• Tidak ada hasil yang ditemukan

Pengaruh Pemberian Pupuk N Dengan Berbagai Dosis Terhadap Pertumbuhan Awal Bibit Sagu (Metroxylon spp.) di Persemaian Dengan Sistem Polibag

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengaruh Pemberian Pupuk N Dengan Berbagai Dosis Terhadap Pertumbuhan Awal Bibit Sagu (Metroxylon spp.) di Persemaian Dengan Sistem Polibag"

Copied!
122
0
0

Teks penuh

(1)

PENGARUH PEMBERIAN PUPUK N DENGAN BERBAGAI

DOSIS TERHADAP PERTUMBUHAN AWAL BIBIT SAGU

(Metroxylon spp.) DI PERSEMAIAN DENGAN SISTEM

POLIBAG

FENDRI AHMAD

A24080138

DEPARTEMEN AGRONOMI DAN HORTIKULTURA

FAKULTAS PERTANIAN

INSTITUT PERTANIAN BOGOR

(2)

RINGKASAN

FENDRI AHMAD. Pengaruh Pemberian Pupuk N Dengan Berbagai Dosis Terhadap Pertumbuhan Awal Bibit Sagu (Metroxylon spp.) di Persemaian Dengan Sistem Polibag. (Dibimbing oleh EKO SULISTYONO dan H. M. H. BINTORO DJOEFRIE).

Percobaan ini dilakukan untuk mengetahui pengaruh berbagai dosis pupuk

N terhadap pertumbuhan awal bibit sagu di persemaian dengan sistem polibag.

Percobaan dilaksanakan di PT. National Sago Prima, Selat Panjang Kabupaten

Kepulauan Meranti Provinsi Riau pada bulan Februari sampai Juni 2012.

Percobaan menggunakan rancangan acak kelompok dengan satu faktor

yaitu dosis N. Terdapat enam taraf perlakuan dosis N, yaitu 0, 3, 6, 9, 12 dan 15 g

N/polibag. Setiap perlakuan diulang sebanyak empat kali, sehingga terdapat 24

sa-tuan percobaan. Masing-masing sasa-tuan percobaan menggunakan 50 bibit,

sehing-ga total bibit yang ditanam sebanyak 1200. Setiap satuan percobaan terdapat 24

bibit yang diamati, sehingga total yang diamati adalah 756 bibit. Bibit yang

digu-nakan memiliki bobot 0.5-1.0 kg. Sebelum ditanam, bibit dipangkas 20 cm dari

pangkal banir dan dibersihkan, kemudian direndam dengan larutan Dithane M-45

selama 10 menit. Bibit yang sudah direndam di tanam ke polibag dengan media

tanah gambut. Saat penanaman diberikan furadan dengan dosis 3-5 g/polibag.

Hasil percobaan menunjukkan pupuk N memberikan pengaruh yang nyata

saat 7-9 MSP dan sangat nyata pada 10 MSP terhadap persentase hidup. Pupuk N

berpengaruh nyata saat 9 dan 10 MSP terhadap pertumbuhan vegetatif yang

meli-puti panjang anak daun pangkasan, panjang daun ke-1 (10 MSP), lebar anak daun

ke-1, persentase pemekaran daun ke-1 dan jumlah daun. Dosis 3 g N/polibag

me-rupakan dosis yang paling baik terhadap panjang anak daun pangkasan. Untuk

pe-ubah yang lainnya, secara keseluruhan dosis 3 g N memberikan pertumbuhan

ve-getatif yang paling baik, tetapi tidak berbeda nyata dengan dosis 0 g N, dan

mem-punyai respon menurun secara linear dengan semakin tingginya dosis N. Pupuk N

tidak berpengaruh terhadap panjang daun pangkasan, lebar anak daun pangkasan,

persentase pemekaran daun pangkasan, panjang anak daun ke-1, bobot segar tajuk

(3)

PENGARUH PEMBERIAN PUPUK N DENGAN BERBAGAI

DOSIS TERHADAP PERTUMBUHAN AWAL BIBIT SAGU

(Metroxylon spp.) DI PERSEMAIAN DENGAN SISTEM

POLIBAG

Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Pertanian pada Fakultas Pertanian Institut Pertanian Bogor

FENDRI AHMAD

A24080138

DEPARTEMEN AGRONOMI DAN HORTIKULTURA

FAKULTAS PERTANIAN

INSTITUT PERTANIAN BOGOR

(4)

JUDUL : PENGARUH PEMBERIAN PUPUK N DENGAN

BERBAGAI DOSIS TERHADAP PERTUMBUH-

AN AWAL BIBIT SAGU (Metroxylon spp.) DI

PER-SEMAIAN DENGAN SISTEM POLIBAG.

NAMA

: FENDRI AHMAD

NIM

: A24080138

Menyetujui,

Dosen Pembimbing I Dosen Pembimbing II

Dr. Ir. Eko Sulistyono MSi. Prof. Dr. Ir. H. M. H. Bintoro Djoefrie, M.Agr NIP. 19620225 198703 1 001 NIP. 19480801 197403 1 001

Mengetahui,

Ketua Departemen

Agronomi dan Hortikultura

Dr. Ir. Agus Purwito, MSc. Agr NIP.19611101 198703 1 003

(5)

RIWAYAT HIDUP

Penulis lahir pada tanggal 22 Agustus 1990 di kota Pekanbaru, Propinsi

Riau. Penulis merupakan anak pertama dari tiga bersaudara dari pasangan Ayah

Abdullah dan Ibu Linda Wati.

Penulis memulai pendidikan formal pada tahun 1996 di SDN 15 Andaleh,

Kecamatan Matur Kabupaten Agam Sumatra Barat, kemudian dilanjutkan di SDN

003 Sail Pekanbaru. Penulis melanjutkan pendidikan di SLTPN 13 Pekanbaru

selama tiga tahun. Setelah itu penulis melanjutkan pendidikan menengah atas di

Madrasah Aliyah (MA) Ummatan Wasathon Pesantren Teknologi Riau di

Pang-kalan Baru Pekanbaru selama tiga tahun. Selama di MA penulis juga mengambil

jurusan teknologi elektro. Pada tahun 2008 penulis diterima sebagai mahasiswa di

Departemen Agronomi dan Hortikultura Fakultas Pertanian Institut Pertanian

Bogor melalui jalur BUD Kementrian Agama Republik Indonesia dalam program

beasiswa santri berprestasi (PBSB).

Penulis bergabung dalam organisasi CSS MoRA (community of santry scholar of ministry of religious affair). Selama di CSS MoRA, penulis mengikuti kegiatan-kegiatan baik di IPB maupun di tingkat nasional. Penulis melakukan

pembinaan dan pengabdian di Ponpes Al-Hikmah 2 Brebes (2008), di Ponpes

Darun Najah Jakarta (2009), di Ponpes Nurul Ikhlas Bali (2010) dan di Ponpes

Nurul Iman Bogor (2011). Tahun 2010 penulis mengikuti program Go Field IPB di Balai Benih Ikan (BBI) Kab. Brebes. Tahun 2011 penulis melakukan kuliah

kerja profesi (KKP) yaitu di Desa Linggapura, Kec. Tonjong, Kab. Brebes. Selain

itu, penulis pernah menjadi asisten MK. Dasar Agronomi dan menjadi pengajar di

(6)

KATA PENGANTAR

Alhamdulillah, puji dan syukur penulis ucapkan kepada Allah SWT,

ber-kat rahmat dan karunia-Nya penulis dapat menyelesaikan penulisan skripsi yang

berjudul “Pengaruh Pemberian Pupuk N Dengan Berbagai Dosis Terhadap Pertumbuhan Awal Bibit Sagu (Metroxylonspp.) di Persemaian Dengan

Sis-tem Polibag”, sebagai salah satu syarat memperoleh gelar sarjana di Departemen Agronomi dan Hortikultura Fakultas Pertanian Institut Pertanian Bogor.

Pada kesempatan ini penulis mengucapkan terima kasih kepada:

1. Kementrian Agama Republik Indonesia melalui Direktur Diniyah dan Pondok

Pesantren yang telah memberikan beasiswa selama kuliah di IPB.

2. Dr. Ir. Eko Sulistyono, M.Si dan Prof. Dr. Ir. H.M.H. Bintoro Djoefrie, M.Agr

selaku dosen pembimbing skripsi yang telah banyak memberikan bimbingan

dalam penelitian dan pembuatan skripsi.

3. Dr. Ir. Supijatno, M.Si selaku dosen pembimbing akademik yang telah

mem-bimbing dan memberikan saran selama kegiatan akademik.

4. Pak Fahmi, Kak Warno, Mas Andri, Mas Gia, Mas Fajar dan seluruh tim R&D

serta PT. National Sago Prima (NSP) yang telah banyak memberikan bantuan,

bimbingan dan saran serta fasilitas selama penelitian.

5. Ayah, ibu, Daus dan Novi beserta seluruh keluarga yang telah memberikan

se-mangat dan keceriaan.

6. Lidya Oktaviani yang selalu memberikan semangat dan doa selama

menyele-saikan penelitian dan pembuatan skripsi.

7. Sahabat sagu 45, Iqbal, Rahmat, Hesti, Ika dan Alma yang telah banyak

mem-berikan bantuan selama penelitian.

8. Teman-teman Samefa, ibu kontrakan serta keluarga, seluruh keluarga besar

CSS MoRA IPB dan keluarga besar AGH 45.

