• Tidak ada hasil yang ditemukan

KARAKTERISTIK GAMMA-RAY BURST

N/A
N/A
Protected

Academic year: 2021

Membagikan "KARAKTERISTIK GAMMA-RAY BURST"

Copied!
14
0
0

Teks penuh

(1)

Bab II

KARAKTERISTIK GAMMA-RAY BURST

Gamma-Ray Burst (GRB) merupakan fenomena semburan sinar-gamma yang berlangsung secara singkat dan intensif. Energi yang terlibat dalam semburan ini mencapai 1054 erg atau setara dengan energi diam Matahari. Pengamatan

GRB dilakukan dengan membawa detektor ke ketinggian tertentu dari per-mukaan Bumi. Pendeteksian ini menggunakan prinsip interaksi foton sinar-gamma dengan material sekitarnya. Dalam bab ini akan dibahas sejarah pen-emuan GRB dan karakteristik yang didapatkan dari pengamatan. Selajut-nya juga dibahas permasalahan yang menghinggapi GRB beserta solusi atas permasalahan tersebut. Efek relativistik penting juga dibahas mengingat me-kanisme ini diperlukan untuk mengungkap proses-proses yang terjadi selama peristiwa GRB.

II.1 Sejarah Gamma-Ray Burst

Penemuan Gamma-Ray Burst terjadi pada saat dunia mengalami perang di-ngin. Ketika itu Uni Soviet dan Amerika Serikat membuat kesepakatan men-genai pembatasan aktivitas percobaan senjata nuklir. Masing-masing pihak mengembangkan kemampuan intelijen, salah satu caranya adalah mengor-bitkan satelit mata-mata. Beberapa dari banyak satelit mata-mata itu adalah satelit Vela yang dibuat milik Amerika. Vela memiliki detektor yang peka pada rentang energi 0.3−1.5 MeV. Satelit Vela mengumpulkan data secara otomatis jika terdapat pemicu berupa sumber sinar-gamma yang mendadak mengalami peningkatan kecerlangan dibandingkan langit latar. Klebesadel et al. (1973) melaporkan terdapat enam belas semburan yang terdeteksi oleh Vela semenjak Juli 1969 hingga Juli 1972.

(2)

II.2 Karakteristik Gamma-Ray Burst

Sebuah semburan digolongkan sebagai GRB jika memiliki energi puncak lebih besar dari 30 keV. Beberapa semburan memiliki energi puncak lebih kecil dari 30 keV yang digolongkan sebagai X-Ray Flash (XRF). Untuk memahami GRB maka terlebih dahulu kita mengetahui karakteristik-karakteristiknya.

Gambar II.1: Profil beberapa Gamma-Ray Burst yang terdeteksi oleh instrumen BATSE pada CGRO, dapat terlihat keberagaman pola semburan. (http://imagine.gsfc.nasa.gov/)

(3)

II.2.1 Struktur Temporal

Kurva cahaya GRB memiliki bentuk yang bervariasi (lihat gambar II.1) dengan durasi yang merentang dari orde milidetik hingga ribuan detik. Pengukuran yang biasa dilakukan untuk durasi semburan adalah T90 yaitu waktu yang

dibutuhkan oleh detektor untuk mengumpulkan 90% dari energi total sinar-gamma. Pengelompokan semburan akan didasarkan pada T90. Kurva cahaya

berfluktuasi dalam selang δt. Fluktuasi kurva cahaya untuk beberapa long GRB memiliki orde milidetik.

II.2.2 Spektrum Energi

GRB memiliki spektrum nontermal (lihat gambar II.2). Fluks energinya berpun-cak pada beberapa keV dan banyak semburan memiliki komponen energi sa-ngat tinggi yang merentang hingga GeV. Untuk mendekati spektrum GRB digunakan fungsi Band (lihat persamaan II.1) yang memiliki kecocokan sa-ngat baik terhadap hasil pengamatan.

N(ν) = N0    (hν)αexphν E0  untuk hν < H [(α − β) E0](α−β)(hν)βexp(β − α) untuk hν > H (II.1)

dimana H ≡ (α − β)E0. Hingga saat ini tidak ada model yang memprediksi

bentuk spektrum seperti yang didekati oleh fungsi Band.

