• Tidak ada hasil yang ditemukan

Effects of Air Pressure Changes on Gamma Linear Attenuation Coeeficient in The Air

N/A
N/A
Protected

Academic year: 2021

Membagikan "Effects of Air Pressure Changes on Gamma Linear Attenuation Coeeficient in The Air"

Copied!
17
0
0

Teks penuh

(1)

Effects of Air Pressure Changes on Gamma Linear Attenuation

Coeeficient in The Air

Oleh : Wandi Wantoro NIM : 192012024

TUGAS AKHIR

Diajukan kepada Program Studi Pendidikan Fisika, Fakultas Sains dan Matematika guna memenuhi sebagian dari persyaratan untuk memperoleh gelar Sarjana Pendidikan

Program Studi Pendidikan Fisika

FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS KRISTEN SATYA WACANA

SALATIGA 2017

(2)
(3)
(4)
(5)

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa atas berkat dan karunia-Nya, penulis dapat menyelesaikan tugas akhir dengan judul “Effects of Air Pressure Changes on Gamma Linear Attenuation Coefficient inThe Air”. Penyusunan laporan penelitian ini berguna untuk memenuhi salah satu syarat tugas akhir dalam menyelesaikan studi pendidikan fisika dan mendapatkan gelar Sarjana Pendidikan di Universitas Kristen Satya Wacana.

Adapun berbagai pihak yang telah membantu penulis dalam menyelesaikan tugas akhir ini, baik secara langsung dan tidak langsung. Maka, penulis menyampaikan ucapan terima kasih kepada semua pihak yang turut membantu yaitu :

1. Tuhan Yang Esa yang telah memberikan ridho-Nya sehingga saya diberikan kelancaran dalam menyelesaikan tugas akhir ini dengan baik.

2. Kedua orang tua yang senantiasa mendukung baik secara moral, materiil, serta mendoakan dan membimbing saya.

3. Kakak yang senantiasa mendukung baik secara moral, materiil, serta mendoakan dan membimbing saya.

4. Dian Juniarti yang memberi motivasi dan dukungan.

5. Dosen-dosen yang memberi pengetahuan dan bimbingan selama perkuliahan. 6. Laboran yang membantu mempersiapkan alat dalam pengambilan data. 7. Teman-teman angkatan 2012.

Harapannya, laporan penelitian tugas akhir ini dapat bermanfaat di masa mendatang bagi pembaca. Penulis menyadari bahwa penyusunan tugas akhir ini memiliki banyak kekurangan. Sebab itu, penulis membutuhkan masukan berupa saran dan kritik yang bersifat membangun dari berbagai pihak ke arah yang lebih baik.

Salatiga, 8 September 2017 Penulis,

Wandi Wantoro

(6)

DAFTAR ISI

LEMBAR PENGESAHAN i

LEMBAR PERNYATAAN TIDAK PLAGIAT ii

LEMBAR PERSETUJUAN AKSES iii

KATA PENGANTAR iv

DAFTAR ISI v

JURNAL 1

LAMPIRAN

SERTIFIKAT SEMINAR SEBAGAI PEMAKALAH 11

(7)

1

Effects of Air Pressure Changes on Gamma Linear

Attenuation Coefficient in The Air

Wandi Wantoro1, Suryasatriya Trihandaru1*, Alvama Pattiserlihun1

1

Physics Department of Science and Mathematics Faculty, Universitas Kristen Satya Wacana, Diponegoro St. No. 52-60 Salatiga, Jawa Tengah, Indonesia

Abstract. The measurements of gamma linear attenuation coefficient in the air at variance air pressure has been done. The measurements were performed to determine the effects of air pressure changes on gamma linear attenuation coefficient in the air. The measurements were used Co-60 as the gamma radiation source and LND 72 Geiger-Muller as the radiation detector in a room with 18oC room temperature and 68% air humidity. The linear attenuation coefficient value was calculated according to Lambert-Beer law. From the measurement, we obtained the attenuated gamma intensity in the air at air pressure variation. The unattenuated gamma intensity was determined by making a linear fit function of the attenuated gamma intensity data. From the calculation, It was found that the value of gamma linear attenuation coefficient in the air increases with the increasing of air pressure.

Keywords: Gamma ray; air pressure; linear attenuation coefficient.

*

(8)

2

1.

Introduction

Nowadays nuclear radiation technology is used in a variety of different fields such as nuclear power stations, particle accelerators, medical hospitals and etc. (U.S.NRC, 2017). Nuclear radiation can emit high energy but can not felt directly by human senses and thus the use of nuclear radiation must be arranged and supervised according to IAEA on his book entitled “radiation protection and safety of radiation sources: international basic safety standards” (IAEA, 2014).

