BAB
9
BAB
9
Standar Kompetensi:
Standar Kompetensi:
Menunjukkan penerapan konsep fsika inti
dan radioaktivitas dalam teknologi dan
kehidupan sehari-hari.
Kompetensi Dasar:
Kompetensi Dasar:
•
Mengidentifkasi karakteristik inti atom
dan radioaktivitas.
A. Struktur Inti
1. Proton dan
Neutron
Inti atom hidrogen terdiri dari muatan positif. Pada tahun 1920, muatan listrik positif pada inti atom hidrogen,oleh Goldstain disebut proton.
Pada tahun 1932, James Chadwick menemukan
neutron dari hasil
percobaannya, yaitu menemukan partikel alfa pada keping berilium.
Neutron tidak bermuatan (netral) dan memiliki massa hampir sama
dengan massa proton
Jadi, inti atom terdiri dari
proton-proton
dan
neutron-neutron
yang disebut
dengan
nukleon.
Jadi, inti atom terdiri dari
proton-proton
Jenis atom dapat ditulis sebagai berikut.
Keterangan:
X = nama unsur atom Z = nomor atom
= jumlah proton dalam atom
= jumlah elektron pada atom netral A = jumlah massa
= jumlah proton dan neutron dalam inti
A – Z = jumlah neutron dalam inti
Gambar 9.1 Isotop
2. Ukuran dan Bentuk Inti Atom
Keterangan:
R = jari-jari inti atom
A = nomor massa atom
Ro = konstanta
Dari hasil eksperimen, diperoleh bahwa nilai Ro adalah ± 1,2 × 10–15 m.
3. Gaya Inti
Massa total proton dengan neutron ternyata lebih besar daripada massa inti atomnya. Hal itu
menunjukkan bahwa pada pembentukan inti ada
sejumlah massa proton dan neutron yang hilang. Hilangnya massa tersebut berubah menjadi energi yang mengikat proton dan neutron menjadi inti atom. Energi itu mampu membentuk gaya ikat yang kuat, melebihi gaya tolaknya. Energi itu disebut dengan energi ikat inti dan gaya yang terjadi disebut gaya ikat inti (gaya inti).
Penyu sutan massa inti atom terjadi karena adanya perubahan massa inti menjadi energi ikat inti yang
disebut dengan konsep defek massa atau penyusutan massa.
Inti atom terdiri atas Z proton dan (A – Z) neutron. Jika
massa proton
Mp , massa neutron mn , dan massa inti atom mi
Energi ikat inti sebesar:
Keterangan:
∆m = penyusutan massa E = defek massa
c = cepat rambat cahaya
(3 × 108 m/s)
Massa inti atom dinyatakan dalam satuan
sma, kesetaraan antara massa dan energi dinyatakan:
1
sma = 931 MeV
E = ∆m × 931 MeV
E = ∆m × 931 MeV
Keterangan:
E = energi ikat inti mn = massa neutron
Z = nomor atom = jumlah proton mi = massa inti atom
A = nomor massa mp = massa proton
(A–Z) = jumlah neutron
B. Radioaktivitas
Inti atom sudah lama dikenal oleh seorang ahli
fisika dari Prancis, yaitu Henri Becquerel (1852– 1908) pada tahun 1896.Pada mulanya, Henri Becquerel sedang mempelajari
gejala fluoresensi, yaitu berpendarnya benda pada saat disinari dan gejala fosforesensi, yaitu
Ternyata tak terduga, senyawa-senyawa uranium mengalami radiasi dengan daya tembus yang
sangat kuat, walaupun benda-benda itu tidak disinari lebih dahulu
Becquerel mengambil kesimpulan bahwa radiasi
uranium bukan gejala fluoresensi ataupun fosforesensi, melainkan dari bahan uranium itu
sendiri.
Unsur yang dapat memancarkan radiasi dari dirinya sendiri disebut
dengan unsur radioaktif. Sifat zat yang dapat memancarkan radiasi secara spontan disebut dengan radioaktivitas.
Suami istri Piere Curie (1859 – 1906) dan Marie Curie (1867–1934) menemukan dua unsur radioaktif baru,
yaitu polonium dan radium.
Unsur radioaktif yang berasal dari alam disebut unsur
1. Stabilitas Inti
Gambar 9.4
Sinar radioaktif di dalam medan
magnetik
Dari percobaan Rutherford pada tahun 1897, berhasil ditemukan bahwa
yang dipancarkan oleh zat radioaktif terdiri dari tiga jenis dan memiliki
daya tembus yang berbeda-beda. sinar alfa ( α) ,
sinar beta ( β).
