• Tidak ada hasil yang ditemukan

8 characterization of lead sorption by the natural and feiii modiefac81ed zeolite kel 7

N/A
N/A
Protected

Academic year: 2018

Membagikan "8 characterization of lead sorption by the natural and feiii modiefac81ed zeolite kel 7"

Copied!
11
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Applied

Surface

Science

j o ur na l ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Characterization

of

lead

sorption

by

the

natural

and

Fe(III)-modified

zeolite

Milan

Kragovi ´c

a

,

Aleksandra

Dakovi ´c

a,∗

,

Marija

Markovi ´c

a

,

Jugoslav

Krsti ´c

b

,

G.

Diego

Gatta

c

,

Nicola

Rotiroti

c

aInstituteforTechnologyofNuclearandOtherMineralRawMaterials,Franched’Epere86,11000Belgrade,Serbia bInstituteofChemistry,TechnologyandMetallurgy,UniversityofBelgrade,Njegoˇseva12,11000Belgrade,Serbia cDipartimentodiScienzedellaTerra,UniversitàdegliStudidiMilano,ViaBotticelli23,I-20133Milano,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25April2013

Receivedinrevisedform28June2013 Accepted6July2013

Available online 13 July 2013

Keywords: Sorption Desorption Lead Naturalzeolite Fe(III)-modifiedzeolite

a

b

s

t

r

a

c

t

Theinfluenceofcontacttime,temperatureandparticlesizeonleadsorptionbythenaturaland

Fe(III)-modifiedzeoliteswasinvestigated.CharacterizationofthenaturalandFe(III)-modifiedzeolitebefore

and afterleadsorption was performedbydetermination oftextural properties,byscanning

elec-tronmicroscopyandX-rayspectroscopyinenergy-dispersivemode(SEM–EDS),transmissionelectron

microscopy(TEM)andX-raypowderdiffraction(XRPD)analysis.Leadsorptionkineticsat303–333K,

bestrepresentedbythepseudo-secondordermodelandactivationenergy(13.5and8.5kJ/molforthe

naturalandFe(III)-modifiedzeoliterespectively)confirmedanactivatedchemicalsorption.Desorption

experimentsindicatedthatleadwasirreversiblysorbedonbothzeolites.XRPD,TEMandSEMresults

showedthatmodificationofthenaturalzeolitewithFe(III)ionsdidnotchangeitscrystalstructureand ironismainlylocatedatthezeolitesurface,likelyinformofamorphousironoxy-hydroxides.Specific surfaceareasignificantlyincreasesaftermodificationofthenaturalzeolitewithFe(III)ions(from30.2 forthenaturalto52.5m2/gforFe(III)-modifiedzeolite).Characterizationofbothleadsaturatedsorbents

suggestedthatbesidesionexchange,leadisbothchemisorbedandprecipitatedattheirsurfaces,and

presenceofamorphousironinFe(III)-modifiedzeolitefavorssorptionoflead.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Heavymetals aredangerousfor livingorganisms becauseof theirstability, toxicityand tendencytoaccumulate inthe envi-ronment.Withtherapiddevelopmentofindustriessuchasplating facilities,miningoperations,fertilizers,tanneries,batteries,paper, andpesticidesindustries,heavymetalswastewatersaredirectly orindirectlydischargedintotheenvironmentincreasingly, espe-ciallyindevelopingcountries.Unlikeorganiccontaminants,heavy metals are not biodegradable and tend toaccumulate in living organismsandmanyheavymetalsionsareknowntobetoxicand carcinogenic[1,2].Toxicheavymetalsofparticularconcernin treat-mentofindustrialwastewatersincludeZn,Cu,Ni,Hg,Cd,Pband Cr.

Regardingacutetoxicity, cadmium,leadalong withmercury form“thebigthree”ofheavymetalswiththegreatestpotential haz-ardtohumanandenvironment[3].Leadhasbeenfoundtobeacute toxictohumanbeingswhenpresentinhighamounts(e.g.>15␮g

Correspondingauthor.Tel.:+381113691722;fax:+381113691583. E-mailaddresses:a.dakovic@itnms.ac.rs,dakovica@yahoo.com(A.Dakovi ´c).

indrinkingwater)[4,5].Also,itiswellknownthatleaddamages thekidney,liverandreproductivesystem,basiccellularprocesses andbrainfunctions.Leadtoxicsymptomsareanemia,insomnia, headache,dizziness, irritability,weaknessofmuscles, hallucina-tionandrenaldamages.Therefore,theremovalofexcessleadions fromwastewaterisessential.Treatmentprocessesusuallyinclude chemicalprecipitation,adsorption,solventextraction, ultrafiltra-tionandionexchange.Zeolitesareinexpensivenaturalmaterials withahighandselectivecationexchangecapacity.Amongnatural zeolites,clinoptiloliteisthemostabundantandcommonlyusedas ionexchangerorsorbentforinorganicions.Exchangeablecationsin zeolitestructure,e.g.K,Na,Ca,andMgarenottoxic,makingzeolites especiallysuitablefortertiaryprocessesofwastewatertreatment [6].

Theefficiencyof thenaturalzeolite for leadremovalis well documented.Karatas[7]reportedasorptioncapacityofraw clinop-tilolite for Pb2+ from aqueous solution of 16.8mg/g, whereas

Sprynskyyetal.[8]determinedthesorptioncapacityof clinoptilo-liteforPb2+inmulti-componentaqueoussolutiontobe27.8mg/g.

Althoughtherearealargenumberofstudiesontheremovalof Pb2+ionfromaqueoussolutionsusingnaturalzeolites,anygiven

zeoliticmaterialrequiresspecificexperimentsinthisrespect[9].

(2)

Becauseit is wellknown that oxides of Feand Mn are the potential carriers of heavy metals (e.g. lead) [10], in order to enhancethesorption capacity of thenatural zeolitesfor heavy metalions,someexperimentshavebeendevotedtomodifytheir surfacebythesemetaloxides[11].Kragovi ´cetal.[12]reported a moreefficient sorbentforPb obtainedthrough the modifica-tionofanatural zeoliticsamplewithFe(III)ionsunderstrongly basicconditions.Theyobservedanincrease oflead sorptionby thenatural and Fe(III)-modified zeolite withincreasing of sor-bentdoseandtheinitialleadconcentration.Maximumleadsorbed amount (SCmax), under applied experimental conditions, was

66mg/gforthenaturalzeoliteand133mg/gforFe(III)-modified zeolite.

The aim of this paper is a further and extended investiga-tion on the abilities of natural and Fe(III)-modified zeolite to remove lead from aqueous solutions. The influence of specific parameters,suchascontact time,temperatureandparticlesize onsorptionof leadbybothsorbents wasstudied.Furthermore, sincedesorptionbehavior ofcontaminantsisat leastas impor-tantastheirsorption,estimationofthereversibilityofsorption and possible mobility of metals in an aqueous solution is of great interest. Therefore, desorption of sorbed lead from the naturaland Fe(III)-modifiedzeolitewasalsoinvestigated. Char-acterizationofthenaturalandFe(III)-modifiedzeolitebeforeand aftersorption of lead was performed bydetermination of tex-turalpropertiesandbyscanningelectronmicroscopyandX-ray spectroscopyinenergy-dispersivemode(SEM/EDS),transmission electronmicroscopy(TEM),andX-raypowderdiffraction(XRPD) analysis.