In radiation protection activity is known by linear attenuation coefficient. Linear attenuation coefficient has defined as the probability of a photon interacting with a material per unit path length (Akkurt, 2012). The value of linear attenuation coefficient has shown how much photon fraction through an absorber.

Air is a mixture of many gases that surrounds the earth (Prayudi, 2011). The condition of air has referred to temperature, humidity, and air pressure. Air pressure is the force exerted by the weight of the air. The value of air pressure is affected by air temperature and moisture (Pressure, 2013). Air also a material which interacts with photon radiation, so air has the value of linear attenuation coefficient.

There are several studies that gamma linear attenuation coefficient has measured in some materials such as alloy, concrete, air, ect (Akkurt, 2012; Singh, 2013; Singh, 2015; Elmahroug, 2015; Sharaf, 2013; De Figueiredo, 2015). In this paper, we measure the gamma linear attenuation coefficient in the air at variance air pressure. The result is used to determine the effects of air pressure changes on gamma linear attenuation coefficient in the air.

2.

Materials and Methods

2.1 Gamma intensity measurement

Gamma intensity measurement was done by penetrating gamma rays through the materials (Foldiak, 1986). The gamma rays through the absorber which the gamma source was placed opposite sides with the radiation detector on the same axis (Buyuk, 2014). The radiation detector then counted the gamma ray which comes from the source. Gamma intensity measurement was done using Co-60 as gamma radiation source and LND 72 Geiger-Muller as a radiation detector. The radiation detector counting was performed using Logger Pro software (Logger Pro, 2017). Figure 1 shows the schematic view of gamma intensity.

(9)

3

Figure 1. The schematic view of gamma intensity measurement.

Gamma intensity measurements were made at a distance or thickness variation absorber 5 cm, 10 cm, 15 cm and 20 cm. The measurements were performed in a room with 18 oC temperature

and 68% air humidity. The measurements were made at an air pressure variation 25 × 103 Pa to 190 × 103 Pa with the variation range of air pressure 5 × 103 Pa. In each air pressure variation, the

radiation detector was counted the gamma ray in 60 s and 120 s then it repeated six times.

2.2 Calculation of Linear attenuation Coefficient

The Calculation of linear attenuation coefficient of gamma radiation in the air has accorded to Lambert-Beer law (Akurt, 2013):

0

( ) x

I xI e , (1)

Where I(x) was the attenuated gamma intensity, I0 was the unattenuated gamma intensity, μ was the

linear attenuation coefficient and x was the thickness of absorber. By took the logarithm of both sides of the equation 1, we have calculated the value of the linear attenuation coefficient (Singh, 2002 & Sharaf, 2013): 0 1 ln ( ) I x I x  , (2)

3.

Results and Discussion

The results of gamma intensity measurements on each air pressure variation can be seen in Figure 2. From the data of Figure 2, was made a linear fit to determine the value of unattenuated gamma intensity. Vernier PVC Pb Co-60 Glass PC

Gas Pressure Sensor Radiation

Detector

(10)

4 (a) (b) (c) y = -0.0006x + 0.5492 R² = 0.2308 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 At tenua ted ga m m a int ens it y (c ps)

Air Presure (× 103Pa)

Linear fit of the data

y = -0.0005x + 0.4521 R² = 0.2157 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 At tenua ted ga m m a int ens it y (cps )

Air Presure (× 103Pa)

Linear fit of the data

y = -0.0007x + 0.4413 R² = 0.3687 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 At tenua ted ga m m a int ens it y (cps )

Air Presure (× 103Pa)

(11)

5 (d)

Figure 2. Attenuated gamma intensity. (a) 5 cm thicknes absorber, (b) 10 cm thicknes absorber, (c) 15 cm thicknes absorber, (d) 20 cm thicknes absorber.

Table 1 shows the value of unattenuated gamma intensity at each absorber thickness. The value of unattenuated gamma intensity obtained from the linear fit function:

0 ( )

I xaPI , (3)

Table 1. The Value of unattenuated gamma intensity.