Pada tahun 1900, Vilard menemukan jenis radiasi
yang ketiga dengan daya tembus sangat kuat melebihi daya tembus sinar α dan sinar β, bahkan melebihi
Ketiga sinar radioaktif, baik sinar alfa, beta, maupun gamma dapat
membuat dam pak buruk bagi benda-benda yang dilaluinya
Ketiga sinar radioaktif, baik sinar alfa, beta, maupun gamma dapat
membuat dam pak buruk bagi benda-benda yang dilaluinya
Dengan meman carkan partikel-partikel atau sinar-sinar radioaktif, inti atom akan membentuk inti baru yang
lebih stabil. Peristiwa terbentuknya inti baru yang lebih stabil dengan meman carkan sinar
radioaktif alfa, beta, dan gamma disebut dengan
meluruh (disintegrasi).
Kestabilan inti atom ditentukan oleh banyaknya neutron dan proton di
dalam inti atom itu. Pada unsur-unsur ringan (unsur
dengan jumlah proton kurang dari 20), inti atomnya stabil jika memiliki perbandingan jumlah neutron (N) dengan
jumlah proton (Z) sama dengan 1 ( N/Z = 1 ) .
Unsur-unsur berat yang memiliki Z dan N > 20, inti atomnya stabil jika
N/Z > 1
3) Unsur berat terakhir yang stabil adalah 83 Bi 209 , memiliki N = 126 dan Z = 83 atau N/ Z > 1,5. Semua inti atom yang memiliki jumlah proton Z > 83 dan
2. Waktu Paruh
Waktu yang diperlukan untuk meluruh
(berdisintegrasi) hingga inti atom radioaktif tinggal setengah dari inti semula disebut dengan waktu paruhBanyaknya partikel zat radioaktif yang belum .
mengalami peluruhan
(disintegrasi), yaitu N dinyatakan sebagai fungsi eksponen sial dari waktu (t), seperti Gambar 9.7.
Gambar 9.7
Hubungan jumlah inti (N) terhadap
Keterangan:
y = year = tahun;
m = month = bulan;
d = day = hari;
h = hour = jam;
s = second = detik
Jadi, setelah n kali waktu paruh atau t = nT, jumlah partikel yang tersisa
(tidak meluruh) adalah
Keterangan:
N = unsur/partikel yang tersisa
N0 = unsur/partikel mula-mula
n = t/T
C. Reaksi Inti
1. Hukum Kekekalan Reaksi
Inti
a. Hukum-Hukum yang Berlaku pada Reaksi Inti
1) Hukum kekekalan nomor atom
Jumlah nomor atom sesudah reaksi sama dengan jumlah nomor atom sebelum reaksi.
2) Hukum kekekalan nomor massa
Jumlah nomor massa sesudah reaksi sama dengan jumlah nomor
massa sebelum reaksi.
3) Hukum kekekalan momentum
Jumlah momentum sesudah reaksi sama dengan jumlah momentum sebelum reaksi.
4) Hukum kekekalan energi
Jumlah energi sesudah reaksi sama dengan jumlah energi sebelum
b. Pembentukan Radioisotop
Radioisotop adalah isotop yang bersifat radioaktif. Reaksi inti dapat
digunakan untuk membentuk isotop-isotop yang
bersifat radioaktif dari suatu isotop yang bersifat stabil.
2. Reaksi Fisi
Fisi adalah peristiwa pecahnya inti berat menjadi dua inti sedang.
Fisi adalah peristiwa pecahnya inti berat menjadi
dua inti sedangFisi dapat dilakukan pada beberapa inti berat dengan .
cara menembakinya dengan partikel alfa, proton, neutron, dan sinar gamma
Energi yang dilepas dari reaksi fisi dapat ditentukan dengan cara menghitung selisih jumlah massa
antara inti atom sebelum reaksi dengan jumlah massa inti atom setelah reaksi.
Gambar 9.8
Reaksi fisi
Gambar 9.8
Reaksi fisi
Tiap pecahan fisi meng
hasilkan 2 atau 4 neutron baru
Tiap pecahan fisi meng
a. Reaksi Fisi Berantai
Gambar 9.9 Reaksi
berantai
Jika paling sedikit sebuah neutron
terbentuk dari tiap fisi baru, suatu reaksi yang terus-menerus dapat
dipertahankan. Reaksi seperti
Untuk menghasilkan reaksi berantai diperlukan persyaratan , sebagai berikut:
1)uranium yang digunakan adalah 235U, yang
dalam uranium alam
hanya mengandung 0,718%;
2) neutron yang digunakan untuk menembak harus memiliki energi
yang cukup (energi termal).