2. Materialsandmethods

2.1. Samplespreparation

Thenaturalzeolite-richrocksampleusedinthisstudycomes fromtheVranjskaBanja(Serbia)deposit.Thesamplewascrushed upandsievedtoparticlesize<0.043mm.Samplewasrinsedwith distilledwatertoremovepossibleimpurities,driedat60◦C and storedinthedesiccator.TheFe(III)-modifiedzeolitewasobtained combiningthemethodforpuregoethitepreparation[13]andthat forthepreparationofFe-coatedzeolite[14].Briefly,50gof natu-ralzeolitewasmixedwith25mLof10%FeCl3·6H2O(p.a.Aldrich)

solutionand700mLof0.1mol/LKOH(pH=10)andaddedina2L container.Thecontainerwascappedandthesuspensionwasaged for20daysatroomtemperature.Afterthereactionperiod, sus-pensionwasfiltered,rinsedwithdistilledwater,driedat60◦Cand storedinthedesiccator[12].

2.2. Leadsorptionexperiments

Theeffectoftemperatureonthekineticsandsorption capac-ityforleadonnaturalandFe(III)-modifiedzeolitewasstudiedby adding50mLof4000mgPb2+/Lsolution(forkinetic)and50mLof

1000,3000,4500or6000mgPb2+/L(forthermodynamic

experi-ments)to1.0000gofbothsorbentsat303,313,323and333Kand attimeinterval0–2880min(forkinetic)andin1440min(for ther-modynamicstudy),respectively.Inordertoevaluatekineticand thermodynamicdata,separateflaskswerepreparedforeachtime intervalandonlyoneflaskwastakenfordesiredtime.InitialpH (pHi)inallexperimentswas4.24.

Inall experiments,after reaction,solutionand each sorbent wereseparatedthroughstandardfilterandconcentrationsofnon sorbedleadinsupernatant weredetermined byatomic absorp-tionspectrophotometry(AAS)usingan“AnalyticJenaSpekol300”. Sorbedamountofleadwascalculated fromdifferencebetween

startingconcentrationofleadanditsconcentrationinthe super-natant.

2.3. Sorption–desorptionexperiment

Sorption–desorption experiments were conducted using the protocol described by Hamidpour et al. [3]. For sorption experiments,in100mLcontainers,1.0000gofthenaturalor Fe(III)-modifiedzeolite wasdispersed in50mLof0.01mol/LCa(NO3)2

solutions,containingpredeterminedamountsofleadinthe con-centration rangeof 25–100% ofPb-maximum sorption capacity (SCmax)of each sorbent.The initiallead concentrations ranged

from 350to 1330mgPb2+/L for thenatural zeolite, and 690to

2660mgPb2+/Lfor Fe(III)-modified zeolite.The initialpHofthe

solutionswasadjusted to4.24byadding negligiblevolumesof 0.1mol/LofKOHorHNO3.Afteradditionoflead,suspensionswere

shakenfor24h.Afterreactiontime,suspensionswerecentrifuged (10,000rpmfor10min)andonehalfofthesupernatantvolume (25mL)waspipettedoutofthecontainertodeterminelead con-centration.Theotherhalfofsupernatants,alongwithsolids,was keptfordesorptionexperiments.

Immediatelyafterremovalof25mLofeachsupernatant,therest ofsupernatantstogetherwithsolidswasquantitativelytransferred intonew containersand mixed withthe samevolume (25mL) ofPb2+-free0.01mol/LCa(NO

3)2 solution(withthesamepHas

insorptionexperiments)for24h.Afterdesorptioncycle, suspen-sionswerecentrifuged,25mLofthesupernatantswerekeptfor leadanalyses,whilesolidswithanother25mLofthesupernatants weretreatedagainwiththesamevolume(25mL)ofmetalfree backgroundelectrolyte.Desorptioncycleswererepeatedfour suc-cessivetimesforeachsample.Desorptionisothermswereprepared byplottingtheamountsofleadremainedinthesolidphaseafter eachdesorptioncycleversusthecorrespondingequilibriumlead concentrationsinsolution.

2.4. Characterizationofleadsaturatednaturaland Fe(III)-modifiedzeolite

2.4.1. Scanningelectronmicroscopyandelementalanalysis

Thesurfacemorphologyandthechemicalcompositionof sam-pleswereinvestigatedusinga“JEOLJSM-6610”scanningelectron microscope(SEM)equippedwithX-rayenergydispersive detec-tor(EDS).Observationsaimedtodescribethemorphologyofthe crystalswereperformedwithsamplescoatedwithgold.Forthe experimentsaimedtoperformchemicalmicro-analysisinenergy dispersivemode,thesamplesweresputteredwithcarbon.EDS ele-mentalanalyseswereperformedonasignificantlyhighnumberof points,inordertodetectapotentialheterogeneousdistributionof theelementsonthesurfaces.

2.4.2. XRPDanalysis

X-raypowderdiffractiondata werecollectedusing aPhilips X’Pert Pro diffractometer equipped with a multi-channel X’celeratordetectorandNi-filteredCuK␣radiation.Eachpattern

wascollectedwithangularrange2=5–70◦,stepsof2=0.016, and a countingtime of450s/step.Sampleswere grinded inan agatemortar,withafinalgrainsizeof1–5␮m.TheRietveld/RIR

(3)

Fig.1..Effectofcontacttimeonsorptionofleadbythenatural(filledsymbols)and Fe(III)-modifiedzeolite(emptysymbols).

structuremodelsusedfortheRietveldfitwereobtainedfromthe MSACrystalStructureDatabase[19].

2.4.3. Transmissionelectronmicroscopy

Samplesfortransmissionelectronmicroscopywerepreparedby gentlegrindinginanagatemortar,suspensioninisopropylalcohol anddepositiononaholeycarboncoatedgrid.TEMobservations havebeencarriedoutonafieldemissiongunFEITecnaiF20super twinelectronmicroscopeequippedwithGatanSlowScanCCD794 andoperatedat200kVattheDST-MI.Themicroscopeisequipped withanEDSdetector,forqualitativeandsemi-quantitative chem-icalanalysis.

2.4.4. Texturalproperties

Adsorption–desorptionisothermsofallsampleswereobtained bynitrogenadsorptionat77KusingaSorptomatic1990Thermo Finnigandevice.Priortoadsorption,thesamplesweredegassed firstfor1hatroomtemperatureundervacuumandthenfor16hat 383Katthesameresidualpressure.Theresultingisothermswere analyzedbySoftwareADPVersion5.13ThermoElectron.Values ofthetotalporevolume(Vtot)andthespecificsurfacearea(SBET)

ofthesamplesweredeterminedbyapplyingGurevitsch’sruleat arelativepressurep/p0=0.98(pandp0representtheequilibrium

andsaturationpressuresofnitrogenatthetemperatureof adsorp-tion)andaccordingtotheBrunauer,Emmet,Teller(BET)method fromthelinearpartofthenitrogenadsorptionisotherms, respec-tively[20].TheDubinin–Radushkevich(DR)equationwasapplied tothenitrogenadsorptionisothermstoobtainthemicropore vol-ume(Vmic-DR)[21].Mesoporevolume(Vmeso)wasdeterminedby

theDollimoreandHeal(DH)method[22].