Absorber thickness (cm)

Unatenuated gamma intensity (cps)

5 0.549212185

10 0.452114528

15 0.441340612

20 0.432642072

The value of linear attenuation coefficient was calculated with Eq. 2 as illustrated in Figure 3. Figure 3 shows that the value of linear attenuation coefficient in air increases with the increasing of air pressure. It is because of the value of linear attenuation coefficient in the air is affected by the value of air density (De Figueiredo, 2011). The value of air density itself is affected by many factors that one of them is air pressure changing. The value of air density is increased with the increasing of air pressure (Davis, 1992).

y = -0.0007x + 0.4326 R² = 0.3298 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 At tenua ted ga m m a int ens it y (c ps)

Air Presure (× 103Pa)

(12)

6 (a) (b) (c) y = 2.56E-04x - 0.00143 R² = 0.9611 0 0.02 0.04 0.06 0.08 0.1 0.12 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Li nea r at tenua ti on coef fi ci ent (c m -1)

Air Presure (× 103Pa)

Linear fit of the data

y = 1.37E-04x - 0.00088 R² = 0.9611 0 0.02 0.04 0.06 0.08 0.1 0.12 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Li ne ar a tt enu at ion coe ff ici ent (cm -1)

Air Presure (× 103Pa)

Linear fit of the data

y = 1.17E-04x - 0.00082 R² = 0.9611 0 0.02 0.04 0.06 0.08 0.1 0.12 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Li nea r at tenua ti on coef fi ci ent (c m -1)

Air Presure (× 103Pa)

(13)

7 (d)

Figure 3. The value of linear attenuation coefficient at each air pressure variation. (a) 5 cm thicknes absorber, (b) 10 cm thicknes absorber, (c) 15 cm thicknes absorber, (d) 20 cm thicknes absorber.

From the data of Figure 3, the effect of air pressure changes on gamma linear attenuation coefficient in the air was obtained. The effect of air pressure changes on gamma linear attenuation coefficient in the air is determined by made a linear regression of the data so the corelation function of air pressure changes on gamma linear attenuation coefficient in the air can be presented as:

0

aP

  , (4)

Where μ was the linear attenuation coefficient at P air pressure value, P was the value of air pressure, μ0 was the linear attenuation coefficient at 0 air pressure, and a was the effect of air

pressure changes on gamma linear attenuation coefficient. Table 2 shows the correlation function of air pressure changes on gamma linear attenuation coefficient in the air at each absorber thickness variation.

Table 2. The correlation function of air pressure changes on gamma linear attenuation coefficient in the air.

Absorber thickness (cm) Function 5 y = 2.56E-04x - 0.00143 10 y = 1.37E-04x - 0.00088 15 y = 1.17E-04x - 0.00082 20 y = 8.98E-05x - 0.00064 y = 8.98E-05x - 0.00064 R² = 0.9611 0 0.02 0.04 0.06 0.08 0.1 0.12 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 Li nea r at tenua ti on coef fi ci ent (c m -1)

Air Presure (× 103Pa)

(14)

8

From the data in Table 2, the value of linear attenuation coefficient was calculated. The calculated value of linear attenuation coefficient then compared with the linear attenuation coefficient value from the data of Figure 3.

Figure 4. The linear attenuation coefficient, ( ) value from the data, ( ) calculated value according to linear function at each absorber thickness, ( ) at 45 × 103 Pa, ( ) at 75 × 103 Pa, ( ) at 95 × 103 Pa, ( ) at 115 ×

103 Pa, ( ) at 140 × 103 Pa, ( ) at 155 × 103 Pa, ( ) at 170 × 103 Pa, ( ) at 185 × 103 Pa.

Figure 4 shows the comparison of the calculated linear attenuation coefficient value with the linear attenuation coefficient value from the data. It is found that the calculated value of linear attenuation coefficient has a small difference with the linear attenuation coefficient value from the data. Figure 4 shows that the linear attenuation value in the air decreases with absorber thickness increases in a logarithmic function.

4.

Conclusion and Remarks

In this paper, the gamma linear attenuation coefficient in the air at air pressure variation was measured. The measurements are performed to determine the effect of air pressure changes on gamma linear attenuation coefficient in the air. The measurements were used Co-60 as the gamma radiation source and LND 72 Geiger-Muller as the radiation detector in a room with 18oC room

temperature and 68% air humidity. From the measurement, we obtained the attenuated gamma intensity in the air at air pressure variation. The unattenuated gamma intensity was determined by making a linear fit function of the attenuated gamma intensity data. From the calculation, It was found that the value of gamma linear attenuation coefficient in the air increases with the increasing of air pressure. 0 0.02 0.04 0.06 0.08 0.1 0.12 0 5 10 15 20 25 Li ne ar a tt en ua ti on coef fi ci ent (cm -1) Absorber thickness (cm)

(15)

9

References

De Figueiredo, M.T.T., Guimarães, M.C., & Da Silva, T.A. (2011, October). The influence of air humidity on the determination of the half-value layer of low energy x-ray reference radiation. Paper presented at 2011 International Nuclear Atlantic Conference, Belo Horizonte, Brazil.