Bogor, Agustus 2012

(7)

DAFTAR ISI

Halaman

DAFTAR TABEL ... vii

DAFTAR GAMBAR ... ix

DAFTAR LAMPIRAN ... xi

PENDAHULUAN ... 1

Latar Belakang ... 1

Tujuan ... 3

Hipotesis ... 3

TINJAUAN PUSTAKA ... 4

Botani Sagu ... 4

Ekologi dan Penyebaran Sagu ... 5

Persemaian Bibit Sagu ... 6

Pupuk dan Pemupukan ... 7

Nitrogen... 8

Tanah Gambut ... 9

BAHAN DAN METODE ... 11

Tempat dan Waktu ... 11

Bahan dan Alat ... 11

Metode Penelitian... 11

Pelaksanaan ... 12

Pengamatan ... 14

HASIL DAN PEMBAHASAN Kondisi Umum ... 16

Hasil ... 18

Pembahasan ... 36

KESIMPULAN DAN SARAN Kesimpulan ... 41

Saran ... 41

DAFTAR PUSTAKA ... 42

(8)

DAFTAR TABEL

Nomor Halaman

1. Rata-Rata Suhu dan Kelembaban dalam Paranet Bulan April-Juni 2012 ... 17

2. Rekapitulasi Hasil Sidik Ragam Peubah-Peubah yang Diamati pada Perlakuan Berbagai Dosis N ... 18

3. Pengaruh Pupuk N Terhadap Persentase Hidup Bibit... 19

4. Pengaruh Pupuk N Terhadap Panjang Daun Pangkasan ... 21

5. Pengaruh Pupuk N Terhadap Panjang Anak Daun Pangkasan ... 22

6. Data Hasil Pengaruh Pupuk N Terhadap Panjang Anak Daun Pangkasan Setelah Transformasi... 23

7. Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan ... 24

8. Data Hasil Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan Setelah Transformasi... 25

9. Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun Pangkasan ... 25

10. Data Hasil Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun Pangkasan Setelah Transformasi... 26

11. Pengaruh Pupuk N Terhadap Panjang Daun ke-1 ... 27

12. Pengaruh Pupuk N Terhadap Panjang Anak Daun ke-1 ... 28

13. Data Hasil Pengaruh Pupuk N Terhadap Panjang Anak Daun ke-1 Setelah Transformasi ... 28

14. Pengaruh Pupuk N Terhadap Lebar Anak Daun ke-1 ... 29

15. Data Hasil Pengaruh Pupuk N Terhadap Lebar Anak Daun ke-1 Setelah Transformasi ... 30

16. Pengaruh Pupuk N Terhadap Jumlah Anak Daun ke-1 ... 31

17. Data Hasil Pengaruh Pupuk N Terhadap Jumlah Anak Daun ke-1 Setelah Transformasi ... 32

(9)

20. Data Hasil Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun ke-1 Setelah Transformasi ... 33

21. Pengaruh Pupuk N Terhadap Jumlah daun ... 34

(10)

DAFTAR GAMBAR

Nomor Halaman

1. Lokasi Persemaian Dengan Naungan 75 % ... 11

2. Perendaman Bibit Menggunakan Larutan Dithane M-45 ... 13

3. Penanaman Bibit ke Dalam Polibag ... 13

4. Aplikasi Pupuk Pada Bibit ... 14

5. Kondisi Bibit Saat Setelah Tanam (a) dan Saat 10 MSP (b) ... 16

6. Hama Ulat Sagu (Rynchophorus ferrugineus) (a), Gejala Serangan Ulat Sagu Pada Banir (b) dan Serangan Cendawan Pada Bibit (c) ... 17

7. Pengaruh Pupuk N Terhadap Persentase Hidup Bibit... 20

8. Respon Persentase Hidup Bibit Terhadap Pupuk N Saat 7-10 MSP ... 20

9. Pengaruh Pupuk N Terhadap Panjang Daun Pangkasan ... 21

10. Pengaruh Pupuk N Terhadap Panjang Anak Daun Pangkasan ... 22

11. Respon Panjang Anak Daun Pangkasan Terhadap Pupuk N pada 9 dan 10 MSP ... 23

12. Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan ... 24

13. Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun Pangkasan ... 26

14. Pengaruh Pupuk N Terhadap Panjang Daun ke-1 ... 27

15. Respon Panjang daun ke-1 Terhadap Pupuk N Saat 10 MSP ... 27

16. Pengaruh Pupuk N Terhadap Panjang Anak Daun ke-1 ... 29

17. Pengaruh Pupuk N Terhadap Lebar Anak Daun ke-1 ... 30

18. Respon Lebar Anak daun ke-1 Terhadap Pupuk N Saat 9 dan 10 MSP ... 30

19. Pengaruh Pupuk N Terhadap Jumlah Anak Daun ke-1 ... 31

(11)

21. Respon Persentase Pemekaran daun ke-1 Terhadap Pupuk N Saat 9

dan 10 MSP ... 33

22. Pengaruh Pupuk N Terhadap Jumlah Daun ... 34

23. Respon Jumlah daun Terhadap Pupuk N ... 35

(12)

DAFTAR LAMPIRAN

Nomor Halaman

1. Layout Percobaan ... 48

2. Persiapan Abut Sebelum Tanam ... 49

3. Pemeliharaan Pemangkasan Pada Bibit ... 49

4. Keadaan Bibit di Akhir Pengamatan Sebelum Ditimbang Bobot

Segar dan Kering ... 50

5. Hasil Analisis Tanah Sebelum Pemupukan ... 51

6. Data Curah Hujan Maret-November 2011 Camp Tuni, PT. National

Sago Prima, Pulau Tebing Tinggi, Riau... 52

7. Sidik Ragam Panjang Daun Pangkasan ... 53

(13)

PENDAHULUAN

Latar Belakang

Sebagai negara yang terletak di daerah tropika basah, Indonesia kaya akan

tanaman penghasil karbohidrat dan mampu menjadi sumber karbohidrat terbesar

di dunia. Indonesia dalam mencukupi kebutuhan karbohidrat sangat bertumpu

pa-da komoditas padi. Renpa-dah pa-dan sulitnya meningkatkan produktivitas padi

di-sebabkan oleh banyaknya faktor internal dan eksternal yang mengganggu. Untuk

mengatasi kekurangan pangan dan pemenuhan karbohidrat maka perlu

peman-faatan tanaman karbohidrat selain dari biji-bijian, salah satunya adalah tanaman

sagu (Metroxylon spp.).

Sagu atau Metroxylon spp. merupakan salah satu komoditas pangan dan sumber karbohidrat yang sangat potensial di Indonesia. Produktivitas tanaman

sagu mencapai 20-40 ton pati kering /ha/tahun (Bintoro et al., 2010; Haryanto, 1992), tetapi faktanya baru 15 ton/ha/tahun (Jong, 2007). Sejauh ini tanaman sagu

kurang mendapat perhatian dari pemerintah. Padahal apabila tanaman sagu

di-budidayakan (dikelola dengan baik), maka tanaman sagu dapat mencukupi

kebu-tuhan karbohidrat seluruh bangsa Indonesia (Djoefrie, 1999). Kebukebu-tuhan

karbo-hidrat seluruh penduduk Indonesia saat ini sekitar 30,2 juta ton/tahun, hal ini

ber-arti tanaman sagu sekitar 1 juta ha dapat memenuhi karbohidrat seluruh bangsa

Indonesia (Bintoro et al., 2010).

Luas areal tanaman sagu di dunia diperkirakan lebih dari 2 juta ha (Bintoro

et al., 2007) dan 5-6 juta ha (Schuiling, 2009). Potensi sagu di Indonesia

menem-pati lebih dari 50% dari sagu dunia. Luasan hutan sagu di Indonesia mencapai 1.1

juta ha dengan 90% diperkirakan terdapat di provinsi Irian Jaya (Flach dalam

Rusli, 2007), 2.25 juta ha (Mashud et al., 2008) dan menurut Schuiling (2009) 4-5 juta ha. Tanaman sagu tersebar di wilayah tropika basah Asia Tenggara dan

Oseania, terutama tumbuh di lahan rawa dan payau atau yang sering tergenang air

(BPBPI, 2007). Jika dilihat dari segi budidaya, sagu memiliki sifat baik yaitu

potensi produksinya tinggi, dapat tumbuh, dan berproduksi pada daerah rawa.

Tanaman sagu termasuk dalam kelompok tanaman tahunan dan cocok untuk

(14)

Ada beberapa manfaat sagu antara lain: 1) Sebagai bahan pangan utama,

2) Sebagai bahan baku industri non pangan, misalnya industri tekstil, kosmetik,

farmasi, pestisida, plastik, kertas, kayu lapis, makanan dan minuman, 3) Bahan

energi, 4) Pati sagu diolah menjadi etanol yang dapat digunakan sebagai bahan

pengganti bensin yang ramah lingkungan, 5) Sebagai bahan baku industri pangan:

mie, soun, kue, dodol dan kerupuk dan 6) Sebagai pakan ternak (Djoefrie, 1999).

Anak daun sagu dapat dijadikan bahan pembuatan atap rumah (Schuiling dan

Flach, 1985 ; Lina et al., 2009 ; Schuiling, 2009), tetapi akibat pemotongan anak daun tersebut menyebabkan jumlah daun sagu menjadi lebih sedikit (Josue dan

Okazaki, 2002) dan kulit batang dapat dijadikan lantai (Schuiling dan Flach,

1985). Ampas sagu dapat digunakan sebagai campuran media pembibitan cengkeh

(Djoefrie dan Soebijandojo, 1993) dan campuran media pada pembibitan kakao

(Djoefrie dan Sianipar, 1993).

Kandungan kalori, karbohidrat, protein dan lemak pati sagu setara dengan

kandungan pati tanaman penghasil karbohidrat lain (BPBPI, 2007). Menurut

Schuiling (2009) pati sagu dari Indonesia mengandung 81-88% karbohidrat (27%

amilosa dan 73% amilopektin), 10-17% air, 0.31% protein 0.11-0.25% lemak,

1.35% serat dan 0.15-0.28% abu.

Kegiatan persiapan bahan tanam meliputi kegiatan persiapan bibit dan

persemaian. Pada umumnya perbanyakan tanaman sagu dilakukan secara vegetatif

melalui anakan, hal ini karena selain mudah diperbanyak, bibit yang diperoleh

da-ri anakan lebih cepat dalam pertumbuhan (Jong dan Kueh, 1995 ; Irawan et al., 2009b). Perbanyakan menggunakan benih mempunyai beberapa kelemahan, yaitu

benih susah didapat karena biasanya sagu dipanen sebelum pembungaan (Irawan

et al., 2009a), biji sagu susah berkecambah (Schuiling dan Flach, 1985) serta san-gat bervariasi dalam morfologi dan daya tumbuh (Jong, 2007). Persemaian

bertu-juan untuk mempercepat pertumbuhan vegetatif dan mempunyai daya tahan hidup

yang baik sehingga tidak mudah mati saat di lapang (Pinem, 2008). Selain itu,

persemaian digunakan untuk menyeleksi bibit yang baik saat tanam ke lapang

(Jong, 2007).