3. Resultsanddiscussion

3.1. LeadsorptionbythenaturalandFe(III)-modifiedzeolite

3.1.1. Effectofcontacttime

Theeffectofcontacttimeonleadretentionontonaturaland Fe(III)-modifiedzeolitewasstudiedatdifferenttemperaturesand isshownatFig.1.Thecontacttimevariedintherange0–2880min andtheinitialmetalconcentrationwas4000mgPb2+/L.ThepH

iof

suspensionswereadjustedto4.24andthefinalpHs(pHf)were

from4.80at303Kto4.96at333Kforthenaturalzeolite,andfrom 4.96at303Kto5.25at333KforFe(III)-modifiedzeolite.

Table1

KineticsdataforsorptionofleadbythenaturalandFe(III)-modifiedzeolite.

Temperature(K) Parameters Naturalzeolite Fe(III)-modified zeolite

303

qe,exper(mg/g) 54.00 76.00 qe(mg/g) 55.34 76.33 k2(g/(mgmin)) 2.77×10−4 7.56×10−4 h(g/(mgmin)) 0.85 4.88 R2 0.999 0.999

313

qe,exper(mg/g) 61.90 83.70 qe(mg/g) 62.81 84.03 k2(g/(mgmin)) 3.89×10−4 8.78×10−4 h(g/(mgmin)) 1.53 6.20 R2 0.999 0.999

323

qe,exper(mg/g) 73.89 89.04 qe(mg/g) 74.79 89.44 k2(g/(mgmin)) 4.07×10−4 9.40×10−4 h(g/(mgmin)) 2.28 7.52 R2 0.999 0.999

333

qe,exper(mg/g) 87.60 98.40 qe(mg/g) 88.34 98.72 k2(g/(mgmin)) 4.63×10−4 10.38×10−4 h(g/(mgmin)) 3.61 10.12 R2 0.999 0.999

AspresentedinFig.1,theremovalofleadbysorptiononboth zeolitesshowedsteadyincreaseforthefirst230min,followedby anappreciablestabilizationtrendattainingamaximumvalueat about900minforthenaturalzeoliteandabout300minfor Fe(III)-modifiedzeolite.ItisclearfromFig.1thatFe(III)-modifiedzeolite isaquickerandefficientsorbentofleadthanthenaturalzeolite.

Leadsorptiondata(Fig.1)werefittedaccordingtothe pseudo-second order kinetics becauseit wasshown tobe more likely topredictthebehavior overthewholerange ofsorption being basedontheassumptionthattherate-determiningstepmaybe achemical sorptioninvolvingvalence forcesthroughsharingor exchangeofelectronsbetweensorbentandsorbate[23]. Pseudo-secondorderkineticmodelisexpressedas[24]:

dqt

dt =k2(qe−qt)

2 (1)

whereqtandqearesorbedamountattimetandequilibrium(mg/g)

andk2istherateconstantofpseudo-secondordersorptionoflead

(g/(mgmin)).IntegrationofEq.(1)leadstoEq.(2):

t

qt

= 1

kq2

e

+ 1

qet (2)

Fromthepseudo-secondordermodelitispossibletodefinethe initialsorptionrate,h(mg/(gmin)),ast→0:

h=kq2e (3)

ThenEq.(3)becomes:

t

qt

= 1

h+

1

qet (4)

Thevaluesofqeandk2werecalculatedfromtheslopeand

inter-ceptofthestraightlineobtainedbyplottingt/qtagainstt(curves

notshown)andwerecollectedinTable1.

AscanbeseenfromTable1,foralltemperatures,theexcellent correlationcoefficients(R2=0.999),aswellasthegoodagreement

of calculated and experimental qe for the natural and

Fe(III)-modifiedzeolite,indicatedthevalidityofthepseudo-secondorder modelforleadsorptionbythesesorbents.

(4)

Fig.2.TheplotoflnKvs.1/Tforthenatural(filledsymbols)andFe(III)-modified zeolite(emptysymbols)fordifferenttemperatures:303K(blackline),313K(red line),323K(greenline)and333K(blueline).

Thepseudo-secondorderkineticssupportsthatthechemical sorptioncouldbetherate-determiningstepcontrollinglead sorp-tionprocess,andisinagreementwiththeresultsreportedbyother researchers[24].Therateconstantk2andqeincreasedwith

increas-ingthetemperaturefor thenaturalzeolite and Fe(III)-modified zeolitewhichindicatethatthehightemperaturefavorslead sorp-tion. Predicted initial lead sorption rate, h, for Fe(III)-modified zeolitewasfourtimeshigherthanforthenaturalzeolite.Themuch fasterleaduptake(higherinitialrate)byFe(III)-modifiedzeolite

maybeanadditionalevidencethatthismodificationincreasethe numberofactivesurfacesitesavailableforsorptionoflead.

Theactivationenergiesformetalionsorptiononnaturaland Fe(III)-modifiedzeolitewerecalculatedaccordingtotheArrhenius equation[25]:

k2=k0exp

−Ea

RT

(5)

wherek0(g/(mgmin))isthetemperatureindependentfactor,Ea

(kJ/mol)istheactivationenergyofthereactionofsorption,Risthe gasconstant(8.314J/(Kmol))andTisthesorptionabsolute tem-peratureinK.Themagnitudeofactivationenergymaygiveanidea aboutthetypeofsorption.Therearetwomaintypesofsorption: physicaland chemical.Usually,theactivationenergy for physi-calsorptionisnomorethan4.2kJ/mol,sincetheforcesinvolved inthis processareweak. Chemicalsorptionis specific,involves forcesmuchstrongerthaninphysicalsorptionandmaybe acti-vatedornon-activated.Activatedchemical sorptionmeansthat theratevarieswithtemperatureaccordingtoafiniteactivation energy(8.4–83.7kJ/mol)intheArrheniusequation,whilefor non-activatedchemicalsorption,theactivationenergyisnearzero[26]. Theenergiesofactivationdeterminedfromslopesoflnk2versus

1/Tforbothsorbents(figurenotshown)werefoundtobe13.46 for thenatural and 8.53kJ/mol for Fe(III)-modifiedzeolite con-firmingactivatedchemicalsorption.Thepositivevaluesofenergy activationsuggestthatriseintemperaturefavorssorptionandthis processisanendothermicinnature.

3.1.2. Thermodynamicstudy

Thedatacollectedforleadsorptiononthenaturaland Fe(III)-modified zeolite, at four different initial concentrations (1000, 3000,4500and 6000mgPb2+/L)and at303,313, 323and 333K

wereusedforestimationofsomethermodynamicparameters.The pHiofeachsolutionwasadjustedto4.24andthefinalpHs(pHf),for

Table2

ThermodynamicparametersforleadsorptiononnaturalandFe(III)-modifiedzeolite.

Co(mg/L) T(K) G◦

(kJ/mol) H◦

(kJ/mol) S◦

(J/(Kmol)) R2

Naturalzeolite

1000

303 −3.00

30.53 110.64 0.998

313 −4.18 323 −5.11 333 −6.38

3000

303 1.58

28.39 88.72 0.981

313 0.61 323 −0.60

333 −0.94

4500

303 2.88

23.96 69.64 0.994

313 2.18 323 1.30 333 0.86

6000

303 3.75

21.72 59.29 0.989

313 3.23 323 2.37 333 2.07

Fe(III)-modified zeolite

1000

303 −5.06

22.25 90.47 0.991

313 −6.21 323 −7.05 333 −7.78

3000

303 −0.83

20.75 54.95 0.982

313 −1.76 323 −2.54

333 −2.93

4500

303 0.64

11.52 35.87 0.999

313 0.32 323 −0.08 333 −0.43

6000

303 1.50

5.96 8.35 0.999

(5)

theinitialconcentrationof1000mgPb2+/Lwerefrom5.21at303K

to6.47at333Kforthenaturalzeolite,andfrom5.96at303Kto6.38 at333KforFe(III)-modifiedzeolite.Atthehighestinitial concen-tration,pHfwasfrom4.73at303Kto4.80at333Kforthenatural

zeolite,andfrom4.81at303Kto5.09at333KforFe(III)-modified zeolite.

