• Tidak ada hasil yang ditemukan

APPLIKASI POWER WORLD SIMULATOR PADA ANALISIS KONTINGENSI SISTEM TENAGA LISTRIK (Syamsurijal)

N/A
N/A
Protected

Academic year: 2021

Membagikan "APPLIKASI POWER WORLD SIMULATOR PADA ANALISIS KONTINGENSI SISTEM TENAGA LISTRIK (Syamsurijal)"

Copied!
11
0
0

Teks penuh

(1)
(2)

APPLIKASI POWER WORLD SIMULATOR

PADA ANALISIS KONTINGENSI SISTEM TENAGA LISTRIK

Syamsurijal

Dosen Jurusan Pendidikan Teknik Elektro FT UNM

Abstrak

Penelitian ini bertujuan untuk mengetahui aliran daya dalam sistem tenaga listrik jika terjadi pelepasan pembangkit atau pelepasan saluran transmisi (kontingensi tunggal) dan jika terjadi dua rentetan pelepasan sekaligus (kontingensi ganda) pada sistem tenaga 5 bus dan 9 bus IEEE (Institute of Electrical and Electronics

Engineers). Metode yang digunakan dalam menganalisis kontigensi ialah metode impedansi bus dengan bantuan

software PW Simulator. Berdasarkan hasil penelitian tersebut, dapat disimpulkan bahwa perlu diambil langkah-langkah antisipatif dalam merancang maupun tindakan perbaikan dalam pengamanan terhadap sistem, agar sistem tetap dapat beroperasi secara kontinyu dalam keadaan stabil dan terkendali serta terhindar dari kondisi yang tidak diharapkan.

Kata Kunci: Analisis kontingensi, PW Simulator, overload, blackout, kontingensi ganda Keandalan kerja suatu sistem tenaga listrik

merupakan hal yang penting dan selalu menjadi pertimbangan utama dalam perancangan sistem tenaga listrik. Setiap tindakan pengoperasian sistem akan menimbulkan akibat tersendiri pada kualitas energi listrik yang dihasilkan.

Salah satu hal yang berkaitan dengan keandalan sistem adalah lepasnya unit pembangkit atau saluran transmisi yang perlu diperhitungkan dalam pengamanan sistem. Jika salah satu pembangkit lepas, sistem pada saat itu akan mengalami kekurangan daya dalam melayani beban yang ada. Jika dianggap bahwa kekurangan daya yang terjadi, segera dikompensasi dengan daya cadangan putar

(spinning reserve) yang dimiliki oleh rel referensi

sebesar daya yang hilang, maka frekuensi dan tegangan tidak akan mengalami penurunan yang drastis yang dapat mengakibatkan ketidakseimbangan sistem. Demikian pula jika sebuah saluran transmisi lepas, beban yang dipikulnya akan dialihkan ke saluran lain yang tersisa, sehingga saluran yang tersisa tersebut akan semakin berat bebannya dan dapat mengakibatkan terjadinya overload yang diikuti dengan adanya pelepasan saluran (Bonar Pandjaitan, 1999).

Kegagalan yang terjadi pada sistem munculnya secara tiba-tiba tanpa dapat diramalkan yang mengakibatkan keadaan sistem memburuk. Untuk menghindari kondisi yang tidak diinginkan, sangat penting untuk mempertimbangkan kemungkinan terjadinya kegagalan tersebut. Oleh karena itu, perlu dianalisis aliran daya dalam sistem pada saat terjadi kegagalan, sehingga dapat ditentukan langkah-langkah antisipatif agar kontinuitas pelayanan tetap terjaga.

Analisis kontingensi (contingency analysis) adalah analisis aliran daya setelah terjadi gangguan yang mengakibatkan lepasnya unit pembangkit atau saluran transmisi. Analisis ini dilakukan dengan mengacu pada keadaan sistem yang diperoleh dari studi aliran daya.