Untuk mendapatkan reaksi berantai ada dua cara, yaitu sebagai berikut.1) Memperbesar konsentrasi 235U. Cara ini berlangsung
dalam reaktor cepat, untuk menghasilkan energi
sekaligus memproduksi plutonium yang juga merupakan
bahan bakar nuklir. Bom atom menggunakan cara ini dan reaksi berantainya dalam keadaan tidak terkendali.
2) Memperlambat gerak neutron agar neutron berada dalam energi termal. Hal itu
disebabkan neutron yang dihasilkan fisi memiliki energi melebihi energi termal,
yaitu sekitar 106 eV, sedangkan energi termal ordenya lebih kecil dari 1 eV.
Peluang reaksi nuklir untuk energi termal
sangat besar, dapat mencapai 500× peluang saat energi tinggi. Teknik
b. Reaktor Termal
Reaktor termal menggunakan neutron pecahan fisi yang dihasilkan dari
reaksi yang memiliki energi cukup besar. Untuk mengurangi energinya,
digunakan moderator yang berfungsi memperlambat gerak neutron cepat
ini, sehingga neutron ini memiliki energi termal. Moderator dibuat dari
bahan yang memiliki nomor atom rendah dan tidak banyak menyerap
neutron. Bahan yang sering digunakan antara lain karbon dalam bentuk
Apabila rata-rata terdapat lebih dari satu neutron yang
mengakibatkan fisi baru, reaksi berantai akan bertambah terus.
Keadaan ini dikatakan super kritis. Apa bila rata-rata kurang dari satu neutron yang mengakibatkan fisi baru, reaksi berantai
akan mati. Keadaan ini disebut subkritis.
Untuk mempertahankan reaksi berantai berlangsung terus-menerus, satu
neutron fisi harus menghasilkan satu neutron fisi baru berikutnya. Keadaan
ini disebut keadaan Keadaan kritis dapat dicapai dengan bantuan batang kritis. pengontrol yang dimasukkan ke dalam reaktor. Batang pengontrol terbuat
dari bahan yang mampu menyerap neutron, misalnya boron atau kadmium.
Dengan menggerakkan keluar atau masuk, laju reaksi fisi dapat diatur.
Pada PLTN, reaktor berfungsi sebagai tempat pembakaran yang menghasilkan kalor, kalor
selanjutnya digunakan untuk menguapkan air. Uap air itu digunakan untuk menggerakkan generator listrik. Pada PLTN, reaktor berfungsi sebagai tempat
pembakaran yang menghasilkan kalor, kalor
c. Bom Atom
Gambar 9.11
Ledakan bom atom di Hirosima
Bom atom merupakan bentuk penggunaan energi nuklir
disebabkan reaksi fisi berantai yang terjadi
tidak terkontrol dan sistem dalam keadaan super kritis. Bahan bakar yang digunakan dapat berupa
235U atau 239Pu. 235U dapat dipisahkan dari uranium
alam, sedangkan 239Pu dihasilkan dari reaktor
termal.
Salah satu contoh penggunaan bom atom
terdapat pada ledakan bom atom di Hirosima, 6 Agustus 1945. Bom atom ini menghasilkan energi yang setara dengan energi ledakan 20.000 ton
peledak TNT, sehingga mampu menghancur-leburkan satu kota.
Salah satu contoh penggunaan bom atom
terdapat pada ledakan bom atom di Hirosima, 6 Agustus 1945. Bom atom ini menghasilkan energi yang setara dengan energi ledakan 20.000 ton
3. Reaksi Fusi
Fusi adalah peristiwa penggabungan dua buah inti ringan, menghasilkan inti yang lebih berat dan
partikel-partikel elementer, disertai pelepasan sejumlah energi.
Fusi adalah peristiwa penggabungan dua buah inti ringan, menghasilkan inti yang lebih berat dan
partikel-partikel elementer, disertai pelepasan sejumlah energi.