Thestandardfreeenergyofsorption(G◦),standardenthalpy

(H◦)and entropy(S)werecalculated fromfollowing

equa-tions:

G◦

=−RTlnK (6)

lnK= S ◦

R − H◦

RT (7)

whereRisthegasconstant(8.314J/(Kmol))andKisthe equilib-riumconstantatthetemperatureT.TheconstantKwascalculated astheratiooftheequilibriumleadsorbedamountandequilibrium concentrationinsolution.ThevaluesofH◦andSwere

calcu-latedfromtheslopeandtheinterceptoflinearregressionoflnK vs.1/T(Fig.2).TheobtainedparametersarepresentedinTable2.

FromTable2,itisobservedthatforthelowerinitiallead concen-trations,G◦wasnegativeatalltemperatures,forboththenatural and Fe(III)-modified zeolite, indicating that sorption process is spontaneousinnature.Withincreasingtheinitiallead concentra-tion,G◦waspositivesuggestingthatattheseleadconcentrations sorptionprocessbecomesnon-spontaneous.ForFe(III)-modified zeolite,G◦islowerthanforthenaturalone,andmorenegative inthewiderconcentrationrange,suggestingthehighernumber of active sites availablefor spontaneous sorption of lead. Also,

G◦becomesmorenegativewithincreasingtemperature, suggest-ingthatsorptionismorefavorableathightemperature.Changing in enthalpy (H◦) values waspositive showing that the sorp-tion of lead at both the natural and Fe(III)-modified zeolite is endothermicinnature.Itisobservedthatforthehighestinitial leadconcentration,H◦ismuchlowerfortheFe(III)-modified zeo-lite(5.96kJ/mol)thanforthenaturalone(21.7kJ/mol),confirming morefavorablesorptionbyFe(III)-modifiedzeolite.Thepositive valuesofentropyS◦ suggestsanincreaseinrandomnessatthe solid–solutioninterfacebythefixationofleadionsontoboth sor-bents.Namely,basedonpHmeasurements,evenathigherinitial concentrations,leadispresentinsolutionpredominantlyinthe cationicforms[27],thusleadionsaresurroundedbyafirmlybound hydrationlayerwherewatermoleculesaremorehighlyordered. Whenleadionsenterthehydrationsurfaceofsorbent,theordered watermoleculesdisturbed,thatcausesincreaseofentropyofwater molecules.Sorptionofleadalsoinvolvesreleaseofcationsfrom sorbents,which influenceincreaseintheentropy.Furthermore, theobserveddecreaseinentropywithincreasingtheinitial con-centrationofleadindicatesthatchemisorptioncausedecreasein randomnessatthesolid–solutioninterface.Thiseffectismuch pro-nouncedforFe(III)-modifiedzeolite.

Basedontheamountofreleasedcationsduringleadsorption bythenatural andFe(III)-modifiedzeolite, sorptioninclude ion exchangeatlowerinitialconcentrationsoflead,whileathigher ini-tialconcentrations,chemicalsorptionofleadatsurfacewasmuch pronouncedthanionexchange[9].Intheleadinitialconcentration rangewhenionexchangewasdominant,theamountsofreleased cations were higher than amount of sorbed lead, while when chemisorptionmainlyoccurredtheoppositetrendwasobserved. Thus, since theamounts of releasedcations fromboth zeolites aresimilarinwholeinitialleadconcentrationrange,theobserved decreasein entropywithincreasingtheinitialconcentrationof leadindicatesthatchemisorptioncausedecreaseinrandomness atthesolid–solutioninterface.Thiseffectismuchpronouncedfor Fe(III)-modifiedzeolite.

Table3

RefinedparametersforFreundlichequationfittotheleadsorptiondata.

Natural zeolite

Fe(III)-modified zeolite

ksorb(L/mg) 14.36 28.81

nsorb 0.203 0.183

R2 0.977 0.982

3.1.3. Effectoftheparticlesize

Sorptionisothermswerepreviouslydeterminedforthe natu-ral andFe(III)-modified zeolitesfor twodifferent particlesizes: <0.043mmand0.6–0.8mm[12,28].Forbothfractionofthe nat-uralandFe(III)-modifiedzeolite,sorptionofleadincreasedwith increasingtheinitialconcentrationoflead.Theresultsofsorption werefittedtotheLangmuirandFreundlichsorptionmodelandthe bestfitwasobtainedusingtheFreundlichmodel.Undertheapplied experimentalconditions,fortheparticlesizesof<0.043mm,the maximumsorbedamount(SCmax)ofleadwas66mg/gforthe

nat-uraland133mg/gforFe(III)-modifiedzeolite.Fortheparticlesize 0.6–0.8mm,SCmaxwas62and102mg/gforthenaturaland

Fe(III)-modifiedzeolite,respectively.Theseresultsshowedthatsorption ofleadbythenaturalzeoliteslightlydecreasewithincreasing par-ticlesize,whilefor Fe(III)-modifiedzeolite,this phenomenonis muchmorepronouncedastheresultofdecreasingofsurfacearea ofsorbent.Still,much highersorptionofleadwasobservedfor Fe(III)-modifiedzeolite,forbothparticlesizes.Itwasalready men-tionedthatsorptionofleadbyFe(III)-modifiedzeoliteincludeion exchangeandchemisorptionandmostprobablyirondepositedat thesurfacecreatesactivesitesresponsibleforenhancedlead sorp-tion.Thus,becausesorptionisasurfacephenomenon,thesmaller sorbentsizeofferedcomparativelylargeravailablesurfaceareafor ironduringmodificationandhencehighernumberofactivesites forleadremovalatequilibrium[29].Thehighestinitiallead concen-trationpointonthesorptionisothermswasusedforpreparationof leadsaturatedsorbentsforthecharacterizationexperiments (Sec-tion3.3).

3.2. Sorption–desorptionoflead

Thesorption–desorptionisothermswerecalculatedusingthe Freundlichequations[3].

qe=ksorbCensorb (8)

qe=kdesorbCnedesorb (9)

whereqe,Ce,ksorb(kdesorb),nsorb(ndesorb)arethequantityofleadin

solidphase(mg/g),equilibriumliquidphaseconcentration(mg/L), theFreundlichboundingconstant(L/mg)forsorption(desorption) andsorption(desorption)coefficient,respectively.

Leadsorption–desorption isotherms fittedby theFreundlich modelforthenaturaland Fe(III)-modifiedzeolitearepresented inFig.3,andcharacteristicparametersoftheisothermsaregiven atTable3forsorptionandTable4fordesorptionofleadfromboth sorbents.

As can been seen from Tables 3 and 4 the correlation coefficientsforsorptionand desorptionofleadaregreaterthan 0.900 confirming Freundlich model very well described lead sorption–desorptionprocessonbothsorbents.Usingofthe Freund-lich modelfor describing sorption processfor heavy metals on differentsorbentsiswellknown.Forexample,Hamidpour etal. [3]usedFreundlichequationforinvestigationofdesorptionoflead andcadmiumfromnaturalzeoliteandbentonite.