Metode yang digunakan dalam analisis kontigensi ini ialah metode matriks impedansi bus. Penelitian ini menggunakan bantuan komputer dengan

software PowerWorld simulator 10. Software ini

merupakan software gratisan yang di download dari internet. Kelebihan software ini selain menampilkan analisa juga dilengkapi dengan simulasi. Namun kapasitas software ini terbatas sebanyak 13 bus, karena itu sistem yang dikaji ialah sistem tenaga 5 bus dan 9 bus IEEE (Institute of Electrical and

(3)

Electronics Engineers). Sistem tenaga 9 bus IEEE

merupakan sistem uji Internasional, sehingga dapat dijadikan acuan dalam penelitian analisis kontingensi ini. Penggunaan program tersebut berujung kepada pendeteksian mengenai saluran mana saja dalam sistem yang dialiri daya tetap dalam batas kemampuan yang dimiliki dan saluran mana yang melewati batas kemampuannya.

Matriks Admitansi dan Impedansi Jaringan

Gambar 1 adalah sebuah contoh sistem tenaga listrik sederhana. Impedansinya dinyatakan per unit pada dasar MVA dan untuk penyederhanaan resistansi diabaikan.

Gambar 1. Diagram impedansi pada sistem tenaga listrik yang sederhana

Rangkaian Gambar 1 dapat diubah menjadi seperti Gambar 2 dalam besaran admitansi-admitansi dengan menggunakan persamaan:

ij ij ij ij

jx

r

Z

y

+

=

=

1

1

(1)

Gambar 2. Diagram admitansi untuk sistem tenaga listrik Gambar 1

Menurut Cekmas Cekdin (2004), arus I1 dan I2 dapat dicari dengan menerapkan Hukum Arus Kirchoff antara simpul-simpul dan menghasilkan:

)

(

)

(

1 2 13 1 3 12 1 10 1

y

V

y

V

V

y

V

V

I

=

+

-

+

-

(1a)

)

(

)

(

2 1 23 2 3 12 2 20 2

y

V

y

V

V

y

V

V

I

=

+

-

+

-

(1b)

)

(

)

(

)

(

0

=

y

23

V

3

-

V

2

+

y

13

V

3

-

V

1

+

y

34

V

3

-

V

4 (2a)

)

(

0

=

y

34

V

4

-

V

3 (2b)

Selanjutnya persamaan di atas disusun kembali dan diperoleh:

3 13 2 12 1 13 12 10 1

(

y

y

y

)

V

y

V

y

V

I

=

+

+

-

-

(3a) 3 23 2 23 12 20 1 12 2

y

V

(

y

y

y

)

V

y

V

I

=

-

+

+

+

-

(3b) 4 34 3 34 23 13 2 23 1 13

(

)

0

=

-

y

V

-

y

V

+

y

+

y

+

y

V

-

y

V

(4a) 4 34 3 34

0

=

-

y

V

+

y

V

(4b) dengan: 13 12 10 11

y

y

y

Y

=

+

+

(5a) 23 12 20 22

y

y

y

Y

=

+

+

(5b) 34 23 13 33

y

y

y

Y

=

+

+

(5c) 34 44

y

Y

=

(5d) 12 21 12

Y

y

Y

=

=

-

(5e) 13 31 13

Y

y

Y

=

=

-

(6f)

(4)

23 32 23

Y

y

Y

=

=

-

(6g) 34 43 34

Y

y

Y

=

=

-

(6h) Sehingga persamaan arus pada simpul menjadi:

4 14 3 13 2 12 1 11 1

Y

V

Y

V

Y

V

Y

V

I

=

+

+

+

(7a) 4 24 3 23 2 22 1 12 2

Y

V

Y

V

Y

V

Y

V

I

=

+

+

+

(7b) 4 34 3 33 2 32 1 31 3

Y

V

Y

V

Y

V

Y

V

I

=

+

+

+

(7c) 4 44 3 43 2 42 1 41 4

Y

V

Y

V

Y

V

Y

V

I

=

+

+

+

(7d)

Untuk sistem n bus persamaan arus pada simpul dalam bentuk matriks ialah:

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

n i nn ni n n in ii i i n i n i n i

V

V

V

V

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

I

I

I

I

M

M

M

M

M

M

M

M

M

M

L

L

L

L

M

M

2 1 2 1 2 1 2 2 22 12 1 1 12 11 2 1 ( 8) atau

Ibus = Ybus Vbus (9)

Jika arus bus diketahui, persamaan (9) dapat diselesaikan untuk tegangan n bus.

bus bus bus

Y

I

V

=

-1 (10) Invers matriks admitansi bus

Y

bus-1 dikenal sebagai matriks impedansi bus Zbus.