Pupuk adalah bahan yang diberikan ke dalam tanah baik yang organik

(15)

bertujuan untuk meningkatkan produksi tanaman (Sutedjo, 1994). Sangat

dianjur-kan meningkatdianjur-kan kesuburan tanah untuk mendapatdianjur-kan hasil yang cukup dari

ta-naman sagu di tanah gambut (Ando, et al., 2007). Penambahan pupuk pada sagu di tanah gambut saat fase roset dan awal pembentukan batang dapat mempercepat

pertumbuhan dan meningkatkan produktivitas sagu (Purwanto et al., 2002). Pupuk N berfungsi memperbaiki pertumbuhan vegetatif tanaman dan pembentukan

pro-tein. Apabila unsur nitrogen kurang maka tanaman menjadi terganggu

pertumbuh-an vegetatifnya (Hardjowigeno, 2007). Aplikasi pupuk N dapat meningkatkpertumbuh-an

se-cara signifikan jumlah anak daun sagu pada pertumbuhan bibit, tetapi diameter

dan jumlah daun tidak berpengaruh (Lina et al., 2009).

Teknik persemaian bibit sagu dapat menggunakan rakit (sistem kanal),

kolam lumpur dan polibag (Schuiling, 2009). Pinem (2008) menyatakan bahwa

persemaian di media kanal adalah yang paling baik, karena bibit sagu di media

kanal selalu mendapatkan air sehingga mendukung penambahan jumlah dan lebar

daun. Selain itu menurut Jong (2007) persemaian di kanal memiliki persentase

hi-dup bibit yang tinggi yaitu 80%. Wibisono (2011) menyatakan pada persemaian

kanal, meskipun mempunyai kemampuan hidup yang tinggi dalam persemaian

te-tapi lebih dari 40% bibit mati pada saat dipindahtanamkan. Pinem (2008)

menya-takan pada persemaian menggunakan kolam, tinggi air kolam tidak selalu sama,

hal tersebut membuat bibit sagu seringkali menjadi stres sehingga

pertumbuhan-nya tidak maksimal. Oleh karena itu perlu dikembangkan penelitian persemaian

sagu menggunakan sistem polibag dan pemberian pupuk khususnya N untuk

me-ningkatkan daya tumbuh bibit dan pertumbuhan vegetatif awal.

Tujuan

Percobaan ini bertujuan untuk mengetahui pengaruh pemupukan nitrogen

terhadap pertumbuhan awal bibit sagu di persemaian sistem polibag.

Hipotesis

Terdapat pertumbuhan yang berbeda untuk setiap dosis nitrogen yang

(16)

TINJAUAN PUSTAKA

Botani sagu

Sagu dari genus Metroxylon, secara garis besar digolongkan menjadi dua

yaitu pleonanthic dan hepaxanthic. Pleonanthic adalah tanaman sagu yang ber-bunga atau berbuah dua kali dengan kandungan pati rendah. Hepaxanthic adalah tanaman sagu yang berbunga atau berbuah satu kali dan mengandung pati lebih

banyak (Bintoro et al., 2010).

Batang sagu merupakan bagian yang sangat penting karena mengandung

pati yang diambil untuk berbagai keperluan. Pada umur 3-11 tahun tinggi batang

bebas daun sekitar 3-16 m, bahkan dapat mencapai 20 m. Sagu memiliki batang

tertinggi pada umur panen yakni 11 tahun keatas (Haryanto dan Pangloli, 1992).

Sagu dapat mencapai tinggi 25 m dan 8-16 m batang dapat menghasilkan pati

(Atmawidjaja, 1992). Lapisan kulit paling luar berupa lapisan sisa-sisa pelepah

daun sagu yang terlepas, sehingga yang terlihat hanya lapisan kulit tipis

pembung-kus kulit dalam yang keras. Pada tanaman sagu yang masih muda, kulit dalam

ter-sebut tipis dan tidak begitu keras. Serat dan empulur pada sagu muda masih muda

dan banyak mengandung air, sedangkan pada sagu dewasa sampai umur panen

empulur dan serat sudah mulai kering dan mengeras (Bintoro et al., 2010). Menurut Rumalatu (1981) kandungan pati dalam empulur batang sagu

berbeda-beda, tergantung dari umur, jenis dan lingkungan tempat sagu itu tumbuh.

Sagu mempunyai daun sirip menyerupai daun kelapa yang tumbuh pada

tangkai daun. Daun sagu memiliki anak daun dengan panjang 1,5 m, bertangkai

dan berpelepah. Panjang daun sagu dapat mencapai 7 m. Setiap bulan sagu

mem-bentuk satu tangkai daun dan diperkirakan berumur rata-rata sekitar 18 bulan,

kemudian akan gugur setelah tua (Flach, 1983).

Bunga sagu merupakan bunga majemuk yang keluar dari ujung atau

pun-cak batang sagu, berwarna merah kecoklat-coklatan seperti karat (Bintoro et al., 2010). Menurut Haryanto dan Pangloli (1992), penurunan kandungan pati dalam

(17)

Ekologi dan Penyebaran Sagu

Secara alami tanaman sagu tersebar dari Melanesia di Pasifik Selatan di

sebelah Timur sampai ke India sebelah Barat (90°-180° BT) dan dari Mindanau di

sebelah Utara sampai di pulau Jawa di sebelah Selatan (10° LU-10° LS) (Johson

dalam Djoefrie, 1999). Hutan sagu ditemukan di lahan-lahan sepanjang dataran rendah tepi pantai hingga ketinggian 1000 m dpl, sepanjang tepi sungai dan di

sekitar danau ataupun rawa. Ketinggian tempat yang terbaik sampai 400 m dpl,

lebih dari itu pertumbuhan sagu terhambat dan produksinya rendah (Djoefrie,

1999). Suhu udara terendah bagi pertumbuhan tanaman sagu adalah 15°C, dengan

kelembaban udara sekitar 90% dan intensitas cahaya sekurang-kurangnya 900

joule/cm2/hari. Apabila suhu udara rata-rata kurang dari 20°C atau kelembaban

kurang dari 70% maka pembentukan pati berkurang 25% (Bintoro et al., 2010 ; Notohadiprawiro dan Louhenapessy, 1993). Umumnya di Serawak sagu tumbuh

di tanah gambut, tetapi pertumbuhannya lambat, jumlah daun lebih sedikit (17-19

daun dibandingkan di tanah mineral 20-24 daun) dan hasil per batang lebih rendah

dibandingkan di tanah mineral (Flach dan Schuiling, 1991). Pada tanah gambut

masa tebang 12.7 tahun sedangkan di tanah mineral 9.8 tahun (Kueh et al., 1991), rata-rata pati keringnya lebih sedikit yaitu 88-179 kg/tanaman dibandingkan di

tanah mineral 123-189 kg/tanaman (Sim dan Ahmad, 1991) dan produksi per

satuan waktu 25% lebih rendah dari sagu yang tumbuh pada tanah mineral (Kueh,

1995).

Sagu dapat tumbuh dengan baik pada tanah vulkanik, podzolik merah

ku-ning, grumosol, alluvial dan hidromofik (Djoefrie, 1999). Menurut Haryanto dan

Pangloli (1992), pada tanah yang tidak cukup tersedia mikroorganisme penyubur

tanah, pertumbuhan sagu menjadi kurang baik. Selain itu, pertumbuhan tanaman

sagu juga dipengaruhi oleh adanya unsur hara yang disuplai dari air tawar

terutma unsur P, K dan Mg. Akar nafas tanaterutman sagu yang terendam terus menerus

a-kan menghambat pertumbuhan sagu sehingga pembentua-kan pati dalam batang

ju-ga terhambat.

Menurut Djoefrie (1999), satu hal yang menarik dari tanaman sagu yaitu

tanaman tersebut dapat tumbuh pada suatu kawasan yang tanaman lain tidak dapat

(18)

dan palawija hasilnya akan membusuk bila terendam ≥ 1 m, tetapi pati yang masih terdapat di batang sagu tidak akan rusak bila tanaman sagu terendam ≥ 1 m sela -ma beberapa hari.

Sagu tumbuh tersebar di Kepulauan Nusantara. Lebih dari 95 % tanaman

sagu terdapat di Indonesia, Malaysia dan Papua New Guinea, sisanya terdapat di

pulau-pulau di Pasifik, Filipina dan Thailand bahkan sampai India (Flach, 1983).

Lebih dari 50 % sagu Indonesia tumbuh di Papua. Provinsi lainnya yang memiliki

sagu yang agak luas yaitu Maluku, Maluku Utara, Aceh, Riau, Kalimantan Barat,

Sulawesi Selatan, Sulawesi Tenggara dan Sulawesi Utara (Bintoro, 2008).

Persemaian Bibit Sagu

Kegiatan persemaian merupakan kegiatan lanjutan dari penyeleksian abut

(anakan sagu). Persemaian bertujuan memberikan kondisi yang sesuai atau

akli-matisasi untuk abut-abut yang akan di tanam di lapangan. Akliakli-matisasi bertujuan

agar abut tersebut tidak stres, sehingga selama proses persemaian kondisi abut

ba-ik dan sehat untuk ditanam di lapangan. Lama bibit di persemaian yaitu selama

ti-ga bulan, bibit memiliki rata-rata jumlah daun 2-3 helai dan perakaran yang baik

sehingga bibit sudah siap dipindah ke lapang (Bintoro et al., 2010).

Bibit yang digunakan dapat berasal dari biji (generatif) dan dari tunas atau

anakan sagu (vegetatif). Perbanyakan tanaman secara generatif belum optimal

keberhasilannya, terutama dalam perkecambahan biji (Flach dalam Haryanto dan Pangloli, 1992). Bibit yang diambil sebagai bahan tanaman adalah bibit yang telah

matang atau tua. Bibit sagu umumnya dapat ditemukan pada kebun yang pohon

induknya sudah dipanen 3-4 kali. Bibit yang baik dengan bobot 2-5 kg dan

bong-gol berbentuk “L” (Wibisono, 2011).