(6)

Fig.3. Leadsorption(blackline)-desorptionisothermsatthreemetalion con-centrations:50%(redline),75%(greenline),and100%(blueline)ofSCmax,forthe natural(filledsymbols)andFe(III)-modifiedzeolite(opensymbols).

Table4

RefinedparametersforFreundlichequationfittotheleaddesorptiondata.

Initialleadload (%ofSCmax)

Parameter Natural zeolite

Fe(III)-modified zeolite

50

kdesorb(L/mg) 31.05 61.28

ndesorb 0.009 0.006

R2 0.990 0.992

75

kdesorb(L/mg) 39.29 74.47

ndesorb 0.012 0.010

R2 0.911 0.964

100

kdesorb(L/mg) 44.37 90.64

ndesorb 0.016 0.013

R2 0.972 0.987

sorption–desorptionofleadfrombothsorbentswerenotreversible (Fig.3).Attheinitialleadconcentrationsof50%,75%and 100% ofSCmax,thequantityoflead desorbed,afterfourcycleswere:

0.95%,1.99% and2.95% forthenatural zeolite and0.41%, 1.22% and 2.02% for Fe(III)-modified zeolite. These results are very comparablewithresultsobtainedbyHamidpouretal.[3].They foundthat 1%,3%and 5%of leadwasreleasedfromzeolite for initialconcentrationofleadof50%,75%and100%ofSCmax and

release of sucha relativelylow proportion of sorbedlead was attributedtothestrongbondingtothehighaffinitysitesinzeolite. The Freundlich constant k (a quantity parameter representing theamountofleadretainedonthesolidphase)foreachsorbent obtainedfromthedesorptionisothermswassignificantlyhigher thanthatcalculatedfromsorptionisotherms(Tables3and4),and also,thisconstant for Fe(III)-modifiedzeolite wasalmosttwice

higherthanforthenaturalzeolite,confirmingpositivehysteresis andindicatingapproximatelyslightlyhigherdesorptionofsorbed leadfromthenaturalthanfromFe(III)-modifiedzeolite.

3.3. CharacterizationofthenaturalandFe(III)-modifiedzeolite aftersorptionoflead

3.3.1. Scanningelectronmicroscopyandelementalanalysis

SEMimagesofthenaturalandFe(III)-modifiedzeolitesbefore andaftersorptionofleadareshowninFigs.4and5.

Fieldobservationandmicroscopicstudyofthesamplerevealed thatthenaturalzeoliteoccursmainlyaswell-formedfinesized crystals.Manyofthezeolitecrystalsshowatabularmorphology, asexpectedfora(monoclinic)clinoptilolite(Fig.4a).Aswe previ-ouslyreported[12],aftermodificationwithFe(III)ions,formand sizearepreserveddespitethestronglybasicconditionsusedfor modification(Fig.4b).

SEMcoupledwithEDSprovidesasemiquantitativeelemental analysisofthecrystals surface.In theEDSspectraof the natu-ralzeolite,Si,Al,O,Mg,Ca,K,Na,TiandFeweredetected.Iron iscertainlydueto(non-zeolitic)Fe-bearingmineralsinthe vol-canicrocks [30], while Ca,Na, Kand Mg are mainlythe extra frameworkcationsthatcompensatethenetnegativechargeofthe zeolite(clinoptilolite–heulandite)network[31].Aftermodification ofthenaturalzeolite withFe(III)ions,iron andpotassium con-tentincreased(Fe2O3=2.03%forthenaturalandFe2O3=5.70%for

Fe(III)-modifiedzeolite;K2O=1.41%forthenaturalandK2O=5.81%

for Fe(III)-modified zeolite), while content of sodium and cal-ciumdecreased(Na2O=1.27%forthenaturalandNa2O=0.49%for

Fe(III)-modifiedzeolite;CaO=3.26%forthenaturalandCaO=2.18% forFe(III)-modifiedzeolite).

InFe(III)-modifiedzeolite,theamountofironexceedscation exchangecapacityofthenaturalzeolite,whichtogetherwithEDS resultsconfirmthat,inadditiontotheionexchangebetweenthe exchangeablecationsfromthezeolitenetworkandtheFefromthe solution,mostoftheironisdepositedonthesurfaceofthezeolite crystalsandmaybeintheformofFe-oxides[32].

Forleadsaturatedsamples,thecontentofleaddeterminedby EDSwas6.30%forthenaturaland14.22%forFe(III)-modified zeo-liteanditwasclosetothemaximumcapacitiesofbothsamples obtainedfromsorptionexperiments.Forthisinitialconcentration of lead used for preparation saturated samples, it was postu-latedthat sorption of lead include ion exchange together with chemisorption of lead on the surface [12]. Sorption complexes of Pb(II) with various adsorbents including alumina, clay min-erals(suchasmontmorillonite),manganese(III,IV)oxyhydroxide aswell asPb(II) mononuclearbi dentateinner spheresorption complexes(withhematiteandgoethiteoverawiderangeof con-ditions),werereportedintheliterature[33].Thus,similarresults ofEDS analysisandmaximum sorptioncapacity suggestedthat forbothzeolitesbesidesionexchangedlead,itisalsoretainedon

(7)

Fig.5. SEMmicrographsofleadsaturated:(a)naturaland(b)Fe(III)-modifiedzeolite.

hydroxylsurfacesitesparticularlyat≡FeOHsitesassociatedwith

Fe-oxyhydroxidemineralphases,and/or>SOH,whichrepresents bothzeolitemineraledgesandAl-oxyhydroxidefunctionalgroups [34].Besidestheseprocesses,themixedeffectofsorptionwith co-precipitationoreven coagulationofleadatthemineralsurface mayoccurred[35].TheSEMmicrographsofbothleadsaturated zeolites(fraction0.6–0.8mm)presentedatFig.5,showrare ran-domlydistributed agglomerateswithsignificantamountoflead (60.16wt%–thenaturalzeoliteand71.50wt%–Fe(III)-modified zeolite).

Luetal.[36]reportedthatcoprecipitationofPb2+withferric

oxihydroxidesoccurredatpH∼4,anditwasmoreefficientthan

sorptionofleadfromaqueoussolutionsatsimilarsorbate/sorbent ratiosandpH.Theirdesorptionexperiments showedthat more Pb2+wasreleasedfromloadedsorbentscollectedfromsorption

experimentsthanfromPbtoFecoprecipitates.Theyhypothesized thatPb2+wasfirstsorbedonthenanometer-sizedmetastable

Fe-oxyhydroxide polymersand, as thesenano-particles assembled intolargerparticles,somePb2+wastrappedintheFe-oxyhydroxide

structureandre-arranged.Lowdesorptionofleaddescribedinthe previoussection,similarcontentofleadinbothsamplesobtained fromEDSandfromsorptionexperiments,aswellasthepresence ofrandomagglomeratesofleadatthemineralsurfaces,confirmed complexleadsorptionmechanismincludingionexchange,surface complexationandco-precipitation.Themuchhighersorptionof leadbyFe(III)-modifiedzeolitethanbythenaturalone,suggested thattheseleadsorptionprocessesaremorepronouncedwheniron ispresentatthezeoliticsurface.

3.3.2. XRPDanalyses

XRPDpatternsofthelead-saturatednaturalandFe(III)-modified samplesareshowninFig.6.