Studi Aliran Daya

Menurut Stevenson (1996), Saadat (1999) dan Cekmas (2004), studi aliran daya atau aliran beban merupakan analisis yang digunakan untuk mengetahui kondisi sistem dalam keadaan normal, sehingga sangat dibutuhkan dalam perencanaan sistem untuk masa yang akan datang dan merupakan bahan evaluasi atau kontrol untuk sistem yang telah ada. Analisis ini meliputi penentuan besarnya sudut fasa dan tegangan pada masing-masing bus dan aliran daya aktif dan reaktif pada tiap-tiap saluran.

Jadi secara umum tujuan dari studi aliran daya adalah :

a. Untuk mengetahui tegangan dan sudut fasa setiap bus dalam sistem.

b. Untuk memperoleh kondisi awal pada perencanaan sistem yang baru.

c. Untuk keperluan studi hubung singkat, stabilitas, dan pembebanan ekonomis.

d. Untuk mengetahui kemampuan peralatan-peralatan yang ada pada sistem dalam memenuhi batas-batas yang diizinkan.

Data-data yang diperlukan dalam analisis aliran daya menurut Stevenson (1999) adalah sebagai berikut:

a. Data pembangkit, yaitu kapasitas tiap generator dalam MW atau MVA, tegangan tiap generator dalam kV dan reaktansi sinkron tiap generator. b. Data transformator daya, yaitu kapasitas tiap

transformator daya dalam MVA, tegangan nominal (tegangan kerja) transformator dalam kV, dan reaktansi bocor tiap transformator dalam persen, pu atau ohm.

c. Data saluran, yaitu resistansi dan reaktansi tiap saluran dalam ohm/km dan panjang tiap saluran dalam km.

Bus-bus sistem secara umum dikelompokkan ke dalam 3 tipe (Saadat, 1999), yaitu:

a. Bus referensi (slack bus) atau bus PQ adalah bus yang berfungsi untuk menyuplai kekurangan daya nyata P dan daya reaktif Q termasuk rugi-rugi daya pada saluran transmisi, karena rugi-rugi daya ini nanti diketahui setelah penyelesaian akhir diperoleh.

b. Bus Pembangkit atau bus generator (bus PV) adalah bus yang dikontrol tegangannya dengan daya reaktif, agar tegangannya tetap. Besaran yang ditentukan adalah daya nyata P dan harga skalar tegangan |V|.

c. Bus Beban (bus PQ) adalah bus yang dihubungkan dengan beban. Pada bus beban,

(5)

daya nyata P dan daya reaktif Q merupakan besaran yang ditentukan sebagai input.

Keluaran perhitungan aliran daya meliputi: a. Aliran daya aktif dan daya reaktif pada jaringan

transmisi.

b. Profil tegangan disetiap bus beban (substation). c. Pembebanan dan efisiensi transformator

generator.

d. Total pembangkitan dalam kW, kVA, kVAr, dan faktor daya.

e. Total beban dalam kW, kVAr, dan faktor daya. f. Rugi-rugi antar saluran.

Hasil keluaran aliran daya ini digunakan untuk mengetahui aliran daya, mengevaluasi kemampuan pembangkit, besar rugi-rugi pada jaringan serta profil tegangan pada bus beban.

Terdapat bebarapa metode yang dapat digunakan dalam menghitung aliran daya, misalnya metode Gaus Sheidel, Newton-Raphson, dan Fast

Decouple. Dalam penyelesaiaannya, digunakan teknik

iterasi (Stevenson, 1999). Namun untuk memudahkan, sekarang sudah banyak program aplikasi komputer yang dapat digunakan untuk menghitung aliran daya, misalnya program Matlab dan PowerWord Simulator.

1. Analisis Kontingensi Metode Matriks Impedansi Bus

Analisis kontingensi pada dasarnya merupakan analisis keadaan aliran daya dalam sistem pada saat sistem mengalami kondisi yang akan memperburuk kualitas, keandalan, kontinuitas pelayanan, dan keamanan sistem. Kondisi ini bisa saja terjadi karena lepasnya generator atau saluran transmisi (Anderson,1978).

