak pesan “tidak ada info bernilai genap”.
2. Buat algoritma untuk memperoleh info maksimum elemen senarai
3. Sama seperti Soal No. 2, tetapi keluarannya adalah alamat tempat info maksimum berada.
4. Buat algoritma untuk menukar info maksimum dengan info elemen pertama senarai.
5. Buat algoritma untuk menghitung total info elemen senarai
6. Buat algoritma untuk menghitung harga rata-rata info elemen senarai.
Untuk menghitung harga rata-rata pastikan bahwa senarai tidak kosong, supaya tidak ada pembagian dengan 0. Gunakan skema repeat-until.