Sebelum penyemaian bibit terlebih dahulu dilakukan pemotongan pelepah

dan tunas kurang lebih 20-30 cm dari banir, terutama untuk tunas-tunas yang telah

mengering akibat terlalu lama di tempat persiapan bahan tanam. Tujuan

pemo-tongan untuk mempercepat pemunculan calon tunas pertama yang selanjutnya

menjadi daun (Asmara, 2005).

Teknik pembibitan yang dilaksanakan pada bibit sagu adalah persemaian

(19)

Rakit bisa terbuat dari bambu atau pelepah tua tanaman sagu. Keuntungan

meng-gunakan persemaian rakit adalah kemampuan tumbuh bibit tinggi serta

peme-liharaan sangat sedikit. Selain menggunakan rakit, persemaian juga bisa dilakukan

dengan menggunakan teknik kolam dan polibag. Pada persemaian menggunakan

polibag digunakan tanah gambut ke dalam polibag tersebut (Bintoro, 2008).

Me-nurut Pinem (2008), perlakuan persemaian dengan polibag menghasilkan nilai

ra-ta-rata panjang tunas yang rendah jika dibandingkan dengan sistem rakit dan

ko-lam. Hal ini karena kadar air polibag cukup rendah, sedangkan bibit sagu

membu-tuhkan kadar air yang tinggi untuk pertumbuhannya.

Pupuk dan Pemupukan

Pupuk adalah setiap bahan yang diberikan ke dalam tanah atau

di-semprotkan pada tanaman dengan maksud menambah unsur hara yang diperlukan

tanaman. Pemupukan adalah setiap usaha pemberian pupuk yang bertujuan

nambah persediaan unsur-unsur hara yang dibutuhkan oleh tanaman untuk

me-ningkatkan pertumbuhan dan hasil tanaman (Sarief, 1985).

Menurut Hardjowigeno (2007), agar pemupukan efisien maka dalam

pe-mupukan harus diketahui beberapa hal, yaitu tanaman yang akan dipupuk, jenis

tanah, jenis pupuk, dosis pupuk, waktu dan cara pemupukan. Dosis pupuk yang

diberikan berhubungan dengan kebutuhan tanaman akan unsur hara, kandungan

unsur hara yang ada dalam tanah dan kadar unsur hara yang terdapat dalam

pu-puk. Menurut Harjadi (1996), pada banyak tanaman, N diberikan beberapa kali

se-lama musim tanam karena N mudah tercuci dan mudah berubah ke bentuk gas

yang tidak tersedia bagi tanaman.

Pupuk terbagi menjadi pupuk alami dan buatan. Pupuk alami adalah pupuk

yang telah tersedia di alam dan dapat diserap tanaman, sedangkan pupuk buatan

adalah pupuk yang sengaja dibuat dengan menambahkan unsur hara tertentu.

Selain itu pupuk buatan terdiri atas pupuk tunggal dan pupuk majemuk. Pupuk

tunggal adalah pupuk yang hanya mengandung satu unsur hara saja, sedangkan

pupuk majemuk mengandung lebih dari satu unsur hara.

Urea adalah salah satu bentuk pupuk N buatan dan tergolong pupuk

(20)

ter-masuk golongan pupuk yang higroskopis. Pada kelembaban nisbi 73% sudah

mu-lai menarik air dari udara. Reaksi fisiologisnya agak masam dengan ekivalen

ke-masaman 80 tetapi tidak terlalu mengasamkan tanah. Pupuk urea dibuat dari

amo-niak dan gas asam arang, berbentuk kristal berwarna putih atau butir-butir bulat

berdiameter kurang lebih 1 mm. Pupuk urea sering dilapisi suatu bahan pelapis

untuk mengurangi sifat higroskopisnya. Untuk dapat diserap tanaman, nitrogen

dalam urea diubah dahulu menjadi ammonium dengan bantuan enzim tanah

urea-se melalui prourea-ses hidrolisis. Apabila diberikan ke tanah prourea-ses hidrolisis terurea-sebut

cepat sekali terjadi sehingga mudah menguap menjadi amonia. Amonia mudah

bereaksi dengan air dan akan membentuk hidroksi amonium, sehingga untuk

se-mentara tidak akan hilang dari tanah (Sarief, 1985 ; Hardjowigeno, 2007).

Nitrogen

Nitrogen merupakan unsur yang termasuk ke dalam salah satu unsur

esensial bagi tanaman. Menurut Miftahudin et al., (2010) unsur esensial diartikan sebagai hara mineral yang sangat dibutuhkan oleh tanaman. Bila salah satu

dian-taranya tidak tercukupi dalam tanah maka pertumbuhan dan perkembangan

tana-man tidak dapat optimal.

Senyawa nitrogen sebagai sumber nitrogen yang dapat diasimilasikan oleh

tanaman dan dapat dibagi menjadi empat golongan besar, yaitu: nitrogen nitrat

(NO3-), nitrogen ammonia, nitrogen organik dan nitrogen molekul lain (N2).

Sum-ber utama unsur nitrogen bagi tanaman diantaranya atau yang terpenting adalah

ion nitrat (NO3-) dalam larutan tanah. Ion nitrat diserap oleh bulu-bulu akar

melalui proses respirasi anion dan diakumulasikan dalam vakuola. Sumber lain

dari nitrogen anorganik adalah dalam bentuk ion ammonium (NH4+). Masuknya

ion ammonium ke dalam sel karena adanya gradien listrik akibat pengambilan ion

secara aktif (Suseno, 1974).

Kandungan nitrogen di udara sekitar 79%. Nitrogen tersebut tidak

lang-sung dapat dimanfaatkan oleh tanaman sebelum mengalami perombakan menjadi

senyawa nitrat (NO3-) dan ammonium (NH4+). Sumber nitrogen udara berasal dari

vulkan, pembakaran, denitrifikasi dan pelapukan sedimen. Nitrogen udara

(21)

biologi dapat dilakukan oleh mikroorganisme seperti bakteri, aktinomisetes dan

ganggang hijau biru. Molekul nitrogen (N2) akan bereaksi dengan oksigen (O2)

membentuk ammonium (NH4+) yang tersedia bagi tanaman.

Menurut Hardjowigeno (2007), perubahan-perubahan bentuk nitrogen

da-lam tanah dari bahan organik melalui beberapa macam proses, yaitu aminisasi,

amonifikasi, nitrifikasi dan denitrifikasi. Aminisasi adalah pembentukan senyawa

amino dari bahan organik (protein) oleh berbagai mikroorganisme. Amonifikasi

adalah pembentukan ammonium dari senyawa-senyawa amino oleh

mikroorganis-me. Nitrifikasi adalah perubahan dari ammonium (NH4+) menjadi nitrit (NO2-)

oleh bakteri Nitrosomonas, kemudian menjadi nitrat oleh bakteri Nitrobacter. Faktor-faktor yang mempengaruhi nitrifikasi adalah tata udara (nitrifikasi berjalan

baik jika tata udara tanah baik), pH tanah (baik pada pH sekitar 7.0) dan suhu.

Denitrifikasi adalah proses reduksi nitrat (NO3-) menjadi bentuk N2 oleh

mikroorganisme dan proses reduksi kimia (terjadi setelah terbentuk nitrit). Syarat

terjadinya denitrifikasi adalah di tempat yang tergenang, drainase buruk dan tata

udara tidak baik.

Nitrogen merupakan penyusun semua protein dan asam nukleat, sehingga

merupakan penyusun protoplasma (Sarief, 1985). Menurut Hardjowigeno (2007)

N berfungsi memperbaiki pertumbuhan vegetatif tanaman. Apabila tanaman

keku-rangan nitrogen maka terlihat gejala seperti tanaman menjadi kerdil, pertumbuhan

akar terbatas dan daun - daun kuning dan gugur. Menurut Sarief (1985), jumlah N

yang terlalu banyak mengakibatkan menipisnya bahan dinding sel sehingga

mu-dah diserang oleh hama dan penyakit, serta mumu-dah terpengaruh oleh keadaan

bu-ruk seperti kekeringan dan kelebihan air.

Tanah Gambut

Tanah gambut merupakan material atau bahan organik yang tertimbun

se-cara alami dalam keadaan basah berlebihan, bersifat tidak mampat dan tidak atau

hanya sedikit mengalami perombakan. Berdasarkan klasifikasi tanah, tanah

gam-but dikelompokkan ke dalam ordo histosol (histos dari bahasa Yunani yang

(22)

Kesuburan tanah gambut sangat beragam tergantung ketebalan lapisan

gambut, tingkat dekomposisi, komposisi tanaman penyusun gambut dan tanah

mi-neral yang berada di bawah lapisan tanah gambut (Barchia, 2006). Tanah gambut di PT. National Sago Prima memiliki pH berkisar antara 3.30-3.70 (sangat ma-sam), kapasitas tukar kation (KTK) tergolong tinggi (46.59-74.22 me/100 g), se-dangkan kejenuhan basanya termasuk rendah (5,75-7.69 %) (Bintoro et al., 2010). Tanah yang sangat masam menyebabkan kekahatan N, P, K, Ca, Mg, Bo dan Mo. KTK tanah yang tinggi dan kejenuhan basa yang rendah menyebabkan penyedia-an hara ypenyedia-ang baik bagi tpenyedia-anampenyedia-an terhambat terutama K, Mg dpenyedia-an Ca (Noor, 2001). Bobot isi (bulk density) tanah gambut berkisar antara 0.01-0.20 g/cm3, tergantung pada tingkat kematangannya. Rendahnya bobot isi tanah gambut mencirikan ren-dahnya daya dukung tanah tersebut (Bintoro et al., 2010).

Nisbah C/N tanah gambut berkisar antara 31-49. Apabila nilai rasio C/N lebih besar dari 30, mikroorganisme tanah akan memobilisasi N untuk metabolis-menya. Jadi meskipun kadar N total tinggi, tetapi tidak tersedia bagi tanaman. Se-lain itu, N total di tanah gambut dalam bentuk N-organik yang sedikit diserap ta-naman. Agar tersedia bagi tanaman, bentuk organik harus diubah menjadi N-anorganik melalui proses asimilasi, amonifikasi dan nitrifikasi. Seperti halnya un-sur N, unun-sur P di tanah gambut dalam bentuk P organik yang sulit tersedia untuk tanaman (Barchia, 2006).