Metode matriks impedansi bus merupakan salah satu metode yang digunakan untuk menganalisis gangguan dengan komputer. Kelebihan metode ini ialah hanya sekali membuat matriks Zbus dari sistem

pada kondisi awal sebelum gangguan tetapi dapat dipakai untuk memprediksi kondisi sistem baik

setelah lepasnya satu bagian dari sistem (kontingensi

tunggal) maupun beberapa bagian sistem secara

beruntun (multi kontingensi). Analisis kontingensi tunggal

Analisis kontingensi tunggal adalah analisis kontingensi setelah terputusnya aliran listrik (outage) pada salah satu bagian sistem, artinya tidak terjadi dua pemutusan secara bersamaan. Pemutusan dapat terjadi karena salah satu saluran atau transformator lepas dari sistem, generator lepas, atau terjadi pergeseran pembangkitan (pergeseran arus injeksi), baik karena direncanakan untuk pemeliharaan rutin, maupun terpaksa karena kondisi cuaca atau karena gangguan.

1) Pergeseran arus injeksi

Pada sistem tenaga listrik, misalkan terdiri atas 4 bus yaitu bus m, n, p, dan q. Pada bus m diberikan tambahan arus injeksi sebesar ∆Im akan

terjadi perubahan tegangan pada setiap bus dan perubahan arus yang mengalir pada setiap saluran. Perubahan tegangan pada sistem karena tambahan arus injeksi tadi dinyatakan dengan:

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

D

D

D

D

n j i

V

V

V

V

M

M

1 =

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-n n j j i i

V

V

V

V

V

V

V

' ' ' 1 ' 1

V

M

M

=Zbus

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

D

0

0

M

M

m

I

= m bus

Kolomm

I

Z

é

ù

D

ê

ú

ë

û

(13)

Zbus adalah matriks impedansi bus awal sebelum penambahan arus injeksi.

Perubahan tegangan pada bus i dan j dapat ditulis:

∆Vi = Zim∆Im ∆Vj = Zjm∆Im (14) dengan Zim dan Zjm adalah komponen-komponen dari

Zbus.

Jika saluran yang menghubungkan bus i dan bus j mempunyai impedansi primitif Zc, maka

(6)

perubahan arus yang mengalir dari bus i ke bus j adalah: m c jm im c j i ij

I

z

Z

Z

z

V

V

I

=

D

-

D

=

-

D

D

(15)

Dari persamaan (15) ini didefinisikan istilah faktor distribusi arus-injeksi atau current-injection

distribution factor, Kij,m yang dirumuskan dengan:

c jm im m ij m ij

z

Z

Z

I

I

K

=

-D

D

=

, (16)

yaitu perbandingan antara perubahan arus di satu saluran, saluran ij terhadap perubahan arus-injeksi pada satu bus, bus m. Perubahan arus pada saluran ij karena perubahan arus-injeksi pada bus m adalah

m ij ij

K

I

I

=

D

D

(17) Hubungan ini menunjukkan bahwa beban lebih pada saluran dapat dihilangkan dengan menurunkan arus-injeksi pada suatu bus dan menaikkan arus-injeksi pada bus lain, atau dengan kata lain menurunkan pembangkitan daya suatu unit pembangkit dan menaikkan daya yang dibangkitkan pada unit yang lain.

Apabila arus-injeksi pada bus p diubah sebesar ∆Ip dan pada bus q arus-injeksi diubah sebesar ∆Iq, maka dengan prinsip superposisi, perubahan arus pada saluran ij dapat dihitung dengan:

q q ij p p ij ij

K

I

K

I

I

=

D

+

D

D

, , (18)

(

)

(

)

c q jq iq p jp ip ij

z

I

Z

Z

I

Z

Z

I

=

-

D

+

-

D

D

(19)

Faktor distribusi arus-injeksi disebut sebagai faktor distribusi pergeseran arus (current-shift

distribution factor). Pada model aliran daya DC,

pergeseran arus dari bus yang satu ke bus yang lain ekivalen dengan pergeseran pembangkitan daya aktif dari bus yang satu ke bus yang lain. Oleh karena itu, faktor distribusi arus sering disebut faktor distribusi

pergeseran pembangkitan (generation-shift

distribution factor).