Buyuk B., & Tugrul A.B. (2014). An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide–silicon carbide composites. Radiation Physic sand Chemistry 97 (2014) 354–359 .

Akkurt I., & El-Khayatt A.M. (2013). The effect of barite proportion on neutron and gamma-ray shielding. Annals of Nuclear Energy 51 (2013) 5–9.

Sharaf J.M., & Hamideen M.S. (2013). Photon attenuation coefficients and shielding effects of Jordanian building materials. Annals of Nuclear Energy 62 (2013) 50–56.

Földiak, G. (1986). Industrial Application of Radioisotopes. Elsevier. Amsterdam.

Singh, K. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses. Nuclear Instruments and Methods in Physics Research B 194 (2002) 1–6.

Davis, R.S. (1992). Equation for the determination of the density of moist air. Metrologia 1992, 29, 67-70. Vernier Software & Technology. (2017). Logger Pro. Retrieved from

https://www.vernier.com/products/software/lp/

IAEA. (2014). Radiation protection and safety of radiation sources: international basic safety standards. Viena: Austria.

Akkurt I., Altindag R., Gunoglu K., Sarıkaya H. (2012). Photon attenuation coefficients of concrete including marble aggregates. Annals of Nuclear Energy 43 (2012) 56–60.

Climate Education for K-12. (2013). Pressure. Retrieved from http://climate.ncsu.edu/edu/k12/.pressure United States Nuclear Regulatory Commision. (2017). Radiation All Around Us. Retrieved from

https://www.nrc.gov/about-nrc/radiation/around-us/uses-radiation.html

Prayudi T., Susanto J.P. (2011). Kualitas debu dalam udara sebagai dampak industri pengecoran logam ceper. Jurnal Teknologi Lingkungan 2 168-174.

Singh, V.P. & Badiger, N.M. (2013). Gamma ray and neutron shielding properties of some alloy materials. Annals of Nuclear Energy 64 (2014) 301–310.

Singh, V.P., Medhat, M.E. & Badiger, N.M. (2015). Photon energy absorption coefficients for nuclear track detector susing Geant4 Monte Carlo simulation. Radiation Physics and Chemistry 106 (2015) 83–87. Elmahroug, Y., Tellili, B. & Souga, C. (2015). Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Annals of Nuclear Energy 75 (2015) 268–274.

(16)

10

(17)

Gambar

Figure 1. The schematic view of gamma intensity measurement .
Table  1  shows  the  value  of  unattenuated  gamma  intensity  at  each  absorber  thickness
Figure  3.  The  value  of  linear  attenuation  coefficient  at  each  air  pressure  variation
Figure 4. The linear attenuation coefficient, ( ) value from the data, ( ) calculated value according to linear

Referensi

Dokumen terkait

Sistem juga harus sesuai dengan kebutuhan binatu dan perlu sesuai bersifat ramah pengguna agar mudah digunakan oleh pegawai Cleaners VIP Laundry, sehingga

...Dan barangsiapa sakit atau dalam perjalanan, maka (wajib menggantinya) sebanyak hari yang ditinggalkannya itu pada hari-hari yang lain. Allah menghendaki kemudahan bagimu,

Simpulan penelitian : Berdasarkan penelitian ini dapat disimpulkan bahwa ekstrak daun salam ( Syzygium polyanthum, Wight) mempengaruhi waktu kematian Ascaris suum, Goeze

Dari nilai tersebut dapat di artikan bahwa H1 diterima dan Ho ditolak yang berarti ada hubungan pengetahuan ibu tentang stimulasi motorik kasar dengan

Penggunaan internet tidak hanya terbatas pada memanfaatkan informasi yang dapat diakses melalui media ini, melainkan juga dapat digunakan untuk sarana dalam

Kebutuhan terhadap manajerialisme dalam organisasi sektor publik adalah karena adanya tuntutan masyarakat yang semakin besar agar sektor publik bisa menghasilkan produk

Berdasarkan hasil observasi, wawan- cara, dokumentasi, tes, dan analisis data da- lam penelitian ditemukan bahwa melalui pe- nerapan model pembelajaran kooperatif ti-- pe

2.4Cara Mendaftar Menjadi Peserta BPJS Kesehatan 2.4.1 Pendaftaran peserta penerima bantuan iuran (PBI). Calon Peserta datang ke Puskesmas dengan membawa KTP