(23)

BAHAN DAN METODE

Tempat dan Waktu

Percobaan dilaksanakan di perkebunan sagu PT. National Sago Prima,

Selat Panjang, Kabupaten Kepulauan Meranti, Riau. Waktu percobaan pada bulan

Februari 2012 sampai bulan Juni 2012.

Bahan dan Alat

Bahan yang digunakan pupuk Urea (46 % N), TSP, KCl, Dolomit, Dithane

M-45, Furadan, media tanah gambut dan bibit sagu yang mempunyai kriteria

se-hat, bebas dari hama penyakit dan mempunyai perakaran yang cukup dengan

bo-bot 500-1000 g. Polibag yang digunakan berukuran 30 x 35 cm. Alat yang

diguna-kan adalah paranet 75% (Gambar 1), ember, angkong, skop, cangkul, meteran, pH

meter, termometer bola basah bola kering, pompa air, timbangan, parang dan

la-bel.

Gambar 1. Lokasi Persemaian Dengan Naungan 75 %

Metode Penelitian

Percobaan terdiri atas satu faktor yaitu dosis pupuk N. Perlakuan yang di-berikan yaitu:

P0: Perlakuan kontrol (tanpa pupuk N)

P1: Perlakuan dosis 3 g N/polibag

P2: Perlakuan dosis 6 g N/polibag

P3: Perlakuan dosis 9 g N/polibag

P4: Perlakuan dosis 12 g N/polibag

(24)

Rancangan percobaan yang digunakan adalah Rancangan Kelompok

Leng-kap Teracak (RKLT) dengan empat ulangan. Perlakuan terdiri atas enam perlaku-an yperlaku-ang diulperlaku-ang empat kali sehingga percobaperlaku-an terdiri atas 24 satuperlaku-an percobaperlaku-an. Model aditif linier yang digunakan adalah:

Yij= µ + αi+ βj+ εij Keterangan:

Yij = Pengamatan pada perlakuan ke-i dan ulangan ke-j

µ = Rataan umum

αi = Pengaruh perlakuan ke-i (i:1, 2, 3, 4, 5, 6)

βj = Pengaruh ulangan ke-j (j:1, 2, 3, 4)

εij =Pengaruh acak pada perlakuan ke-i pada ulangan ke-j

Percobaan diasumsikan memiliki pengaruh perlakuan yang bersifat aditif, data

menyebar normal, galat percobaan saling bebas dan menyebar normal serta ragam

galat percobaan bersifat homogen.

Dalam percobaan, jumlah bibit yang digunakan sebanyak 50 bibit untuk

setiap satuan percobaan dan 24 bibit yang digunakan atau diambil sebagai contoh

dalam setiap satuan percobaan. Jadi total bibit yang digunakan semuanya adalah

sebanyak 1 200 bibit, sedangkan jumlah bibit yang diambil sebagai contoh untuk

pengamatan sebanyak 576 bibit.

Data yang diperoleh diuji dengan sidik ragam atau uji F dan apabila

me-nunjukkan pengaruh nyata maka dilanjutkan dengan pengujian DMRT (duncan multiple range test) pada taraf 5 %. Untuk mengetahui dosis pemupukan nitrogen

optimum dan respon pemupukan N dilakukan uji kontras orthogonal polinomial.

Pelaksanaan

Tahap awal yang dilakukan adalah pengadaan bibit (abut). Bibit berasal

dari pembelian melalui kontraktor penyedia abut. Sebelum dilakukan penyemaian,

dilakukan pemangkasan pada bagian pelepah dan pucuk ± 20 cm di atas banir.

Pemangkasan pelepah dan pucuk dilakukan agar mempercepat pemunculan tunas

dan mengurangi evaporasi. Bibit direndam dalam larutan fungisida Dithane M-45

(25)

menit (Gambar 2). Hal tersebut bertujuan untuk menghindari dan mencegah

cen-dawan dan jamur pada bibit. Polibag diisi dengan tanah di sekitar areal percobaan

(tanah gambut) setelah dicampur dolomit dengan dosis 40 g/polibag. Sebelum

bi-bit ditanam diberikan furadan dengan dosis 2-3 g/polibag. Setelah itu bibi-bit

dita-nam atau dimasukkan ke dalam polibag dan tanah dipadatkan (Gambar 3). Polibag

disusun rapi dan dikelompokkan sesuai rancangan acak yang digunakan. Semua

bibit diletakkan di dalam rumah paranet dengan naungan 75%.

Gambar 2. Perendaman Bibit Menggunakan Larutan Dithane M-45

Gambar 3. Penanaman Bibit ke Dalam Polibag

Selain pupuk N (urea) sebagai perlakuan, semua bibit diberikan pupuk

da-sar P (TSP) dan K (KCl) dengan dosis 3 g dan 2.5 g/polibag dan diaplikasikan

sa-at setelah tanam. Pemberian pupuk nitrogen diaplikasikan dua kali yaitu sasa-at

sete-lah tanam dan empat minggu setesete-lah tanam dengan dosis masing-masing aplikasi

setengah dari dosis perlakuan pupuk N. Cara aplikasi langsung ditebar di sekitar

bibit (Gambar 4). Untuk mengetahui kandungan N dalam media tanam, dilakukan

(26)

Gambar 4. Aplikasi Pupuk Pada Bibit

Pemeliharaan yang dilakukan meliputi pengairan, pengendalian gulma dan

pemotongan (pemangkasan) petiol yang busuk. Pengairan menggunakan air tanah

gambut yang dilakukan secara manual saat pagi dan sore hari. Pengendalian

gul-ma dilakukan secara gul-manual dengan cara mencabut gulgul-ma-gulgul-ma yang tumbuh di

polibag.

Pengamatan

Pengamatan dilakukan setelah dua minggu dari pengaplikasian perlakuan

pupuk N awal dan dilakukan pengamatan terus setiap seminggu sekali selama 2.5

bulan. Adapun beberapa peubah yang diamati adalah:

1. Persentase bibit hidup, dibandingkan antara total bibit yang hidup dan total

bibit yang ditanam.

2. Panjang daun pangkasan, diukur mulai dari pangkal pangkasan sampai

ti-tik teratas daun yang terpangkas, baik keti-tika masih tunas maupun sudah

menjadi daun.

3. Panjang daun ke-1, diukur mulai dari titik tumbuh bibit baik ketika masih

berupa tunas maupun setelah berubah menjadi daun mekar sempurna.

4. Panjang anak daun pangkasan, diukur pada anak daun yang terpanjang dari

daun pangkasan yang sudah mekar.

5. Lebar anak daun pangkasan, diukur pada anak daun yang paling lebar dari

daun pangkasan yang sudah mekar.

6. Persentase pemekaran daun pangkasan, dihitung antara total daun

pang-kasan yang sudah mekar dengan total bibit yang diamati.

7. Panjang dan lebar anak daun ke-1, diukur pada anak daun yang tengah dari

(27)

8. Jumlah anak daun ke-1, dihitung dari total anak daun pada daun ke-1 yang

telah membuka sempurna.

9. Persentase pemekaran daun ke-1, dihitung dari total daun ke-1 yang sudah

mekar sempurna.

10.Jumlah daun, dihitung dari total jumlah daun pada bibit di akhir

pengama-tan (10 MSP), yaitu daun pangkasan dan daun baru yang muncul setelah

daun pangkasan.

11.Bobot kering tajuk dan akar. Bibit dicabut kemudian dipisahkan antara

akar dan tajuk, kemudian masing-masing ditimbang bobot segarnya.

Sete-lah itu dikeringkan dengan suhu 80 °C selama 48 jam, dan ditimbang

seba-gai bobot kering.

(28)

HASIL DAN PEMBAHASAN

Kondisi Umum

Persemaian bibit sagu sampai saat ini masih banyak terdapat

kendala-ken-dala khususnya kendala-ken-dalam mempertahankan tingkat hidup bibit selama di persemaian

dan ketika pindah ke lapang. PT. National Sago Prima melakukan persemaian

sa-gu di media rakit atau sistem kanal. Cara persemaian tersebut sangat baik karena

persentase hidup bibit dapat mencapai 80 %, tetapi ketika dipindah ke lapang

per-sentase hidupnya kecil. Hal tersebut karena bibit kurang beradaptasi di lapang

karena selama di persemaian di kanal air selalu tersedia. Oleh karena itu perlu

diu-ji metode persemaian bibit sagu yang diharapkan mampu meningkatkan

persenta-se hidup bibit. Salah satu metodenya adalah perpersenta-semaian dengan menggunakan

sis-tem polibag.

Gambar 5. Kondisi Bibit Saat Setelah Tanam (a) dan Saat 10 MSP (b).

Secara umum kondisi bibit saat setelah tanam dan di akhir pengamatan (10

MSP) dapat dilihat di Gambar 5. Persentase hidup bibit yang paling rendah yaitu

sebesar 45 % dan paling banyak masih mencapai 77.50 %. Faktor lingkungan

se-perti suhu dan kelembaban dalam paranet mempengaruhi tingkat kematian bibit.

Suhu siang yang tinggi yaitu mencapai 32.31-34.67 °C dan kelembabannya

75.38-58.33 % (Tabel 1) banyak mengakibatkan persentase hidup menurun.

Selama percobaan hama dan penyakit juga ditemukan pada bibit. Pada

bi-bit yang sudah mati, ketika banirnya dibelah ditemukan adanya serangan ulat sagu

(29)

bit sehingga menjadi mati (Gambar 6). Flach (1997) menyatakan Rynchoporus spp. sangat berbahaya bagi tanaman sagu, hama tersebut masuk ke dalam tanaman muda dan merusak jaringan tanaman. Serangan ulat sagu tersebut pada bibit

sela-ma percobaan sebesar 20 %. Selain itu banyaknya serangan cendawan pada petiol

dan daun bibit terutama saat musim hujan. Serangan cendawan tersebut ditandai

dengan adanya benang-benang putih dan serbuk yang menempel pada bibit,

ke-mudian akan menyebabkan bibit menjadi kering dan mati. Pencegahan cendawan

tersebut menggunakan fungisida Dithane M-45 dengan konsentrasi 1 % dengan

cara mengoleskan langsung ke bagian bibit.