2) Saluran lepas dari sistem

Mengeluarkan satu saluran dari operasi sitem tenaga dapat disimulasikan dalam model sistem dengan penambahan suatu impedansi negatif yang besarnya sam dengan impedansi saluran itu di antara kedua bus di ujung saluran tersebut, Zbus sistem tidak perlu dimodifikasi, penurunan persamaan perubahan tegangan tiap bus dan perubahan arus tiap saluran cukup dengan menggunakan Zbus sistem awal sebelum saluran lepas.

Misalkan suatu saluran antara bus m dan bus

n dengan impedansi seri za yang terlepas dari sistem dapat disimulasikan dengan menambah impedansi –za antara kedua bus dalam rangkaian ekivalen sistem

pre-outage, yaitu sebelum saluran mn lepas, seperti

pada Gambar 3. Saluran mn lepas disimulasikan

dengan menghubungkan impedansi –za dengan

memasukkan saklar S, sehingga mengalir arus Ia.

Dengan Zmn = Znm, dari Gambar 3 terlihat bahwa,

(

)

thmn a n m a mn nn mm n m a

z

Z

V

V

z

Z

Z

Z

V

V

I

-=

-+

-=

,

2

(20)

dengan Vm dan Vn ialah tegangan pre-outage bus m dan bus n dan Zth,mn = (Zmm + Znn – 2 Zmn) ialah impedansi Thevenin antara bus m dan bus n. Efek arus

Ia terhadap tegangan pre-outage bus m dan bus n

sama dengan memberikan arus injeksi ∆Im = -Ia ke dalam bus m dan ∆In = Ia ke dalam bus n. Perubahan arus pada sembarangan arus ij dengan impedansi zc ialah,

(

)

(

)

[

]

a c jm jn im in n n ij m m ij ij

I

z

Z

Z

Z

Z

I

K

I

K

I

-=

D

+

D

=

D

, , (21)

(7)

Gambar 3. Rangkaian ekivalen Thevenin pre-outage untuk simulasi lepasnya saluran mn

Substitusi untuk Ia dari persamaan (20) ke dalam

persamaan (21) diperoleh,

(

)

(

)

[

]

(

thmn a

)

n m c jm jn im in ij

z

Z

V

V

z

Z

Z

Z

Z

I

-=

D

, (22) Sebelum saluran mn lepas, arus yang mengalir pada saluran tersebut, a n m mn

z

V

V

I

=

-

(23) Dengan menggabungkan persamaan (22) dan (23) kita peroleh perubahan arus pada saluran ij yang disebabkan oleh lepasnya saluran mn dari sistem yaitu,

(

)

(

)

mn a mn th jm jn im in c a ij

I

z

Z

Z

Z

Z

Z

z

z

I

ú

ú

û

ù

ê

ê

ë

é

-=

D

, (24) atau

(

)

(

)

mn ij a mn th jn jm in im c a mn ij

L

z

Z

Z

Z

Z

Z

z

z

I

I

, ,

=

ú

ú

û

ù

ê

ê

ë

é

-=

D

(25)

Lij,mn disebut Faktor Distribusi Saluran-Keluar

(line-outage distribution factor) yang menyatakan besar

perubahan arus pada saluran ij dengan impedansi seri

zc karena keluarnya saluran mn dari sistem yang

mempunyai impedansi seri za.

Arus yang mengalir pada saluran ij setelah saluran mn keluar diberikan oleh persamaan,

mn mn ij ij ij ij ij

I

I

I

L

I

I

'

=

+

D

=

+

, (26)

Imn adalah arus saluran mn sebelum lepas dari sistem,

dapat diperoleh dari hasil analisis aliran daya. Dengan persamaan (26) dapat diketahui apakah tiap saluran

mengalami pembebanan lebih (overload) atau tidak setelah satu saluran lepas dari sistem.

b. Analisis Multi Kontingensi

Bila terjadi dua kontingensi tunggal berturut-turut atau simultan, perhitungan perubahan arus yang mengalir melalui setiap saluran dapat dilakukan dengan mengkombinasikan faktor-faktor distribusi dari kontingensi tunggal yang sudah dihitung lebih dahulu pada studi kontingensi tunggal.