The refined amount of the crystalline phases (wt%) by Rietveld/RIRmethodare: clinoptilolite66(1)%, mordenite3(1)%, plagioclase18(1)%,andquartz12(1)%forthenaturalsampleand clinoptilolite 73(1)%, mordenite 3(1)%, plagioclase 14(1)%, and quartz10(1)%fortheFe(III)-modifiedsample.Theestimated frac-tionoftheamorphousphasewasbelowthedetectionlimit(i.e. <3wt%).Thetwodiffractionpatternsshowthatthereisnodrastic changeof thecrystal-chemistry ofthe sample afterthe Fe(III)-treatment.AstheFe(III)-modifiedzeolitewaspreparedaccording totheprotocolforpuregoethite,weexpectedtofindevidence,in thediffractionpattern,ofironhydroxidesand/orironoxides. Nev-ertheless,noFe-richcrystallinephasewasdetected.However,a carefulinspectionoftheprofilesshowedthat:(a)the full-width-at-half-maximumofthediffractionpeaksofclinoptiloliteexperienced increased(∼8–10%)intheFe(III)-modifiedsample,(b)a general

slightdecreaseoftheofthediffractionpeaksintensityisobserved

forallthecrystallinephases,thoughmorepronouncedfor clinop-tilolite.

Additionally, crystal Fe–Pb-bearing oxides/hydroxides were also not observed in XRPDpattern of both lead saturated nat-ural and Fe(III)-modified zeolite. The polyphase nature of the samples, coupled with the quality of the data collected with a conventional diffractometer, hindered high-quality structure refinements of clinoptilolite in order to prove a variation of theextra-frameworkpopulationbetweenthenaturaland Fe(III)-modifiedsample,respectively.

3.3.3. Transmissionelectronmicroscopy

ATEMinvestigationofthelead-saturatedFe(III)-modified zeo-liteshowedahighfractionofidiomorphiccrystalsofclinoptilolite (Fig.7), alongwithand plagioclaseandquartz,andasecondary fractionofnano-aggregateswhichhavebeenfoundtobe amor-phous(Fig.8).TheEDSanalysesshowedthat:(1)Theamountof FeandPbinidiomorphiccrystalsofclinoptiloliteisnegligible(i.e. belowtheEDSdetectionlimit),andsoFeandPbarenot concen-tratedinzeolitestructure(i.e.asextra-frameworkpopulation);(2) FeandPbappeartobemainlyconcentratedintotheamorphous fraction.Theseexperimentalfindingscanexplaintheabsenceof Fe–Pb-bearingoxides/hydroxides(e.g.goethite,limonite,etc.)in theX-raydiffraction patternsofthelead-saturated natural and Fe(III)-modifiedsamples.

Afurtherexperimentalfindingconcernsthepresenceof spher-ical nano-clusters onthe crystal faces,as shown in Fig.9.The dispersionoftheclustersdoesnotallowustohavearepresentative chemicalcompositionoftheclusters,buttheimagecontrast sug-geststhattheclustershaveadifferentcompositionwithrespect tothehostcrystalsofzeolite. Inotherwords,clusterscouldbe made by Fe or Pb oxides, but we cannot prove that. The TEM high-resolutionimagessuggestthatthesphericalnano-clustersare amorphous(Fig.9).

3.3.4. Texturalproperties

InFig.10,thenitrogenadsorption–desorptionisothermsof nat-uralzeolite,Fe(III)-modifiedzeoliteandpuregoethite1areshown.

Theobtainedisotherms,althoughsimilar,accordingtoIUPAC nomenclaturecanbedefinedastwoseparateclasses.Isothermof puregoethite1,duetoexistenceofbarelynoticeablebutvisible

plateau at high relative pressure, narrow hysteresis loop and almost vertical and nearly parallel hysteresis branches, with the desorption partend at relative pressure closeto 0.85, can be classified as Type IV with hysteresis loop of type H1. This type of hysteresis is associated with porous materials which

(8)

Fig.6.X-raypowderdiffractionpatternoftheleadsaturated:(a)naturalzeoliteand(b)Fe(III)-modifiedzeolite.

consistof agglomeratesor compacts of approximatelyuniform spheresinfairlyregulararrayandhencethesematerialshavea narrowporesizedistribution.Overall,itappearsthatsynthesized puregoethitebehaveslikeamesoporousmaterial.Theporesize distribution (results not presented) estimated from desorption branchesofisothermshowsthemaximumat44.7nm,confirming mesoporosityofsynthesizedgoethite.

For the natural and Fe(III)-modified zeolite, the obtained isothermsdonothaveaplateauathighrelativepressureandfor bothsorbentshysteresisloopsendatp/p0≈0.42.Thepositionof

hysteresisloopendingforbothsamplesistypicalformeasurements withnitrogenat77Kandisnottheconsequenceofthepore sys-temnetwork ofsorbents.IsothermscanbeclassifiedasTypeII, typicalfornonporousmaterials.Additionally,hysteresisloopof H3typecanberecognizedandischaracteristicfortheaggregates ofplate-likeparticles.

TheisothermsofnaturalandFe(III)-modifiedzeoliteafterlead sorption(resultsnotshown)areverysimilartoisothermsof corre-spondingmaterialsbeforeleadsorption,althoughsomereduction oftotalamountofadsorbednitrogenandslightlywideningof hys-teresisloopcanberecognized.Thetypeofisotherms(typeII)and hysteresisloops(typeH3)stayunchanged.

Theresultsofcalculatedtexturalparametersofthenaturaland Fe(III)-modifiedzeolitebeforeandaftersorptionoflead,aswellas forpuregoethite1,arepresentedinTable5.

Resultsshowedthatspecificsurfaceareasignificantlyincreases after modificationof the natural zeolite withFe(III) ions,from 30.20m2/gforthenaturalzeoliteto52.50m2/gforFe(III)-modified

zeolite.Fromthechemicalanalysis,themodificationofthe nat-uralzeolitewithFe(III)ionsunderbasiccondition,increasedthe iron content for only 1.1% (from Fe2O3=2.30% for the natural

(9)

Fig.7.Idiomorphicsingle-crystalsofclinoptilolite(left)andadiffractionpatternofoneindividual(right).TheEDSchemicalanalysisoftheidiomorphiccrystalsshowsFe andPbcontentbelowthedetectionlimit.

Fig.8.Amorphousaggregate(left)anditsdiffractionpattern(right).TheEDSchemicalanalysisatP6yields:Fe=15.2(3)%andPb=7.5(8)%(givenasatomic%).

Fig.9.High-resolutionimagesofsub-sphericalnano-clusterswhichappeartobeamorphous(left)andlyingonthesurfaceofthecrystalsofclinoptilolite(right).