II.2.3 Lokasi

Selama masa operasinya, instrumen BATSE yang terpasang pada CGRO ber-hasil mengumpulkan data posisi 2704 GRB. Dari data ini didapatkan sebaran GRB yang isotropik di langit yang menandakan GRB haruslah berasal dari jarak kosmik (lihat gambar II.3). Jika GRB berasal dari jarak Galaksi maka seharusnya BATSE mendapatkan GRB terdistribusi secara rapat di sekitar piringan Galaksi. Sementara jika GRB berasal dari jarak halo maka kita

(4)
(5)

Gambar II.3: Distribusi isotropik 2704 GRB yang diamati oleh CGRO menggu-nakan instrumen BATSE. Warna memberikan ilustrasi fluence semburan. (http://imagine.gsfc.nasa.gov/)

berharap bisa melihat GRB juga terkumpul di galaksi dekat seperti galaksi Andromeda atau M33. Pada perkembangannya dilakukan pula pengukuran pergeseran merah galaksi induk dan afterglow GRB dan didapatkan bahwa median jarak GRB hingga saat ini adalah z ∼ 1.

II.2.4 Populasi

GRB memiliki pengelompokan yang sangat jelas jika ditinjau dari segi durasi T90 yaitu waktu yang dibutuhkan detektor untuk mengumpulkan 95% energi

sinar-gamma yang dipancarkan GRB. Semburan dengan T90 ≥2 detik disebut

sebagai long GRB, sementara semburan dengan durasi < 2 detik disebut seba-gai short GRB (lihat gambar II.4). Perhitungan hardness ratio (perbandingan energi untuk dua macam detektor yang memiliki perbedaan pita energi) me-nunjukkan bahwa long GRB memiliki energi yang lebih rendah dibandingkan short GRB yang berimplikasi bahwa terdapat dua populasi GRB yaitu long-soft GRB dan short-hard GRB (lihat gambar II.5).

(6)

Gambar II.4: Pengelompokan GRB berdasarkan durasi terlihat dari data semburan yang dideteksi oleh BATSE. Kurva bimodal yang memiliki batas pada T90= 2 detik

menandai short GRB dan long GRB. (Weekes 2003)

Gambar II.5: Hardness ratio GRB untuk data yang diperoleh BATSE. Terlihat ter-jadi pengelompokan GRB, kelompok sebelah kiri atas merupakan short-hard GRB, kelompok sebelah kanan bawah merupakan long-soft GRB. (http://imagine.gsfc.nasa.gov/)

(7)

Gambar II.6: Kiri: peluruhan afterglow sinar tampak dari GRB021211, setelah beberapa hari terlihat adanya peningkatan kecerlangan yang disebut bump. Garis tegas berwarna merah menunjukkan kurva cahaya, garis titik-titik berwarna merah merupakan pendekatan terhadap peluruhan afterglow, garis titik-garis berwarna merah merupakan kurva cahaya sintetis langit galaksi induk, garis putus-putus berwarna hijau merupakan kurva cahaya supernova. Kanan: Spektrum bump memperlihatkan pola spektrum supernova tipe Ic. (Della Valle et al. 2003)

II.2.5 Afterglow

Afterglow adalah radiasi dalam panjang gelombang selain sinar-gamma yang menyertai GRB. Pengamatan menunjukkan afterglow dapat diamati pada da-erah sinar-X, ultra violet, sinar tampak, infra mda-erah, dan radio yang meluruh secara eksponensial. Afterglow sinar tampak untuk beberapa GRB memperli-hatkan keberadaan bump yang memiliki kemiripan spektrum dan kurva cahaya dengan supernova (lihat gambar II.6). Afterglow diperkirakan radiasi yang dihasilkan oleh gelombang kejut peristiwa tumbukan material yang bergerak secara relativistik dengan medium antar bintang.

