• Tidak ada hasil yang ditemukan

Perbandingan Metode Simpleks Dengan Algoritma Titik Interior Dalam Penyelesaian Masalah Program Linier

N/A
N/A
Protected

Academic year: 2017

Membagikan "Perbandingan Metode Simpleks Dengan Algoritma Titik Interior Dalam Penyelesaian Masalah Program Linier"

Copied!
7
0
0

Teks penuh

(1)

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Dalam kehidupan sehari-hari, ilmu mengenai operasi riset banyak digunakan dan diterapkan oleh manusia, terutama diterapkan pada bidang ekonomi yaitu pada dunia usaha. Setiap pelaku usaha atau pelaku ekonomi pasti melakukan apa yang disebut dengan prinsip ekonomi, yaitu dengan usaha atau modal yang sedikit mampu menghasilkan keuntungan yang banyak, sehingga muncul masalah optimisasi. Masalah optimisasi tersebut meliputi meminimumkan biaya atau memaksimumkan keuntungan dengan kapasitas sumber daya yang ada agar mampu mendapatkan hasil yang optimal.

Program linier pertama kali diperkenalkan oleh George Dantzig (1947) yang pada awalnya banyak dipakai pada bidang perencanaan militer, khususnya dalam perang dunia II oleh angkatan bersenjata Amerika Serikat dan Inggris. Metode pengerjaan program linier umumnya menggunakan metode grafik dan metode simpleks. Program linier merupakan sebagai instrumen pengambilan keputusan yang berkaitan dengan pengalokasian sumber daya dalam mencapai tujuan tertentu. Sumber daya berupa uang, tenaga kerja, material, mesin, fasilitas, ilmu pengetahuan, teknologi, keahlian, waktu dan ruang. Sumber daya ini sifatnya terbatas.

Program linier merupakan suatu cara yang lazim digunakan dalam pemecahan masalah pengalokasian sumber-sumber yang terbatas secara optimal. Persoalan pengalokasian akan muncul apabila seseorang diharuskan untuk memilih atau menentukan tingkat aktivitas yang akan dilakukannya, di mana masing-masing aktivitas membutuhkan sumber yang sama sedangkan jumlahnya terbatas (Mustafa & Parkhan, 1999).

(2)

diperkenalkan di akhir dasawarsa pada tahun 1940 program linier telah terbukti merupakan salah satu alat operasi riset yang efektif. Keberhasilannya berakar dari keluasannya dalam menjabarkan berbagai situasi kehidupan nyata seperti di bidang militer, industri dan bidang yang lain.

Dalam pengambilan suatu keputusan, permasalahan dalam dunia nyata memiliki lebih dari satu tujuan. Hal ini menandakan bahwa program linier standar yang hanya mengoptimalkan satu tujuan atau satu kriteria tidak selalu efektif dalam pengambilan suatu keputusan. Berdasarkan uraian di atas maka penulis memilih judul tugas akhir Perbandingan Metode Simpleks dengan Algoritma Titik Interior dalam Penyelesaian Program Linier”.

1.2 Perumusan Masalah

Berdasarkan latar belakang di atas, maka rumusan masalah dalam penelitian ini adalah bagaimana

menyelesaikan program linier dengan menggunakan algoritma titik interior dan metode simpleks.

Dalam hal ini, penulis ingin membandingkan antara kedua metode tersebut, metode apakah yang

paling efisien dalam menyelesaikan program linier.

1.3Batasan Masalah

Dalam penelitian ini, penulis menggunakan batasan masalah sebagai berikut: 1. Banyaknya variabel yang digunakan adalah sebanyak 4 variabel.

2. Efisiensi hanya diukur berdasarkan banyaknya iterasi dalam penyelesaian contoh kasus dengan

(3)

1.4 Tujuan Penelitian

Tujuan yang ingin dicapai dalam tulisan ini adalah untuk menentukan metode apakah yang paling efisien di antara metode simpleks dan algoritma titik interior dalam menyelesaikan masalah program linier.

1.5 Kontribusi Penelitian

Tulisan ini diharapkan dapat bermanfaat sebagai:

1. Referensi utama atau sebagai bahan rujukan untuk melakukan penelitian tentang program linier.

2. Bahan pertimbangan dalam mengambil keputusan yang berkaitan dengan program linier.

1.6 Tinjauan Pustaka

Sebagai sumber pendukung teori dalam penulisan ini, penulis mengambil beberapa pustaka yang memberikan kontribusi dalam penyelesaian penulisan ini.

Andi Wijaya (2012) menyatakan bahwa dalam program linier terdapat dua fungsi yaitu fungsi tujuan dan fungsi kendala. Fungsi tujuan menggambarkan apa yang ingin di capai dengan menggunakan sumber daya yang ada. Fungsi tujuan digambarkan dalam bentuk maksimasi dan minimasi. Fungsi kendala menggambarkan kendala-kendala yang dihadapi perusahaan untuk mencapai tujuan optimal.