Table5

TexturalparametersofthenaturalandFe(III)-modifiedzeolitebeforeandafterleadsorptionandofpuregoethite.a

Sample SBET(m2/g) Vtot(cm3/g) Vmeso(cm3/g) V

mic(cm3/g)

Naturalzeolite 30.20 0.135 0.078 0.012

Naturalzeolite+lead 29.70 0.082 0.042 0.011

Fe(III)-modifiedzeolite 52.50 0.151 0.092 0.019

Fe(III)-modifiedzeolite+lead 46.50 0.131 0.058 0.017

Goethitea 55.50 0.528 0.489 0.020

(10)

Fig.10.Nitrogenisothermsofnaturalzeolite(Z),Fe(III)-modifiedzeolite(FeZ)and puregoethite(Puregoethitewassynthesizedunderthesameprocedureas Fe(III)-modifiedzeolite)(G);filledsymbolsadsorption,emptysymbolsdesorptionpoints.

suchsmall amount of iron elevated SBET close to the value of

puregoethite1 (55.50m2/g).Increaseofthespecificsurfacearea

observedbyJiménez-Cedilloetal.[32]forzeolitestreatedwithboth ironandmanganese,indicatedthatmetallicspeciesarenotonly exchangeablebythecationsfromthezeolitenetworkbutarealso depositedonthesurfaceofthezeoliticmaterials.Doula[11]also reportedforFe-modifiedclinoptilolitethatonlyasmallamountof Fecouldbeexchangedwiththecationsofextra-framework popu-lationofthezeolitestructure.Sheindicatedthat,asaresultofthe presenceofironinthezeolitestructurechannels,thetextural prop-ertiesofthismaterialchangednotably.Comparedtothenatural zeolite,theincreaseofthespecificsurfaceareaofFe(III)-modified zeolitesthrough the increase of micropores volume (especially onultra-micropores withdiameter less than 1nm)may be an additionalevidenceofionexchange,becausemicroporevolume previouslyinaccessibletothemoleculeofnitrogenbecomes acces-sibleafterexchangeoflargercations(K+,Na+,Ca2+,Mg2+)with

considerablesmalleroneFe3+[37].Ontheotherhand,theincrease

inmesoporevolumecanbecorrelatedwiththeformationofanew phaseatthezeoliticsurfacewhichisitselfmesoporous.Thus,the Fe(III)-modifiedzeoliteshowsbothincreaseofmicro-and meso-poresvolume,confirmingformationofnewFe-bearingphaseson zeolitebesidetothemechanismofionexchange.

Afterlead sorption, specific surface areaof the natural and Fe(III)-modified zeolite, compared to the corresponding source materials, slightly decreased. In fact, all textural parameters decrease,especiallymesoporevolume.Thedecrease ofVtot and Vmesomayfurthersuggestthatleadisconsiderablydepositedon

thesurfaceofbothsorbents,confirmingthat(forthisinitial con-centration)besidesionexchange,chemisorptionofleadoccurred. Finally, since it is well known that amorphous Fe-oxides havelargersorptioncapacitiesformetalcontaminantsthan crys-talline oxides such as goethite [33], to support observations thatamorphousironatthezeoliticsurfaceincreasedlead sorp-tion,we didpreliminarylead sorption experiment (initial lead concentration∼1300mg/L,amountofsolidphase1.0000g/50mL

and pH=4.24) with pure goethite.1 The result was compared

with lead sorption, under the same conditions, by the natu-raland Fe(III)-modifiedzeolite. We observedthatlead sorption increased in the following order: goethite1 (17.5%)<the

natu-ralzeolite(61.5%)<Fe(III)-modifiedzeolite (91.6%).Thus,results on lead sorption by the natural and Fe(III)-modified zeolite, along withcharacterization of materials beforeand after sorp-tion of lead reported in this study, confirmedthat amorphous

Fe-oxy/hydroxides at the surface of Fe(III)-modified zeolite are responsibleforenhancedsorptionoflead.

4. Conclusion

Resultsreportedinthispapershowedthatsignificantlyhigher sorption of lead was achieved with modification of the nat-ural zeolite with Fe(III) ions under basic conditions. Sorption experimentsaswellascharacterizationofboth thenaturaland Fe(III)-modifiedzeolitebeforeandaftersorptionofleadconfirmed complexleadsorptionmechanismincludingionexchangeaswell aschemisorptionandprecipitationofleadatthezeoliticsurface. CharacterizationofFe(III)-modifiedzeoliteaftersorptionoflead confirmedenhancedleadsorptionisduetopresenceofamorphous phaseatthesurfaceofmodifiedzeolite.Highleadsorptionandhigh stabilityofleadsaturatedmodifiedzeolitemakeFe(III)-modified zeoliteaspromisingmaterialforwaterpurification.

Acknowledgements

TheseinvestigationswereconductedundertheProjects172018 and 34013 funded by the Ministry of Education, Science and Technological Development of theRepublic of Serbia. G.Diego GattaandNicolaRotirotithanktheItalianMinistryofEducation, MIUR-Project:“ImPACT-RBFR12CLQD”.Theauthorsacknowledge theagreementforinternationalcooperationamongtheUniversità degliStudidiMilanoandtheInstituteforTechnologyofNuclearand OtherMineralRawMaterialsinBelgrade.Thecompany “Nemet-ali”fromVranjskaBanja,Serbiakindlyprovidedthenaturalzeolitic sample.

References

[1]F.Fu,Q.Wang,Removalofheavymetalionsfromwastewaters:areview, JournalofEnvironmentalManagement92(2011)407–418.

[2]W.Yang,P.Ding,L. Zhou,J. Yu,X. Chen,F. Jiao,Preparationofdiamine modifiedmesoporoussilicaonmulti-walledcarbonnanotubesforthe adsorp-tionofheavymetalsinaqueoussolution,AppliedSurfaceScience(2013), http://dx.doi.org/10.1016/j.apsusc.2013.05.028.

[3]M.Hamidpour,M.Kalbasib,M.Afyunib,H.Shariatmadarib,P.E.Holmc,H.C.B. Hansenc,SorptionhysteresisofCd(II)andPb(II)onnaturalzeoliteand ben-tonite,JournalofHazardousMaterials181(2010)686–691.

[4]V.J.Inglezakis,M.A.Stylianou,D.Gkantzou,M.D.Loizidou,RemovalofPb(II) fromaqueoussolutionsbyusingclinoptiloliteandbentoniteasadsorbents, Desalination210(2007)248–256.

[5]M.J.Baniamerian,S.E.Moradi,A.Noori,H.Salahi,Theeffectofsurface modifica-tiononheavymetalionremovalfromwaterbycarbonnanoporousadsorbent, AppliedSurfaceScience256(2009)1347–1354.

[6]M.Trgo,J.Peri ´c,N.Vukojevi ´c-Medvidovi ´c,Acomparativestudyofionexchange kineticsinzinc/lead-modifiedzeolite–clinoptilolitesystems,Journalof Haz-ardousMaterials136(2006)938–945.

[7]M.Karatas,RemovalofPb(II)fromwaterbynaturalzeolitictuff:kineticsand thermodynamics,JournalofHazardousMaterials199/200(2012)383–389. [8]M.Sprynskyy,B.Buszewski,A.P.Terzyk,J.Namie´snik,Studyoftheselection

mechanismofheavymetal(Pb2+,Cu2+,Ni2+,andCd2+)adsorptionon

clinop-tilolite,JournalofColloidandInterfaceScience304(2006)21–28.

[9]A.Günay,E.Arslankaya,I.Tosun,Leadremovalfromaqueoussolutionby nat-uralandpretreatedclinoptilolite:adsorptionequilibriumandkinetics,Journal ofHazardousMaterials146(2007)362–371.

[10]S.Mustafa,S.Khan,M.IqbalZaman,S.YarHusain,TheroleofPb2+ionsdoping

inthemechanismofchromateadsorptionbygoethite,AppliedSurfaceScience 255(2009)8722–8729.

[11]M.K.Doula,RemovalofMn2+ionsfromdrinkingwaterbyusingclinoptilolite

andaclinoptilolite–Feoxidesystem,WaterResearch40(2006)3167–3176. [12]M.Kragovi ´c,A.Dakovi ´c, ˇZ.Sekuli ´c,M.Trgo,M.Ugrina,J.Peri ´c,G.D.Gatta,

Removalofleadfromaqueoussolutionsbyusingthenaturaland Fe(III)-modifiedzeolite,AppliedSurfaceScience258(2012)3667–3673.