Tabel 1. Rata-Rata Suhu dan Kelembaban dalam Paranet Bulan April-Juni 2012

Bulan Suhu (°C) RH (%)

Pagi Siang Pagi Siang

April 26.38 32.31 88.15 75.38

Mei 25.52 33.55 88.45 59.19

Juni 25.78 34.67 78.00 58.33

Gambar 6. Hama Ulat Sagu (Rynchophorus ferrugineus) (a), Gejala Serangan Ulat Sagu Pada Banir (b) dan Serangan Cendawan Pada Bibit (c).

Daun pangkasan pada bibit menunjukkan baru mekar mulai minggu ke-4

MSP. Pertumbuhan bibit tidak seragam, sehingga masih ada bibit yang daun

pangkasannya belum mekar. Pada 4 MSP daun ke-1 juga sudah muncul pada

be-berapa bibit, sedangkan kebanyakan bibit belum muncul. Daun ke-1 mengalami

pemekaran mulai dari 7 MSP ditandai anak daun sudah membuka sempurna dan

dihitung panjang, lebar dan jumlah anak daunnya. Secara keseluruhan, perlakuan

(30)

N dengan dosis rendah memperlihatkan kondisi yang lebih bagus dari perlakuan N

dosis yang lebih tinggi. Hal ini diduga bibit yang diberikan pupuk N dengan

do-sis lebih tinggi mengalami keracunan N dan pertumbuhan bibit menjadi

terham-bat.

Hasil

Pada Tabel 2 terlihat pengaruh pupuk N terhadap semua peubah - peubah

yang diamati. Pupuk N berpengaruh nyata terhadap Persentase hidup bibit baru

pada minggu ke-7 setelah perlakuan. Pupuk N tidak berpengaruh nyata terhadap

panjang daun pangkasan, lebar anak daun pangkasan dan persentase pemekaran

daun pangkasan, panjang anak daun ke-1, jumlah anak daun ke-1, bobot segar

ta-juk dan akar serta bobot kering tata-juk dan akar.

Tabel 2. Rekapitulasi Hasil Sidik Ragam Peubah - Peubah yang Diamati pada Perlakuan Berbagai Dosis N

No. Peubah Umur

(MSP)

Pengaruh Perlakuan

1 Persentase Hidup Bibit 2 – 6

7 – 9 10

tn * **

2 Panjang Daun Pangkasan 2 - 8 tn

3 Panjang Anak Daun Pangkasan 4 – 8

9 - 10

tn *

4 Lebar Anak Daun Pangkasan 4 – 10 tn

5 Persentase Pemekaran Daun Pangkasan 4 – 10 tn

6 Panjang Daun ke-1 4 – 9

10

tn *

7 Panjang Anak Daun ke-1 7 – 10 tn

8 Lebar Anak Daun ke-1 7 – 8

9 - 10

tn *

9 Jumlah Anak Daun ke-1 7 - 10 tn

10 Persentase Pemekaran Daun ke-1 7 – 8 9 - 10

tn *

11 Jumlah Daun 10 *

12 Bobot Segar Tajuk 10 tn

13 Bobot Segar Akar 10 tn

14 Bobot Kering Akar 10 tn

15 Bobot Kering Tajuk 10 tn

[image:30.595.105.504.365.740.2]
(31)

Persentase Hidup Bibit

Persentase hidup bibit merupakan salah satu peubah yang digunakan untuk

melihat kemampuan tumbuh bibit selama di persemaian. Dari Tabel 3 dapat

dili-hat pengaruh perlakuan pupuk N terhadap persentase hidup bibit dari 2 sampai 10

MSP (minggu setelah perlakuan). Hasil menunjukkan bahwa tidak adanya

penga-ruh pupuk N terhadap persentase hidup bibit pada 2 sampai 6 MSP diantara semua

perlakuan. Pengaruh pupuk N berpengaruh nyata saat 7, 8 dan 9 MSP, dan

ber-pengaruh sangat nyata pada mingu ke 10.

Tabel 3. Pengaruh Pupuk N Terhadap Persentase Hidup Bibit.

N (g/polibag)

MSP Ke-

2 3 4 5 6 7 8 9 10

...%...

0 97.50 93.50 92.50 87.50 82.00 78.00ab 74.50ab 70.00ab 68.50ab

3 98.50 93.50 93.00 89.50 85.00 85.00a 82.50a 79.00a 77.50a

6 97.50 89.50 88.50 86.00 82.00 76.00ab 74.00ab 71.00ab 67.50ab

9 98.50 92.00 89.50 84.50 77.00 71.50abc 68.00abc 62.5abc 58.50bc

12 99.00 91.50 90.00 85.00 77.00 65.50bc 62.50bc 56.00bc 52.50bc

15 98.50 87.50 84.50 78.50 69.00 57.50bc 53.00c 48.50c 45.00c

KK (%) 2.77 5.23 5.11 7.84 10.97 14.04 15.04 16.14 17.47 Keterangan: angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan

tidak berbeda nyata pada uji DMRT taraf 5 %.

Persentase hidup terus mengalami penurunan hingga 10 MSP (Gambar 7).

Perlakuan yang terbaik adalah perlakuan dosis 3 g N /polibag dengan persentase

hidup masih mencapai 77.50 % saat 10 MSP. Perlakuan 3 g N memiliki rata-rata

persentase hidup yang paling tinggi diantara semua perlakuan dari 2-10 MSP,

walaupun dari 2-6 MSP tidak berbeda secara nyata dari perlakuan lainnya.

Perlakuan 3 g N menunjukkan tidak berbeda secara nyata dengan perlakuan

kontrol dan perlakuan 6 g N. Penurunan persentase hidup perlakuan 3 g N setiap

minggunya hampir sama, yaitu rata-rata 2.8 %. Perlakuan dosis N tinggi (15 g N)

menunjukkan rata-rata penurunan persentase hidup sebesar 5.55 % setiap

ming-gunya dan penurunan paling besar yaitu pada minggu ke 7 MSP (11.5 %). Sampai

(32)

terben-tuk dan energi unterben-tuk pertumbuhan berasal dari cadangan makanan dalam banir.

Saat 7-10 MSP perlakuan 3 g N merupakan yang terbaik, karena dosis N yang

le-bih tinggi menyebabkan kematian bibit yang lele-bih banyak. Untuk percobaan

se-lanjutnya, pemupukan N di persemaian polibag sebaiknya diberikan setelah tujuh

minggu dari saat penanaman.

Gambar 7. Pengaruh Pupuk N Terhadap Persentase Hidup Bibit

Berdasarkan Gambar 8 pupuk N memberikan respon yang linear terhadap

persentase hidup bibit dari 7 sampai 10 MSP. Terjadi penurunan persentase hidup

bibit dengan semakin tingginya dosis N yang diberikan. Bibit dipindah ke lapang

apabila telah memiliki tiga daun. Setiap bulannya bibit sagu akan membentuk satu

daun baru, sehingga dibutuhkan waktu tiga bulan sampai bibit dipindah tanam ke

lapang. Untuk perlakuan 3 g N, pada saat tiga bulan (12 MSP) persentase hidup

masih mencapai 73.23 % (rata-rata penurunan persentase hidup setiap minggu 2.8

%), sedangkan pada perlakuan 15 g N persentase hidup hanya tinggal 40.16 %

[image:32.595.146.489.191.334.2]

(rata-rata penurunan persentase hidup setiap minggunya 5.55 %).

Gambar 8. Respon Persentase Hidup Bibit Terhadap Pupuk N Saat 7-10 MSP 0 20 40 60 80 100 120

2 3 4 5 6 7 8 9 10

Pers e n ta se H id u p (% ) MSP Ke-

0 g N 3 g N 6 g N 9 g N 12 g N 15 g N

7 MSP(y = -1,5048x + 83,119) R² = 0,8597

8 MSP(y = -1,6524x + 81,476) R² = 0,8012

9 MSP(y = -1,7619x + 77,714) R² = 0,795

10 MSP(y = -1,9248x + 76,052) R² = 0,8223

0 10 20 30 40 50 60 70 80 90

0 3 6 9 12 15

(33)

Panjang Daun Pangkasan

Salah satu peubah pertumbuhan vegetatif bibit sagu adalah panjang daun.

Daun sangat berperan dalam menghasilkan energi untuk pertumbuhan melalui

proses fotosintesis. Panjang daun pangkasan adalah panjang daun yang

mengala-mi pemangkasan saat penanaman awal. Berdasarkan hasil rata-rata panjang daun

pangkasan dari 2-8 MSP, menunjukkan tidak adanya pengaruh yang nyata dari

aplikasi pupuk N (Tabel 4). Walaupun tidak berbeda nyata secara statistik,

perla-kuan 3 g N/polibag memberikan nilai rata-rata panjang daun pangkasan yang

ting-gi di setiap pengamatan (7.59-16.00 cm). Secara umum laju pertambahan panjang

daun pangkasan hampir sama diantara semua perlakuan dari 2-8 MSP (Gambar 9).

Tabel 4. Pengaruh Pupuk N Terhadap Panjang Daun Pangkasan

N (g/polibag) MSP Ke-

[image:33.595.107.509.103.766.2]

2 3 4 5 6 7 8

...cm...

0 6.13 7.79 9.20 10.79 11.26 12.61 13.90

3 7.59 9.70 11.09 12.28 13.51 14.78 16.00

6 6.00 7.75 9.53 10.74 11.83 12.89 14.05

9 7.07 8.49 9.98 10.95 12.42 11.82 12.47

12 7.29 8.60 9.22 9.60 10.65 11.79 12.51

15 5.66 7.18 9.37 10.27 10.61 11.56 12.54

KK (%) 30.61 27.29 28.12 23.59 24.40 22.60 23.24 Keterangan: angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan

tidak berbeda nyata pada uji DMRT taraf 5%. tn: tidak berbeda nyata

Gambar 9. Pengaruh Pupuk N Terhadap Panjang Daun Pangkasan 0 2 4 6 8 10 12 14 16 18

2 3 4 5 6 7 8

Pan jan g D au n Pan g kasan ( cm ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

(34)

Panjang Anak Daun Pangkasan

Panjang anak daun pangkasan diukur dari anak daun yang paling panjang

pada daun pangkasan. Perlakuan pupuk N tidak berpengaruh nyata terhadap

pan-jang anak daun pangkasan pada 4 sampai 8 MSP, tetapi pada 9 dan 10 MSP

ter-lihat pengaruh yang nyata pada panjang anak daun pangkasan (Tabel 5).