Gambar 9.12 Reaksi fusi
Energi fusi yang cukup besar dihasilkan dalam matahari. Beberapa
proton
digabung dalam suatu siklus reaksi yang
Untuk menggabungkan (melebur) inti ringan, diperlukan temperatur
yang sangat tinggi, sekitar 108 °C, sehingga reaksi fusi
juga disebut
reaksi termonuklir. Beberapa reaksi termonuklir yang mungkin dapat
dimanfaatkan ialah:
Diduga, energi di matahari berasal dari energi termonuklir (hasil reaksi fusi). Hal itu didasarkan
pada hasil pengamatan bahwa di matahari banyak kandungan hidrogen (1H1), dengan fusi berantai,
dihasilkan helium ( 2He4).
Diduga, energi di matahari berasal dari energi termonuklir (hasil reaksi fusi). Hal itu didasarkan
pada hasil pengamatan bahwa di matahari banyak kandungan hidrogen (1H1), dengan fusi berantai,
D. Deret Radioaktif
Apabila suatu bahan radioaktif meluruh, akan
terbentuk bahan unsur baru yang masih bersifat radioaktif. Misalnya, uranium menghasilkan radium selanjutnya meluruh menghasilkan radon yang juga bersifat radioaktif.
Uranium disebut inti induk, sedangkan unsur baru, yaitu radium dan radon disebut inti anak. Inti-inti radioaktif yang merupakan mata rantai radioaktif
Gambar 9.13
(a)Deret peluruhan torium (A = 4n) peluruhan 83 Bi 212 dapat
berlangsung melalui pemancaran sinar alfa, kemudian pemancaran beta atau dalam urutan terbalik,
(b) deret peluruhan neptunium (A = 4n + 1). Peluruhan 83 Bi
213bisa berlangsung melalui pemancaran alfa dan pemancaran
(c) deret peluruhan uranium (A = 4n + 2). Peluruhan 83 Bi 214 dapat berlangsung dengan
pemancaran alfa kemudian beta atau dengan urutan yang terbalik, dan
(d) deret peluruhan aktinium (A = 4n + 3). Peluruhan 89 Ac227 dan 83
Bi 211 dapat
1. Aktivitas Radioaktif
Jumlah partikel yang meluruh setiap detik disebut
aktivitas radioaktif.
Jumlah partikel yang meluruh setiap detik disebut
aktivitas radioaktif.
Tetapan peluruhan atau tetapan disintegrasi adalah bilangan yang
menunjukkan kemungkinan partikel yang meluruh tiap detik.
Tetapan peluruhan atau tetapan disintegrasi adalah bilangan yang
menunjukkan kemungkinan partikel yang meluruh tiap detik. N = jumlah partikel
Aktivitas inti (R) dapat dinyatakan dalam satuan partikel per sekon, Becquerel, Rutherford, atau Curie.
Satuan yang umum digunakan adalah Ci.
Satuan yang umum digunakan adalah Ci.
2. Isotop Radioaktif
Isotop yang terjadi karena penembakan disebut isotop radioaktif atau radioaktif buatan atau radioisotop.
3. Dosis Serap
Jika suatu sinar radioaktif mengenai bahan atau materi maka sebagian
energinya akan diserap. Besar energi yang diserap oleh materi per satuan massa disebut dosis serap. Satuan dosis serap ialah joule/kg (gray).
Jika tebal bahan menyebabkan intensitas yang keluar dari bahan (I) mempunyai nilai separuh dari intensitas mula-mula (I0) maka:
I =
1/ 2
I
sehingga0Keterangan:
I = intensitas setelah melewati bahan (J/s m2) I0 = intensitas mula-mula (J/s m2)
e = bilangan natural = 2,71828
µ = koefisien pelemahan oleh bahan keping(1/cm atau 1/m)
4. Alat-Alat Deteksi Radiasi
a. Pencacah Geiger Muller
Alat pencacah Geiger Muller pertama kali ditemukan oleh seorang ilmuwan Jerman pada tahun 1928, berfungsi mencacah radiasi sinar α, β,
dan γ. Apabila tabung terkena radiasi maka partikel radiasi masuk ke dalam tabung
kemudian mengionkan gas yang ada.. Perhatikan Gambar 9.14(b)!
Perpindahan ion-ion itu menghasilkan denyut listrik pada GM. Denyut listrik dapat diamati melalui meter skala, pengeras suara, atau tanda-tanda lainnya. Semakin banyak partikel-partikel radioaktif yang
masuk ke dalam tabung, semakin banyak pula ion-ion yang terlepas, sehingga jumlah denyut per sekon yang ditunjukkan GM semakin besar.