II.3 Energi Gamma-Ray Burst

Pengamatan Gamma-Ray Burst menghasilkan fluence F yaitu jumlah energi sinar-gamma per satuan luas detektor. Jika sumber berasal dari jarak D,

(8)

dan sumber memancarkan sinar-gamma secara seragam ke seluruh arah, maka energi sinar-gamma keseluruhan yang terlibat adalah:

Eiso = 4πD2(1 + z)F. (II.2)

Faktor (1 + z) dimasukkan ke dalam persamaan mengingat energi untuk setiap foton akan direduksi oleh faktor ini karena adanya ekspansi alam semesta. Hal ini berarti energi saat dipancarkan, hν ≡ ǫ, berhubungan dengan energi yang teramati, hνobs ≡ǫobs, sebagai

ǫ ≡ ǫ

1 + z. (II.3)

Dengan memasukkan harga rata-rata untuk jarak dan fluence yang teramati oleh GRB maka akan didapatkan:

Eiso ∼1050  D 1Gpc 2 F 10−6erg/cm2  erg. (II.4)

Perlu diingat bahwa persamaan di atas berlaku untuk energi yang dipancarkan dalam sinar-gamma saja. Jika kita melibatkan energi yang diukur dalam selu-ruh panjang gelombang maka energi akan meningkat dalam faktor 10 − 1000 kali dari energi yang dipancarkan dalam sinar-gamma. Dengan pertimbangan tersebut maka kita dapat menyebutkan energi keseluruhan yang terlibat dalam GRB adalah:

Eiso ∼1051−1053erg. (II.5)

II.4 Compactness Problem

Fakta bahwa GRB berasal dari jarak kosmik berimplikasi pada jumlah energi dalam jumlah besar yang harus dihasilkan oleh daerah yang sangat kecil se-hingga menyulitkan radiasi keluar dari daerah pembangkit. Permasalahan energi GRB dikenal sebagai compactness problem. Permasalahan ini telah

(9)

dibahas oleh Ruderman dan Schmidt yang kemudian dijadikan alasan untuk menolak pandangan GRB berada pada jarak kosmik (Piran 2005).

Jika energi yang terlibat dalam radiasi dalam selang waktu ∆ts, maka

luminositas sumber adalah

L ∼ Eiso ∆ts

. (II.6)

Di sini ∆tsadalah waktu semburan pada sumber, yang tentu saja tidak

bergan-tung pada durasi GRB yang teramati di Bumi. Fluks energi F didefinisikan sebagai energi yang di pancarkan setiap detik per satuan luas. Sebuah per-mukaan bola dengan radius d memiliki luas 4πd2, sehingga fluks pada sumber

secara umum adalah

F ∼ Eiso 4πd2∆t

s

∼ L

4πd2. (II.7)

Jika fluks radiasi ini dihantarkan oleh foton dengan kerapatan nγ dan energi

rata-rata ǫ, bergerak secara radial dengan kecepatan cahaya, maka

F ∼ cnγǫ. (II.8) Sehingga nγ ∼ F cǫ = L 4πd2. (II.9)

Didefinisikan kedalaman optis τγγ untuk produksi pasangan sebagai

perban-dingan antara radius sumber d dan jalur bebas rata-rata λγγ:

τγγ =

d λγγ

= nγσTd. (II.10)

Substitusikan (II.9) ke persamaan (II.10) sehingga

τγγ =

σTL

(10)

Jumlah energi foton yang diterima setiap detik oleh detektor dengan luas A pada jarak D dari sumber adalah

˙

Eγ = (1 + z)−2 ×

LA

4πD2. (II.12)

Faktor (1 + z) merupakan efek dari reduksi energi foton akibat pergeseran merah. Faktor kedua muncul karena terjadinya dilatasi waktu akibat sumber bergerak dengan kecepatan relativistik memiliki durasi semburan yang awalnya bernilai ∆ts, akan diterima oleh pengamat dengan durasi ∆tb, dengan ∆tb =

(1 + z) × ∆ts. Fluence merupakan rasio dari energi keseluruhan dibagi dengan

satuan luas, F = Eγ A ∼ ˙ Eγ∆tb A = L∆tb 4πDL2 . (II.13)

DLadalah jarak luminositas, dengan hubungan dengan jarak fisik D pada saat

foton diterima, didefinisikan sebagai

DL≈(1 + z)D. (II.14)