[13]G.Mustafa,B.Singh,R.Kookana,Cadmiumadsorptionanddesorptionbehavior ongoethiteatlowequilibriumconcentrations:effectsofpHandindexcations, Chemosphere57(2004)1325–1333.

[14]C.Jeon,K.Baek,J.Park,Y.Oh,S.Lee,AdsorptioncharacteristicsofAs(V)on iron-coatedzeolite,JournalofHazardousMaterials163(2009)804–808. [15]H.M.Rietveld,Aprofilerefinementmethodfornuclearandmagneticstructures,

JournalofAppliedCrystallography2(1969)65–71.

(11)

[17]A.C.Larson,R.B.VonDreele,GeneralStructureAnalysisSystem(GSAS),National LaboratoryReportLAUR,LosAlamos,2004,pp.86–748.

[18]P.Thompson,D.E.Cox,J.B.Hastings,RietveldrefinementofDebye–Scherrer synchrotronX-raydatafromAl2O3,JournalofAppliedCrystallography20

(1987)79–83.

[19]http://www.minsocam.org/MSA/CrystalDatabase.html

[20]S.J.Gregg,K.S.W.Sing,Adsorption,SurfaceAreaandPorosity,AcademicPress, London,1982,pp.35–120.

[21]M.M.Dubinin,Physicaladsorptionofgasesandvaporsinmicrospores,in:D.A. Cadenhead(Ed.),ProgressinSurfaceandMembraneScience,vol.9,Academic Press,NewYork,1975,pp.1–70.

[22]D.Dollimore,G.R.Heal,Animprovedmethodforthecalculationofporesize distributionfromadsorptiondata,JournalofAppliedChemistry14(1964) 109–114.

[23]E.S.Dragan,M.V.Dinu,D.Timpu,Preparationandcharacterizationofnovel compositesbasedonchitosanandclinoptilolitewithenhancedadsorption propertiesforCu2+,BioresourceTechnology101(2010)812–817.

[24]Y.S.Ho,G.McKay,Pseudosecondordermodelforsorptionprocess,Processin Biochemistry34(1999)451–465.

[25]W.Zou,R.Han,Z.Chen,Z.Jinghua,J.Shi,KineticstudyofadsorptionofCu(II) andPb(II)fromaqueoussolutionsusingmanganeseoxidecoatedzeolitein batchmode,ColloidsandSurfacesA279(2006)238–246.

[26]Z.Aksu,Determinationoftheequilibrium,kineticandthermodynamic param-etersofthebatchbiosorptionoflead(II)ionsontoChlorellavulgaris,Processin Biochemistry38(2002)89–99.

[27]D.Xu,X.L.Tan,C.L.Chen,X.K.Wang,AdsorptionofPb(II)fromaqueoussolution toMX-80bentonite:effectofpH,ionicstrength,foreignionsandtemperature, AppliedClayScience41(2008)37–46.

[28]M.Kragovi ´c,S.Mili ´cevi ´c,A.Dakovi ´c,J.Peri ´c,M.Trgo,N.Vukojevi ´c-Medvidovi ´c, M.Ugrina, ˇZ.Sekuli ´c,I.Nui ´c,Removalofcopperandleadbyclinoptiloliteand

clinoptilolite–ironsystem,in:O.E.Pertov,Y.K.Tzvetanova(Eds.),8th Inter-nationalConferenceontheOccurrence,PropertiesandUtilizationofNatural Zeolites,Sofia,Bulgaria,2010,pp.149–150(BookofAbstracts).

[29]N.Bektas¸,S.Kara,Removalofleadfromaqueoussolutionsbynatural clinoptilo-lite:equilibriumandkineticstudies,SeparationandPurificationTechnology39 (2004)189–200.

[30]A.D.Vujakovi ´c,M.Djuriˇci ´c,M.R.Tomaˇsevi ´c- ˇCanovi ´c,Thermalstudyof surfac-tantandanionadsorptiononclinoptilolite,JournalofThermalAnalysisand Calorimetry63(2001)161–172.

[31]M.K.Doula,A.Dimirkou,Useofaniron-overexchangedclinoptiloliteforthe removalofCu2+ionsfromheavilycontaminateddrinkingwatersamples,

Jour-nalofHazardousMaterials151(2008)738–745.

[32]M.J.Jiménez-Cedillo,M.T.Olguín,Ch.Fall,A.Colín,Adsorptioncapacityofiron– oriron–manganese-modifiedzeolite-richtuffsforAs(III)andAs(V)water pol-lutants,AppliedClayScience54(2011)206–216.

[33]P.Trivedi,J.A.Dyer,D.L.Sparks,Leadsorptionontoferrihydrite:1.A macro-scopicandspectroscopicassessment,EnvironmentalScienceandTechnology 37(2003)908–914.

[34]S.Serrano,P.A.O’Day,D.Vlassopoulos,M.T.Garcia-Gonzalez,F.Garrido,A sur-facecomplexationandionexchangemodelofPbandCdcompetitivesorption onnaturalsoils,GeochimicaetCosmochimicaActa73(2009)543–558. [35]S.-M.Lee,C.Laidawngliana,D.Tiwari,Ironoxide

nano-particles-immobilized-sandmaterialinthetreatmentofCu(II),Cd(II)andPb(II)contaminatedwaste waters,ChemicalEngineeringJournal195/196(2012)103–111.

[36]P.Lu,N.T.Nuhfer,S.Kelly,Q.Li,H.Konishi,E.Elswick,C.Zhu,Lead coprecip-itationwithironoxyhydroxidenano-particles,GeochimicaetCosmochimica Acta75(2011)4547–4561.

Referensi

Dokumen terkait

The experimental group that worked in a hypertext learning environment based on cognitive flexibility theory showed superior knowledge transfer, while the control group scored higher

Kamu tentunya sudah tahu organ-organ yang terlibat dalam proses pernapasan manusia. Tugasmu sekarang, coba buatlah gambar organ pernapasan manusia secara lengkap. Beri

Pertromyzon marinus. Orlovsky, Neurophysiology of locomotor automat- [44] P. Grillner, Activation of pharmacological- ism, Physiol. Sinamon, Preoptic and hypothalamic neurons and

Judul Tesis : ANALISIS FAKTOR YANG MEMENGARUHI KELENGKAPAN STATUS IMUNISASI DASAR PADA BAYI DI WILAYAH KERJA PUSKESMAS JEULINGKE KOTA BANDA ACEH TAHUN 2014 Nama Mahasiswa

Tujuan khusus, SMK bertujuan : (1) menyiapkan peserta didik agar dapat bekerja, baik secara mandiri atau mengisi lapangan pekerjaan yang ada di dunia usaha dan industri sebagai

Penulisan ilmiah ini dilakukan untuk menghitung harga pokok pesanan dan untuk mengetahui berapa harga jual yang dibebankan pada produk yang dipesan pada perusahaan Grafika

Pengawasan kode etik hakim yang dilakukan oleh Mahkamah Agung dan Komisi Yudisial sudah terlalu luas, oleh karena itu.. pembahasan penulisan ini dibatasi hanya

Berdasarkan Penetapan Pemenang Nomor 841/P7/SD/8/2017 Tanggal 22 Agustus 2017 maka dengan ini diumumkan pemenang pekerjaan dimaksud adalah sebagai berikut :.