Gambar 9.14
b. Emulsi Film
Apabila suatu kertas film diberi lapisan emulsi perak bromida dan dilalui
oleh unsur-unsur radioaktif maka akan meninggalkan jejak sepanjang
lintasannya. Setelah kertas film ini dicuci dan dicetak maka lintasan zatzat radioaktif dapat terlihat. Dari jenis lintasannya dapat dikenali jenis
partikelnya dan dapat diukur tingkat energi awalnya.
c. Kamar Kabut Willson
Kamar kabut Willson
pertama kali ditemukan oleh C.T.R Willson pada
tahun 1907, merupakan alat yang dapat digunakan
untuk melihat dan
memotret lintasan partikel
alfa. Gambar 9.15
d. Detektor Sintilator
Sintilator berasal dari kata sintilasi yang artinya percikan cahaya. Alat
deteksi yang menggunakan bahan-bahan yang dapat memendarkan atau memercikkan cahaya apabila
terkena radiasi disebut sintilator
E. Teknologi Nuklir
1. Reaktor Nuklir
Reaktor merupakan tempat terjadinya suatu proses reaksi fisi nuklir berantai.
Dalam reaktor nuklir terjadi reaksi fisi berantai yang terkendali. Jadi, reaktor nuklir merupakan alat yang berfungsi untuk:
1) memicu terjadinya reaksi fisi sehingga meng hasilkan reaksi berantai,
2) mengendalikan reaksi fisi, dan
3) memanfaatkan energi yang dihasilkan reaksi.
1) memicu terjadinya reaksi fisi sehingga meng hasilkan reaksi berantai,
2) mengendalikan reaksi fisi, dan
3) memanfaatkan energi yang dihasilkan reaksi.
a. Komponen Reaktor Nuklir
1) Bahan bakar
Bahan bakar terdapat dalam teras reaktor. Pada
umumnya,
berupa UO2 dalam bentuk pelet. Uranium yang digunakan
dapat berupa uranium alam atau uranium yang diperkaya kadar
U-235nya.
2) Teras reaktor
Teras reaktor merupakan tempat ber lang sungnya
Gambar 9.17 Bagan reaktor nuklir
3) Moderator
Moderator berfungsi menurunkan energi neutron dari
energi tinggi
4) Batang pengendali
Batang pengendali berfungsi mengendalikan jumlah populasi
neutron yang terdapat dalam teras reaktor, sehingga reaksi berantai
dapat dipertahankan. Dengan demikian, terkendali pula jumlah
reaksi fisi dan energi yang dihasilkan.
Bahan-bahan yang lazim digunakan sebagai batang
kendali, antara
lain k admium, boron, dan hafnium.
Banyak reaktor nuklir yang menggu nakan moderator sekaligus sebagai pendingin primer, misalnya air
ringan atau air berat yang disirkulasikan melalui
pompa. Pendingin lain yang lazim digunakan adalah
bentuk gas seperti He dan CO2, serta bentuk logam cair seperti Na dan NaK.
Fungsi pendingin ialah mengeluarkan panas yang terjadi karena reaksi fisi yang berlangsung dalam teras reaktor
6) Sistem penukar panas
Berupa pompa berfungsi mengalirkan panas dari pendingin
primer ke pendingin sekunder. Setelah dingin, bahan dipindah lagi ke dalam reaktor. Sistem penukar panas lazim disebut heat exchanger.
7) Pendingin sekunder
Pendingin sekunder berupa air yang dialirkan keluar dari sistem reaktor dan didinginkan di luar reaktor.
8) Perisai radiasi
Perisai radiasi berfungsi menahan radiasi, baik yang dipancarkan pada proses pembelahan inti
b. Jenis-Jenis Reaktor Nuklir
1) Berdasarkan tujuan kegunaan a) Reaktor penelitian
Reaktor penelitian adalah reaktor yang menghasilkan neutron yang
digunakan untuk penelitian dalam bidang fisika, kimia, biologi,
pertanian, kedokteran, industri, dan teknologi.
b) Reaktor penghasil radioisotop
Reaktor penghasil radioisotop adalah reaktor yang memproduksi
isotop-isotop radioaktif (radioisotop). Radio isotop dapat
digunakan pada bermacam-macam keperluan, antara lain pada
bidang kedokteran, pertanian, industri, farmasi, dan biologi.
c) Reaktor daya
2) Berdasarkan jenis moderator
Berdasarkan jenis moderatornya, reaktor nuklir diklasifikasikan sebagai berikut:
a) moderator air ringan (H2O), b) moderator air berat (D2O), c) moderator grafit, dan
d) moderator berilium atau berilium oksida.