1) Satu saluran lepas dan pergeseran arus-injeksi

Bila saluran mn keluar dari sistem diikuti dengan pengurangan arus-injeksi ke bus p serta penambahan arus injeksi ke bus q, maka perubahan arus pada sembarangan saluran ij dapat diturunkan dengan prinsip superposisi menggunakan faktor-faktor distribusi dari kontingensi tunggal dan hasilnya diberikan oleh persamaan,

(

)

q K q mn mn ij q ij p K p mn mn ij p ij ij

K

L

K

I

K

L

K

I

I

q ij p ij

D

+

+

D

+

=

D

4

4

4 3

4

4

4 2

1

4

4

4 3

4

4

4 2

1

' , ' , , , , , , , (27)

dengan

K

ij', p ialah faktor distribusi pergeseran pembangkitan yang baru, yang menyatakan perubahan arus pada saluran ij karena penambahan atau pengurangan arus injeksi di bus p sebesar ∆Ip yang

sebelumnya didahului oleh lepasnya saluran mn. Hal yang sama dinyatakan untuk

K

ij',q.

2) Dua saluran lepas

Gambar 4 menunjukkan bahwa saluran pq lepas dari sistem pada saat saluran mn telah lepas sebelumnya dari sistem karena pemeliharaan, sehingga perubahan arus pada sembarang saluran ij adalah,

(8)

dengan : ' , , , , , ,

1

pqmn mnpq ijmn mn pq pq ij mn ij

L

L

L

L

L

L

=

-+

(29) ' , , , , , ,

1

mnpq pqmn ij pq pq mn mn ij pq ij

L

L

L

L

L

L

=

-+

(30) ' ,mn ij

L

adalah faktor distribusi saluran lepas efektif yang menyatakan perubahan arus dalam kondisi statis (steady state) saluran ij akibat lepasnya saluran mn ketika saluran pq telah lepas lebih dahulu dari sistem. Pernyataan yang sama juga untuk

L

'ij, pq.

Dalam praktek, umumnya perhitungan dalam analisis kontingensi dilakukan dengan model aliran daya DC (Wood, 1986). Dengan model ini beberapa asumsi dapat digunakan, antara lain:

§ Sistem tanpa rugi-rugi dan saluran direpresentasikan dengan reaktansi serinya.

§ Tegangan dari setiap bus mendekati 1 pu.

§ Arus dalam pu dianggap sama dengan daya aktif dalam pu.

Gambar 4. Lepasnya saluran mn diikuti dengan lepasnya saluran pq.

2. PowerWorld Simulator

PowerWorld simulator (PWS) adalah suatu

paket program analisis sistem tenaga yang dilengkapi dengan simulasi. Program komputer ini digunakan untuk menganalisis sistem tenaga seperti analisis aliran daya, analisis kontingensi, studi hubung singkat, analisis transien, analisis kestabilan dinamis, analisis kestabilan tegangan, dan lain-lain. Untuk menggunakan paket program ini, pertama-tama PWS

ini diinstal pada komputer yang akan digunakan. Setelah itu, untuk menjalankannya adalah mengklik ganda ikon PWS seperti pada Gambar 5. untuk memulai program ini. Selanjutnya, editor PWS seperti Gambar 6 ditampilkan dan PWS siap digunakan. Pilih file, new case untuk membuka file baru separti pada Gambar 7.

Gambar 5. Ikon powerWorld simulator pada desktop

Gambar 6. Antar muka powerWorld

simulator

Gambar 7. File baru PWS

PWS mempunyai dua gaya operasi utama,

yaitu edit mode dan run mode. Edit mode digunakan untuk membangun kasus baru dan memodifikasi

(9)

kasus yang ada. Run mode digunakan untuk menjalankan simulasi dan menampilkan hasil analisis. Simbol-simbol PWS dapat dilihat pada Gambar 8, dimana pembangkit dinyatakan sebagai suatu lingkaran dengan suatu baling-baling, panah besar melambangkan beban, garis tebal melambangkan bus, kotak merah melambangkan Circuit Breaker (CB), dan jalur transmisi digambar sederhana seperti garis. Di dalam PWS, kuat arus dapat divisualisasikan dengan panah dilapiskan di atas generator, beban, dan jalur transmisi. Ukuran dan arah panah menandai besar kecil dan arah arus.