(4)

P. Siagian (2006) menyatakan persoalan dalam program linier diterjemahkan ke dalam bentuk model matematika. Bentuk umum program linier dapat ditulis sebagai:

Dengan kendala:

dan

Keterangan:

=Fungsi tujuan

= Variabel keputusan j

= Nilai kontribusi dari variabel keputusan j

=koefisien dari variabel keputusan j dalam kendala ke-i

=Jumlah sumber daya yang tersedia dalam kendala ke-i m = Jumlah sumber daya yang tersedia

n = Jumlah kegiatan

Program linier adalah suatu cara untuk menyelesaikan persoalan pengalokasian sumber-sumber yang terbatas di antara beberapa aktivitas yang bersaing, dengan cara terbaik yang mungkin dilakukan. Pokok pikiran utama dalam menggunakan program linier adalah merumuskan masalah dengan jelas dengan menggunakan sejumlah informasi yang tersedia. Sesudah masalah

(1.1)

(5)

terumuskan dengan baik, maka langkah berikut ialah menerjemahkan masalah ke dalam bentuk model matematika (P. Siagian, 2006).

Parlin Sitorus (1994) menyatakan metode simpleks di mulai dari titik awal dan bergerak ke titik ekstrem yang memiliki nilai penyelesaian optimal. Langkah untuk menyelesaikan masalah program linier dengan menggunakan metode simpleks adalah sebagai berikut:

1. Merumuskan masalah ke dalam metode simpleks. 2. Menyusun tabel simpleks awal.

3. Mencari nilai optimal tabel simpleks.

4. Mangidentifikasi variabel yang akan masuk ke dalam tabel simpleks. 5. Mengidentifikasi variabel yang akan keluar dari tabel simpleks. 6. Menyusun tabel simpleks baru.

7. Mencari nilai optimal tabel simpleks yang baru.

J. Supranto M.A. (1983) menyatakan metode simpleks adalah suatu metode yang secara sistematis dimulai dari suatu pemecahan dasar yang fisibel ke pemecahan dasar fisibel lainnya yang dilakukan secara berulang-ulang (dengan jumlah ulangan yang terbatas) sehingga akhirnya tercapai suatu pemecahan dasar yang optimum dan pada setiap iterasi menghasilkan suatu nilai dari fungsi tujuan yang selalu lebih besar atau sama dari iterasi sebelumnya.

Dian (2009) menyatakan metode simpleks merupakan salah satu teknik penyelesaian dalam program linier yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan yang berhubungan dengan pengalokasian sumber daya secara optimal. Metode simpleks digunakan untuk mencari nilai optimal dari program linier yang melibatkan banyak pembatas dan lebih dari dua variabel.

(6)

yaitu bentuk kanonik Karmarkar. Algoritma titik interior merupakan algoritma yang dibangun dengan beberapa iterasi dengan menentukan titik-titik interior yang masuk dalam daerah solusi penyelesaian yang diperoleh sebagai daerah layak.

Algoritma titik interior membutuhkan perhitungan yang relatif lebih besar untuk persoalan program linier yang berukuran kecil dan lebih cepat diselesaikan dengan metode simpleks, sedangkan untuk kendala yang lebih besar algoritma titik interior lebih efisien dibandingkan metode simpleks.

Hamdy A. Taha (1992) dalam bukunya „Pengantar Operasi Riset‟ menyatakanproses formulasi masalah program linier umum ke dalam bentuk titik interior adalah:

1. Mengubah masalah program linier umum ke dalam bentuk yang diperluas. 2. Menentukan arah pergerakan mula-mula dari titik interior.

3. Memproyeksikan titik yang berada di luar daerah layak dan pemusatan 4. Mengubah kembali menjadi koordinat semula.

Algoritma titik interior yang digunakan untuk menyelesaikan masalah optimisasi terlebih dahulu disederhanakan dengan menghilangkan faktor-faktor ataupun kendala yang dapat di kerjakan dengan proses iterasi.

1.7 Metodologi Penelitian

Langkah-langkah yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Studi Literatur

(7)

2. Menjelaskan definisi program linier, metode simpleks dan algoritma titik interior.

3. Menjelaskan permasalahan program linier, metode simpleks dan algoritma titik interior.

4. Mejelaskan contoh penyelesaian program linier, metode simpleks dan algoritma titik interior.

Referensi

Dokumen terkait

Penulisan karya ilmiah ini bertujuan untuk menunjukkan perbandingan waktu eksekusi antara metode simpleks dan metode titik interior dalam menyelesaikan masalah optimasi linear

Karya ilmiah ini bertujuan untuk menunjukkan perbandingan waktu yang diperlukan antara metode simpleks dan metode interior dalam menyelesaikan masalah OL

Algoritma titik interior lebih efisien dibandingkan metode simpleks jika suatu permasalahan program linear memuat setidaknya 93 variabel dengan kendala tidak kurang dari 10

Rumusan masalah dalam penelitian ini adalah “bagaimana mengembangkan multi- media pada pokok bahasan program linier yang menggunakan metode simpleks yang valid

Metode simpleks merupakan salah satu teknik penyelesaian dalam program linear yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan yang berhubungan

Penyelesaian masalah pemrograman linier bilangan bulat murni dengan menggunakan metode reduksi variabel menghasilkan solusi optimal dengan semua variabel keputusan berupa bilangan

Selain itu, untuk menyelesaikan masalah program linier yang kompleks dapat juga digunakan algoritma interior point yang memiliki fungsi kendala dan variabel

Metode simpleks merupakan salah satu teknik penyelesaian dalam program linier. Untuk menyelesaikan program linier ini, metode simpleks dimodifikasi sedemikian