3) Berdasarkan jenis pendingin
Berdasarkan jenis bahan pendinginnya, reaktor nuklir dapat diklasifikasikan sebagai berikut:
a) pendingin air;
2. Aplikasi Radioisotop
a. Aplikasi pada Bidang Kedokteran
1) Uji tangkap kelenjar tiroid
Isotop yang digunakan pada pengujian fungsi kelenjar gondok adalah I-131, I-123, I-125, atau Tc-99.
2) Uji faal ginjal
Teknologi faal ginjal merupakan suatu cara
pengujian fungsi ginjal yang menggu nakan alat renograf dan memakai isotop I-131 hipparan.
3) Pemeriksaan berbagai penyakit
Salah satu instrumen nuklir yang digu nakan dalam bidang kedokteran, yaitu untuk
pemeriksaan berbagai penyakit adalah kamera gamma.
Beberapa contoh pemanfaatan kamera gamma, antara lain sebagai
berikut:
a) pencarian anak sebaran tumor ganas ke tulang, pada penderita
kanker payudara atau kanker usus besar yang belum dapat dideteksi
dengan metode lain;
b) pemeriksaan hati serta saluran-saluran empedu; c) pemeriksaan kelenjar limpa, paratiroid, adrensi, plasenta, otak,
dan pankreas;
d) pemeriksaan keadaan jantung. Pemanfaatan teknologi nuklir dalam
ilmu penyakit jantung dikenal dengan istilah
kardiologi nuklir.
b. Aplikasi pada Bidang Pertanian dan
Peternakan1) Pemuliaan tanaman untuk menghasilkan bibit unggul
Gambar 9.24
2) Pengendalian hama tanaman
Aplikasi teknologi nuklir pada pengen dalian hama tanaman terutama
bertujuan untuk menghasilkan hama jantan mandul. Perkawinan hama
jantan mandul dengan be tina subur tidak akan meng hasilkan keturunan.
Akibatnya jumlah hama akan berkurang.
3) Pengolahan tanah dan pemupukan
Aplikasi teknologi nuklir pada pengo lahan tanah dan pemupukan
antara lain bertujuan untuk mengetahui jumlah dan cara pemupukan
yang tepat untuk mendapatkan hasil yang maksimal. Cara tersebut
telah banyak berhasil, terutama menghemat pemakaian pupuk.
4) Pembuatan makanan ternak tambahan dan vaksin penyakit ternak
Melalui berbagai percobaan menggu nakan teknologi nuklir, telah
banyak dihasilkan makanan ternak tambahan yang dapat meningkatkan
berat badan sapi dan ternak lain dengan cepat. Makanan ternak
tambahan tersebut disebut molase-blok karena terbuat dari bahan
c. Aplikasi pada Bidang Perindustrian
1) Uji tak merusak (Nondestructive Test = NDT)
Peng gunaan isotop radioaktif yang meng hasilkan sinar gamma sebagai perunut untuk mengamati adanya
kebocoran
pada tangki penyimpan cairan, pipa bawah tanah, dan kebocoran
bendungan. Industri di Indonesia juga memanfaatkan teknologi NDT
untuk mengetahui adanya keretakan, misalnya pada pesawat terbang
dan gedung.
2) Proses radiasi
menggunakan iradiasi sinar gamma atau
partikel elektron untuk membunuh serangga, membunuh mi kro ba, mengubah sifat suatu bahan, atau mem buat bahan baru dengan
mutu lebih baik. Radioisotop yang digunakan ialah Co-60 yang menghasilkan sinar gamma. Radioisotop tersebut digunakan untuk
d. Aplikasi pada Bidang Hidrologi dan
Sedimentasi
Aplikasi teknologi nuklir dalam bidang hidrologi dan sedimentasi telah banyak di lakukan di Indonesia.
Misalnya peng gunaan teknologi nuklir pada penentuan debit air, rembesan air laut ke darat, pendangkalan
pelabuhan, danau, dan sungai, serta berbagai permasalahan dalam perminyakan.
Teknologi tersebut meng gunakan radioisotop sebagai perunut. Salah satu aplikasinya di Indonesia, pencairan sumber air bawah tanah di daerah Gunung Kidul