Tabel 5. Pengaruh Pupuk N Terhadap Panjang Anak Daun Pangkasan

N (g/polibag)

MSP Ke-

4 5 6 7 8 9 10

...cm...

0 0.29 0.32 0.86 1.51 1.56 1.65b 1.85b

3 0.48 0.84 1.43 2.57 3.05 5.84a 6.23a

6 0.39 0.56 0.65 1.07 1.21 1.61b 2.48b

9 0.45 0.71 0.85 0.99 1.41 1.74b 2.21b

12 0.35 0.36 0.49 0.55 0.64 1.50b 1.58b

15 0.39 0.42 0.51 0.71 1.24 2.31b 2.37b

Keterangan: angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan tidak berbeda nyata pada uji DMRT taraf 5 %.

Gambar 10. Pengaruh Pupuk N terhadap Panjang Anak Daun Pangkasan

Perlakuan dosis 3 g N memberikan rata-rata panjang anak daun pangkasan

yang paling tinggi dibandingkan semua perlakuan lainnya (Gambar 10). Secara

umum perlakuan dosis 12 g N memberikan nilai yang paling rendah diantara

se-mua perlakuan. Pada saat 4 dan 5 MSP perlakuan tanpa aplikasi N memberikan

rata-rata panjang anak daun pangkasan lebih rendah dari perlakuan 12 g N, tetapi

saat 6 MSP perlakuan tanpa N meningkat lebih tinggi dari pada perlakuan 12 g N

(Tabel 6). Pada 4 sampai 6 MSP rata-rata penambahan panjang anak daun pang-0 1 2 3 4 5 6 7

4 5 6 7 8 9 10

Pan jan g A n ak D au n Pan g kasan (c m ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

(35)

kasan hampir sama di setiap perlakuan, tetapi pada 5-10 MSP perlakuan 3 g N

menunjukkan pertambahan yang lebih tinggi di setiap minggunya dibandingkan

dengan semua perlakuan lain, yaitu sebesar 1.11 cm. Panjang anak daun

pangkas-an mulai nyata saat 9 MSP, hal ini karena bibit sudah berakar dpangkas-an menyerap unsur

hara untuk pertumbuhannya.

Tabel 6. Data Hasil Pengaruh Pupuk N Terhadap Panjang Anak Daun Pangkasan Setelah Transformasi

N (g/polibag)

MSP Ke-

4 5 6 7 8 9 10

...cm...

0 0.87 0.88 1.11 1.35 1.37 1.44b 1.50b

3 0.97 1.14 1.38 1.69 1.84 2.49a 2.57a

6 0.91 0.99 1.02 1.20 1.25 1.36b 1.62b

9 0.94 1.08 1.13 1.20 1.36 1.46b 1.60b

12 0.90 0.91 0.96 0.99 1.02 1.34b 1.50b

15 0.93 0.94 0.98 1.07 1.25 1.54b 1.55b

KK(%) 26.17 24.76 26.23 31.37 31.22 30.73 30.60 Keterangan: data merupakan hasil dari transformasi √y+0.5.

angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan tidak berbeda nyata pada uji DMRT taraf 5 %.

Gambar 11. Respon Panjang Anak Daun Pangkasan Terhadap Pupuk N pada 9

dan 10 MSP

Berdasarkan uji kontras orthogonal polinomial, pemberian pupuk N

mem-berikan respon yang linear saat 9 dan 10 MSP pada panjang anak daun pangkasan

(Gambar 11). Panjang anak daun pangkasan menurun secara linear dengan

sema-kin tingginya dosis N. Nilai R2 (koefisien determinasi) sangat kecil (0.13 dan 9 MSP(y = -0,0913x + 3,1267)

R² = 0,0921

10 MSP(y = -0,1107x + 3,6167) R² = 0,1304

0 1 2 3 4 5 6 7

0 3 6 9 12 15

(36)

0.09), hal ini berarti persamaan dari pupuk N (peubah bebas) kurang mampu

men-jelaskan dengan kuat peubah panjang anak daun pangkasan (peubah terikat).

Lebar Anak Daun Pangkasan

Perlakuan pupuk N tidak memberikan pengaruh yang nyata terhadap lebar

anak daun pangkasan dari 4-10 MSP (Tabel 7). Hal tersebut karena daun

pangkas-an merupakpangkas-an daun ypangkas-ang pertama kali tumbuh dpangkas-an pertumbuhpangkas-annya berasal dari

cadangan makanan dalam banir. Perlakuan yang memberikan nilai lebar anak

da-un pangkasan dari paling tinggi sampai yang rendah secara berturut-turut adalah

perlakuan 3 g N (0.78-1.03 cm), 6 g N (0.76-0.89 cm), 9 g N (0.77-0.90 cm), 15 g

N (0.77-0.89 cm), 0 g N (0.74-0.87 cm) dan 12 g N (0.76-0.84 cm) (Tabel 8).

Walaupun tidak berbeda nyata, perlakuan 3 g N memberikan nilai lebar anak daun

[image:36.595.102.502.300.713.2]

pangkasan yang lebih tinggi dibandingkan dengan perlakuan lain (Gambar 12).

Tabel 7. Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan

N (g/polibag) MSP Ke-

4 5 6 7 8 9 10

...cm...

0 0.05 0.06 0.14 0.20 0.21 0.22 0.27

3 0.12 0.21 0.29 0.40 0.45 0.47 0.59

6 0.09 0.10 0.13 0.19 0.19 0.25 0.32

9 0.10 0.17 0.20 0.26 0.28 0.30 0.32

12 0.09 0.09 0.12 0.14 0.16 0.21 0.23

15 0.10 0.11 0.14 0.18 0.27 0.28 0.31

Gambar 12. Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

4 5 6 7 8 9 10

Lear An ak D au n Pan g kasan (c m ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

(37)

Tabel 8. Data Hasil Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan Setelah Transformasi

N (g/polibag) MSP Ke-

4 5 6 7 8 9 10

...cm...

0 0.74 0.75 0.79 0.83 0.84 0.85 0.87

3 0.78 0.84 0.88 0.94 0.96 0.97 1.03

6 0.76 0.77 0.79 0.82 0.83 0.85 0.89

9 0.77 0.81 0.83 0.86 0.87 0.88 0.90

12 0.76 0.77 0.78 0.79 0.80 0.83 0.84

15 0.77 0.78 0.79 0.82 0.83 0.87 0.89

KK(%) 8.66 8.76 10.38 13.19 13.89 14.96 15.51

Keterangan: data merupakan hasil dari transformasi √y+0.5.

Persentase Pemekaran Daun Pangkasan

Suatu daun optimal dalam melakukan proses fotosintesis apabila daun

sudah mekar sempurna. Dari hasil Tabel 9, terlihat bahwa pupuk N tidak

mem-berikan pengaruh yang nyata terhadap persentase pemekaran daun pangkasan dari

4-10 MSP. Perlakuan 3 g N memberikan rata-rata persentase pemekaran daun

pangkasan yang tinggi saat 4-10 MSP dari semua perlakuan lain (9.37-28.12 %)

(Gambar 13). Perlakuan yang memberikan nilai panjang daun pangkasan paling

rendah adalah perlakuan 12 g N (5.21-11.46 %). Walaupun tidak berbeda nyata,

perlakuan 3 g N memberikan nilai yang paling tinggi untuk persentase pemekaran

daun pangkasan (Tabel 10). Penambahan persentase pemekaran daun pangkasan

setiap minggunya kecil, bahkan banyak yang tidak bertambah, kecuali untuk

per-lakuan 3 g N (terus bertambah setiap minggu).

Tabel 9. Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun Pangkasan

N (g/ polibag)

MSP Ke-

4 5 6 7 8 9 10

...%...

0 4.17 4.17 7.29 9.37 9.37 9.37 11.46

3 9.37 13.54 16.67 19.79 22.91 26.04 28.12

6 5.21 6.25 7.29 8.33 9.37 13.54 15.62

9 6.25 9.37 10.41 10.41 12.50 13.54 14.58

12 5.21 5.21 6.25 6.25 6.25 11.46 11.46

(38)

Tabel 10. Data Hasil Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun Pangkasan Setelah Transformasi

N (g/polibag) MSP Ke-

[image:38.595.110.503.105.592.2]

4 5 6 7 8 9 10

...%...

0 2.55 2.55 3.10 3.46 3.46 3.51 3.77

3 3.31 3.95 4.37 4.63 4.94 5.25 5.47

6 2.69 2.81 2.95 3.19 3.31 3.81 4.00

9 2.81 3.43 3.54 3.54 3.74 3.91 4.03

12 2.78 2.78 2.93 2.93 2.93 3.58 3.58

15 2.93 2.98 3.16 3.16 3.30 3.54 3.54

KK (%) 40.96 34.65 35.26 33.71 35.89 36.21 36.54 Keterangan: data merupakan hasil dari transformasi √y+4.0

Gambar 13. Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun Pangkasan

Panjang Daun ke-1

Daun ke-1 merupakan daun yang pertama keluar setelah daun pangkasan.

Panjang daun diukur dari pangkal banir sampai titik tertinggi dari daun. Perlakuan

pupuk N tidak berpengaruh nyata terhadap panjang daun ke-1 saat 4-9 MSP dan

baru berpengaruh nyata saat 10 MSP (Tabel 11). Saat 10 MSP, perlakuan 3 g N

memberikan nilai panjang daun ke-1 yang paling tinggi (17.74 cm), tetapi tidak

berbeda secara nyata dengan perlakuan lainnya (kecuali perlakuan 15 g N). Saat 4

MSP, perlakuan 3 g N memberikan nilai rata-rata panjang daun ke-1 yang paling

rendah diantara semua perlakuan. Rata-rata pertambahan panjang daun ke-1 ham-0 5 10 15 20 25 30

4 5 6 7 8 9 10

Per sen tase Pe m e kar an D au n Pan g kak asan (% ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

(39)

pir sama pada semua perlakuan di setiap minggunya (Gambar 14). Penambahan

panjang yang paling besar yaitu perlakuan 3 g N saat 9 MSP yaitu sebesar 3.70

[image:39.595.102.489.75.770.2]

cm.