Gambar 8. Simbol-simbol pada powerWorld

simulator

METODE PENELITIAN

Penelitian ini merupakan penelitian deskriptif yang diharapkan dapat mengungkapkan hasil perhitungan aliran daya setelah terjadi pelepasan pembangkit, pelepasan saluran, atau dua rentetan pelepasan sekaligus pada sistem tenaga 5 bus dan sistem tenaga 9 bus IEEE.

HASIL DAN PEMBAHASAN PENELITIAN Analisis kontingensi membutuhkan data aliran daya pada setiap saluran sebelum terjadi pelepasan pembangkit atau saluran. Dengan demikian, walaupun penelitian ini tidak bertujuan untuk mengetahui aliran daya normal, namun analisis aliran daya tetap dilakukan. Gambar 9 dan 10 menunjukkan diagram satu garis sistem tenaga 5 bus dan 9 bus IEEE sebelum analisis aliran daya.

Gambar 9. Diagram satu garis 5 bus IEEE

Gambar 10. Diagram satu garis sistem tenaga 9 bus IEEE

1. Aliran Daya

Aliran daya pada sistem tenaga 5 dan bus berada pada keadan normal. Pada sistem tenaga 5 bus IEEE, daya terbesar berada pada bus 1, yakni sebesar 129.8 MVA, sedangkan pada sistem tenaga 9 bus IEEE, daya terbesar berada pada bus 2 yakni sebesar 165.8 MVA.

2. Analisis Kontingensi

Hasil analisis kontingensi dapat dijelaskan sebagai berikut:

(10)

Pada sistem tenaga 5 bus IEEE, bus referensi adalah bus 1, bus pembangkit adalah bus 2, dan bus beban adalah bus 3, bus 4, dan bus 5.

1) Kontingensi tunggal

Hasil analisis kontingensi tunggal menunjukkan bahwa pada sistem tenaga 5 bus IEEE, saluran yang mengalami overload hanya jika saluran 2-5 yang lepas menyebabkan saluran 2-4 mengalami overload. Aliran daya pada saluran ini sebelum overload sebesar 41.1 MVA, namun setelah terjadi pelepasan saluran 2-5, aliran dayanya menjadi 75,4 MVA sementara kemampuan saluran menyalurkan daya hanya sebesar 70 MVA.

2) Multi kontingensi

Hasil analisis kontingensi ganda menunjukkan, bahwa jika terjadi pelepasan pembangkit dan saluran sekaligus atau pelepasan dua saluran sekaligus, akan menyebabkan beberapa saluran mengalami overload. Hasil kontingensi ganda untuk sistem 5 bus IEEE dapat dilihat ringkasannya pada Tabel 1 (yang ditampilkan hanya pelepasan yang menyebabkan overload).

Tabel 1. Saluran-saluran yang overload jika terjadi kontingensi ganda pada sistem tenaga 5 bus IEEE

.

Bus referensi adalah bus 1, bus pembangkit adalah bus 2 dan 3, bus beban adalah bus 5, 6, dan 8.

3) Kontingensi tunggal

Aliran daya hasil analisis kontingensi jika ada pembangkit atau saluran yang lepas dan saluran-saluran yang mengalami overload dapat di lihat pada Tabel 2.

Tabel 2. Saluran-saluran yang mengalami beban lebih (overload) jika terjadi kontingensi tunggal pada sistem tenaga 9 bus IEEE

Keterangan:

S : Aliran daya sebelum pelepasan terjadi S’ : Aliran daya setelah pelepasan terjadi Smax : Batas aliran daya saluran

4) Multi kontingensi

Hasil analisis kontingensi ganda menunjukkan, bahwa jika terjadi pelepasan pembangkit dan saluran sekaligus atau pelepasan dua saluran sekaligus, akan menyebabkan beberapa saluran mengalami overload. Hasil kontingensi ganda untuk sistem 9 bus IEEE dapat dilihat ringkasannya pada Tabel 3 (yang ditampilkan hanya pelepasan yang menyebabkan overload).