Persamaan (II.13) dapat ditulis ulang sebagai

F = Eiso

4πD2(1 + z) = (1 + z)

Eiso

4πDL2

. (II.15)

Dengan membalik persamaan (II.13) menjadi

L = 4πD

2 LF

∆tb

, (II.16)

dan mengingat energi pada sumber sama dengan ǫ = (1 + z)ǫobs, maka

keda-laman optik dapat diturunkan sebagai

τγγ =

σTD2LF

ǫobsc2∆tb2

. (II.17)

(11)

yang berhubungan dengan DL = 2D ∼ 5 Gpc, (ωm, ωΛ) = (0.3, 0.7), H0 = 72 km/s per Mpc, didapatkan: τγγ ≥2 × 1011  F 10−6erg/cm2  ∆tb 1s −2  ǫ 1MeV −1 . (II.18)

Penulisan ≥ memberi penekanan bahwa harga energi keseluruhan akan jauh lebih besar dibandingkan energi yang diukur oleh detektor, mengingat detektor mendeteksi foton dalam rentang energi terbatas yaitu sinar-gamma dan sinar-X.

Persamaan (II.17) memperlihatkan bagaimana ketebalan optik τγγ sangat

tinggi di sumber GRB. Hal ini bertentangan dengan kenyataan bahwa spek-trum GRB teramati sebagai radiasi non-termal yang seharusnya berasal dari daerah dengan ketebalan optik rendah.

Pengamatan terhadap spektrum GRB menunjukkan kedalaman optik un-tuk fenomena ini seharusnya adalah τγγ ≪ 1 sementara hasil perhitungan

atas kuantitas yang teramati menunjukkan τγγ ≫ 1. Untuk menyelesaikan

permasalahan ini Rees (1992) mengajukan sebuah model yang dikenal seba-gai model relativistic fireball. Model ini mengasumsikan material emisi yang terlibat dalam GRB bergerak mendekati pengamat dengan kecepatan mende-kati kecepatan cahaya. Radiasi yang kita alami telah mengalami beaming efek Doppler relativistik dan kompresi waktu relativistik.

II.5 Efek Relativistik

Efek relativistik pada fireball akan memberikan efek peningkatan intensitas foton dan terjadinya pergeseran biru jika fireball diamati pada arah sumbu pergerakan (lihat gambar II.7).

(12)

Gambar II.7: Lima pengamat di kerangka diam melihat radiasi yang bergerak secara rela-tivistik (Γ = 10). Sumber memancarkan radiasi secara isotropik, kerucut ca-haya yang terbentuk memiliki setengah sudut bukaan ∼ 1/Γ. Kerucut terluar memiliki setengah sudut bukaan sebesar 25◦ merupakan batas dimana tidak

terjadi pergeseran Doppler. Pengamat O3, O4, dan O5 akan melihat sumber

memancarkan radiasi yang bergeser ke arah merah dengan memiliki intensitas lebih lemah dari intensitas intrinsiknya. Pengamat O1 akan melihat radiasi

yang diperkuat intensitasnya dengan frekuensi yang bergeser sangat besar ke arah biru. Pengamat O2melihat hal yang serupa dengan pengamat O1namun

dengan intensitas dan pergeseran yang lebih kecil. (Bradt H. 2008)

II.5.1 Efek Beaming

Radiasi yang berasal dari sumber yang bergerak secara relativistik akan menga-lami beaming yang searah dengan vektor kecepatan sumber menurut pengamat diam. Efek beaming menyebabkan intensitas sumber tampak lebih tinggi jika diamati oleh pengamat diam yang berada dalam kerucut cahaya. Mengetahui efek beaming sangat penting bagi pengamat yang ingin mengetahui intensitas intrinsik radiasi yang bergerak pada kecepatan relativistik.

Sumber radiasi berada diam terhadap kerangka S′

yang bergerak dengan kecepatan v ≈ c relatif terhadap kerangka S. Kita definisikan perbandingan kecepatan sumber dengan kecepatan cahaya sebagai

β ≈ v

c. (II.19)

Pada kerangka S′

sumber akan memancarkan radiasi ke segala arah secara seragam, namun pada kerangka S sumber akan memancarkan radiasi yang

(13)

Gambar II.8: Pola radiasi dari sumber radiasi untuk kerangka S′ dan S. Radiasi akan

di-pancarkan secara isotropik pada kerangka S′ sementara pada kerangka S

se-bagian besar radiasi akan dikerucutkan pada sudut beaming θb= 1/Γ. (Bradt

H. 2008)

terkonsentrasi searah dengan vektor kecepatan. Pengamat yang berada di kerangka S melihat radiasi keluar dari kerucut yang sempit (lihat gambar II.8). Radiasi yang berada di belahan belakang akan terlemahkan. Mengingat faktor Lorentz Γ = (1 − β2)1/2, maka kita dapatkan hubungan

cos θb = β =  1 − 1 Γ2 1/2 . (II.20)

Dengan mengekspansikan cos θbuntuk sudut yang sangat kecil dan akar kuadrat

untuk Γ yang besar menggunakan

1 −θ 2 b 2 = 1 − 1 2Γ2 (II.21) akan didapatkan θb ≈ 1 Γ. (II.22)

(14)

S adalah kebalikan dari faktor Lorentz.

II.5.2 Efek Doppler Relativistik

Sumber radiasi dengan frekuensi awal ν0 berada pada kerangka S′ yang

ber-gerak relatif dengan kecepatan v terhadap kerangka S. Pengamat diam di kerangka S mengamati radiasi telah mengalami perubahan frekuensi menjadi ν. Perubahan frekuensi akibat gerak relatif sumber radiasi disebut dengan efek Doppler dimana perubahan frekuensi akan bergantung pada kecepatan relatif v. Pergeseran Doppler untuk sumber radiasi yang bergerak secara relativistik, dengan parameter kecepatan β dan faktor Lorentz Γ, terhadap pengamat yang berada pada sudut θ terhadap lintasan gerak adalah

ν = (1 − β

2)1/2

Gambar

Gambar II.1: Profil beberapa Gamma-Ray Burst yang terdeteksi oleh instrumen BATSE pada CGRO, dapat terlihat keberagaman pola semburan.
Gambar II.2: Contoh spektrum GRB. (http://imagine.gsfc.nasa.gov/)
Gambar II.3: Distribusi isotropik 2704 GRB yang diamati oleh CGRO menggu- menggu-nakan instrumen BATSE
Gambar II.4: Pengelompokan GRB berdasarkan durasi terlihat dari data semburan yang dideteksi oleh BATSE
+4

Referensi

Dokumen terkait

Wewenang untuk menghentikan penuntutan oleh Jaksa Penuntut Umum dengan alasan bersifat teknis, yang diatur Pasal 140 ayat (2) huruf a Undang-Undang Nomor 8 Tahun

Persiapan yang dilakukan sebelum pelaksanaan akreditasi di bidang kurikulum atau kegiatan belajar mengajar adalah sekolah menyiapkan semua dokumen kurikulum yang

Pada Beacon mode, pada awalnya alat yang berada pada jaringan, akan menunggu transmisi (beacon) dari koordinatornya yang akan dikirim secara periodic, jika pesan yang

Berdasarkan hasil uji regresi tampak rata-rata modal usaha pedagang canang di Kabupaten Badung adalah sebesar Rp. Ini berarti kajian teoritis dan penelitian sebelumnya

Eutiroidisme adalah suatu keadaan hipertrofi pada kelenjar tiroid yang disebabkan stimulasi kelenjar tiroid yang berada di bawah normal sedangkan kelenjar

Mengingat keterbatasan waktu dan keuangan, serta mengingat bahwa saya harus melakukan survai terhadap 30 kursus komputer, maka dengan rendah hati saya mohon ijin untuk

Pamerdi Giri Wiloso, M.Si, Phd, Dekan Fakultas Ilmu Sosial dan Ilmu Komunikasi Satya Wacana Salatiga, sekaligus dosen pembimbing utama, yang dengan penuh apresiasi dan

Communication Objective Dari riset penyelenggara pasca event yang dilakukan melalui 60 responden yang mengetahui Klub sepatu roda kota Semarang, sebanyak 43, yang berminat gabung