Tabel 3. Saluran-saluran yang overload jika terjadi kontingensi ganda pada sistem tenaga 9 bus IEEE

(11)

Keterangan:

S : Aliran daya sebelum gangguan terjadi S’ : Aliran daya setelah gangguan terjadi Smax : Batas aliran daya saluran

SIMPULAN DAN SARAN

Pelepasan pembangkit akan menyebabkan sistem kekurangan pembangkitan. Apabila bus referensi memiliki pembangkitan yang cukup, kekurangan tersebut dapat diatasi, namun hal ini akan menyebabkan aliran daya di sistem berubah. Beberapa saluran mungkin mengalami overload, sehingga akan dilepaskan dari sistem oleh alat proteksi. Dengan demikian tidak terjadi blackout, sehingga kontinuitas pelayanan tetap terjaga. Hal yang sama dialami jika terjadi pelepasan saluran. Dengan lepasnya sebuah saluran, maka bebannya akan dialihkan ke saluran yang lain. Saluran yang menerima beban akan semakin berat bebannya, sehingga kemungkinannya akan mengalami overload.

Apabila terjadi 2 pelepasan secara bersamaan, maka pada beberapa kasus bukan hanya terjadi overload pada saluran, tetapi bahkan terjadi

blackout (pemadaman total).

DAFTAR PUSTAKA

Al Imran. 2007. Analisis kontingensi tunggal dan multi kontingensi dengan metode matriks impedansi bus. Jurnal media elektrik Vol. 2,

No.1, Hal. 1-7. Makassar: Jurusan Teknik

Elektro FT UNM.

Anderson, Paul M. 1978. Analysis of faulted power

system. Iowa: The Iowa State University

Press.

Bonar Pandjaitan. 1999. Teknologi sistem

pengendalian tenaga listrik berbasis SCADA. Jakarta: Prenhallindo.

Cekmas Cekdin. 2004. Teori dan contoh soal teknik

elektro menggunakan bahasa pemrograman MATLAB. Yogyakarta: Andi Yogyakarta.

Stevenson, William D. Jr. 1996. Analisis sistem

tenaga listrik. Edisi 4. Terjemahan Kamal

Idris. Jakarta: Erlangga.

Syamsurijal .2003. Tesis. Analisis kontingensi sistem

tenaga listrik menggunakan metode kepekaan jaringan. Makassar: FT. UNHAS.

Gambar

Gambar  1 adalah  sebuah  contoh  sistem  tenaga listrik sederhana. Impedansinya dinyatakan per  unit pada dasar MVA dan untuk penyederhanaan  resistansi diabaikan
Gambar 3.  Rangkaian ekivalen Thevenin pre-outage  untuk simulasi lepasnya saluran mn
Gambar 5. Ikon powerWorld simulator pada desktop
Gambar 8. Simbol-simbol pada powerWorld  simulator
+2

Referensi

Dokumen terkait

Analisis aliran beban memuat perhitungan aliran daya dan tegangan sebuah sistem tenaga listrik untuk mengatur kapasitas generator, kondensator, dan perubahan tap

a) Run Load Flow adalah icon toolbar aliran daya yang menghasilkan atau menampilkan hasil perhitungan aliran daya sistem distribusi tenaga listrik dalam diagram

Pada kenyataannya, gangguan yang terjadi berupa lepasnya elemen sistem (outage) dalam sistem tenaga listrik adalah sesuatu yang tidak dapat sepenuhnya

IV.14 Perhitungan Penurunan Frekwensi karena gangguan Unit Pembangkit 277 IV.15 Pelepasan Beban untuk menghindarkan Gangguan Berat dalam Sistem 284. IV.16 Flow Chart untuk

Tujuan penelitian ini adalah menentukan aliran daya aktif maupun reaktif pada saat kondisi normal dan saat terjadi kontingensi saluran transmisi N-1, menentukan urutan performansi

Dapat menjalankan simulasi aliran daya (Load Flow) untuk menganalisis turun tegangan dan rugi daya yang terjadi pada sistem yang dibuat..

Nilai ini digunakan kembali untuk perhitungan iterasi ke-2 dengan cara memasukan nilai ini ke dalam Persamaan (2.41) dan (2.42) sebagai langkah awal perhitungan aliran daya,

Gambar 2.5 Gardu Distribusi PLN, 2010 2.4 Studi Aliran Daya Studi aliran daya merupakan penentuan atau perhitungan tegangan, arus, daya aktif maupun, daya reaktif yang terdapat pada