Gambar 14. Pengaruh Pupuk N Terhadap Panjang Daun ke1

Tabel 11. Pengaruh Pupuk N Terhadap Panjang Daun ke-1

N (g/polibag)

MSP Ke-

[image:39.595.125.466.548.716.2]

4 5 6 7 8 9 10

...cm...

0 3.79 4.25 6.04 6.59 9.20 12.45 14.48a

3 3.25 4.59 5.61 7.64 10.56 14.26 17.74a

6 3.94 4.47 5.70 7.06 9.21 12.22 14.60a

9 3.62 4.76 6.00 7.33 10.04 11.87 13.15ab

12 4.40 5.46 5.78 7.63 10.14 12.16 14.34a

15 3.31 3.68 4.60 6.12 7.32 8.73 8.67b

KK(%) 59.58 59.29 50.84 45.88 32.49 26.66 23.72 Keterangan: angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan

tidak berbeda nyata pada uji DMRT taraf 5 %.

Gambar 15. Respon Panjang Daun ke-1 Terhadap Pupuk N Saat 10 MSP 0

5 10 15 20

4 5 6 7 8 9 10

Pan jan g D au n Ke -1 (c m ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

15 g N

y = -0,3876x + 16,737 R² = 0,5421

0 5 10 15 20 25

0 3 6 9 12 15 18

(40)

Pupuk N memberikan pengaruh yang nyata pada tingkat linear terhadap

panjang daun ke-1 saat 10 MSP (Gambar 15). Panjang daun ke-1 terus menurun

sampai dengan dosis N tertinggi dengan persamaan y = 16.737-0.387x dan R2

0.542.

Panjang Anak Daun ke-1

Daun ke-1 mulai mengalami pemekaran pada saat 7 MSP. Panjang anak

daun diukur pada anak daun yang tengah dari daun ke-1. Dari Tabel 12 dan Tabel

13 dilihat bahwa pemberian pupuk N dengan berbagai dosis tidak berpengaruh

nyata terhadap panjang anak daun ke-1 selama 7, 8, 9, dan 10 MSP. Walaupun

ti-dak berbeda nyata, perlakuan 3 g N memberikan nilai rata-rata panjang anak daun

ke-1 lebih tinggi diantara semua perlakuan lainnya (1.27-2.47cm) dan yang paling

rendah adalah perlakuan 15 g N (1.32-1.61) (Gambar 16).

Tabel 12. Pengaruh Pupuk N Terhadap Panjang Anak Daun ke-1

N (g/polibag) MSP Ke-

7 8 9 10

...cm...

0 0.42 0.97 2.90 3.23

3 0.14 1.19 2.89 4.63

6 0.26 0.66 1.25 1.51

9 0.51 1.23 1.40 2.12

12 0.39 0.45 1.13 2.02

15 0.28 0.30 1.19 1.41

Tabel 13. Data Hasil Pengaruh Pupuk N Terhadap Panjang Anak Daun ke-1 Sete-lah Transformasi

N (g/polibag) MSP Ke-

7 8 9 10

...cm...

0 1.37 1.55 2.04 2.13

3 1.27 1.63 2.08 2.47

6 1.31 1.42 1.55 1.63

9 1.38 1.63 1.67 1.85

12 1.35 1.36 1.58 1.76

15 1.32 1.32 1.54 1.61

KK(%) 17.81 19.93 29.49 30.43

(41)
[image:41.595.136.478.88.261.2]

Gambar 16. Pengaruh Pupuk N Terhadap Panjang Anak Daun ke-1

Lebar Anak Daun ke-1

Pemberian pupuk N dengan berbagai dosis tidak berpengaruh nyata pada 7

dan 8 MSP terhadap lebar anak daun ke-1 (Tabel 14). Pemberian pupuk N

ber-pengaruh nyata terhadap lebar anak daun ke-1 pada 9 dan 10 MSP. Pada 9 MSP,

dosis pupuk 0 g N, 3 g N, dan 9 g N tidak berbeda nyata (Tabel 15). Pada

pembe-rian pupuk dengan dosis terbanyak yaitu 15 g N tidak memberikan hasil yang

ber-beda nyata dengan pemberian pupuk N pada dosis 6, 9, dan 12 g N (Gambar 17).

Pada saat 9 MSP lebar anak daun ke-1 berkisar dari 0.04-0.35 helai dan pada 10

MSP berkisar dari 0.07 sampai 0.54 helai.

Tabel 14. Pengaruh Pupuk N Terhadap Lebar Anak Daun ke-1

N (g/polibag) MSP Ke-

7 8 9 10

...cm...

0 0.03 0.08 0.31ab 0.39ab

3 0.03 0.10 0.35a 0.54a

6 0.01 0.04 0.11bc 0.16b

9 0.04 0.10 0.14abc 0.18b

12 0.01 0.02 0.11bc 0.20b

15 0.02 0.02 0.04c 0.07b

Keterangan: angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan tidak berbeda nyata pada uji DMRT taraf 5 %.

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

7 8 9 10

Pan jn ag A n ak D au n Ke -1 (c m ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

(42)

Tabel 15. Data Hasil Pengaruh Pupuk N Terhadap Lebar Anak Daun ke-1 Setelah Transformasi

N (g/polibag) MSP Ke-

[image:42.595.107.499.98.729.2] [image:42.595.118.464.543.727.2]

7 8 9 10

...cm...

0 0.72 0.76 0.89ab 0.94ab

3 0.73 0.77 0.92a 1.01a

6 0.71 0.73 0.77bc 0.796bc

9 0.73 0.77 0.79abc 0.82bc

12 0.71 0.72 0.77bc 0.82bc

15 0.72 0.73 0.74c 0.75c

KK(%) 4.30 5.90 10.14 12.70

Keterangan: data merupakan hasil dari transformasi √y+0.5.

angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan tidak berbeda nyata pada uji DMRT taraf 5 %.

Gambar 17. Pengaruh Pupuk N Terhadap Lebar Anak Daun ke-1

Gambar 18. Respon Lebar Anak daun ke-1 Terhadap Pupuk N Saat 9 dan 10 MSP 0,0 0,1 0,2 0,3 0,4 0,5 0,6

7 8 9 10

Leb ar A n ak D au n Ke -1 (c m ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

15 g N

9 MSP(y = -0,0194x + 0,3224) R² = 0,7748

10 MSP(y = -0,0248x + 0,4424) R² = 0,6381

0 0,1 0,2 0,3 0,4 0,5 0,6

0 3 6 9 12 15

(43)

Pada 10 MSP, perlakuan paling baik adalah dosis 3 g N , tetapi tidak

ber-beda nyata dengan perlakuan 0 g N. Pemberian pupuk dengan dosis 6, 9, 12, dan

15 juga tidak berbeda nyata dengan tanaman yang tidak dipupuk (perlakuan 0 g

N) terhadap lebar anak daun ke-1. Gambar 18 menunjukkan bahwa pupuk N

memberikan respon yang linear terhadap lebar anak daun ke-1 saat 9 dan 10 MSP.

Jumlah Anak Daun ke-1

Pada Tabel 16 dan Tabel 17 terlihat pemberian pupuk N tidak berpengaruh

nyata terhadap jumlah anak daun ke-1. Pada saat 7 dan 8 MSP perlakuan 9 g N

memberikan nilai jumlah anak daun ke-1 paling banyak sedangkan pada 9 dan 10

MSP perlakuan 3 g N yang paling tinggi (Gambar 19). Jumlah anak daun ke-1

pa-da 10 MSP berkisar pa-dari 0.67-4.32 helai.

Tabel 16. Pengaruh Pupuk N Terhadap Jumlah Anak Daun ke-1

N (g/polibag) MSP Ke-

7 8 9 10

...helai...

0 0.14 0.50 2.27 3.20

3 0.06 0.52 2.54 4.32

6 0.07 0.28 1.04 1.14

9 0.27 0.67 1.26 1.36

12 0.06 0.05 1.18 1.92

15 0.08 0.10 0.31 0.67

Gambar 19. Pengaruh Pupuk N Terhadap Jumlah Anak Daun ke-1 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

7 8 9 10

Ju m lah An ak D au n Ke -1 (h e lai ) MSP Ke-

0 g N

3 g N

6 g N

9 g N

12 g N

(44)

Tabel 17. Data Hasil Pengaruh Pupuk N Terhadap Jumlah Anak Daun ke-1 Sete-lah Transformasi

N (g/polibag) MSP Ke-

7 8 9 10

...helai...

0 1.27 1.41 1.92 2.13

3 1.24 1.42 2.00 2.41

6 1.25 1.31 1.51 1.55

9 1.31 1.45 1.64 1.66

12 1.24 1.24 1.61 1.78

15 1.25 1.25 1.33 1.45

KK(%) 7.90 11.83 21.11 24.55

Keterangan: data merupakan hasil dari transformasi √y+1.5.

Persentase Pemekaran Daun ke-1

Daun ke-1 sudah mekar sempurna ditandai dengan sudah membukanya

a-nak daun. Pada Tabel 18 terlihat bahwa pada 7 dan 8 MSP, pemberian pupuk N

ti-dak berpengaruh nyata terhadap persentase pemekaran daun ke-1. Pada 9 dan 10

MSP pemberian pupuk N berpengaruh nyata terhadap persentase pemekaran daun

ke-1. Perlakuan yang paling baik adalah perlakuan 3 g N (6.35 %), tetapi tidak

berbeda secara nyata dengan perlakuan tanpa N (Tabel 19). Perlakuan dengan N

dosis tinggi (15 g) memberikan nilai persentase pemekaran daun ke-1 yang paling

sedikit (2.85 %) (Gambar 20).

Tabel 18. Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun ke-1

N (g/polibag) MSP Ke-

7 8 9 10

...cm...

0 3.33 6.66 25.00ab 28.33ab

3 1.67 10.00 26.66a 36.66a

6 1.67 3.33 8.33abc 10.00bc

9 5.00 10.00 10.00abc 13.33bc

12 1.67 1.67 6.66bc 10.00bc

15 1.67 1.67 3.33c 5.00c

(45)

Gambar 20. Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun ke-1

Tabel 19. Data Hasil Pengaruh Pupuk N Terhadap Persentase Pemekaran Daun ke-1 Setelah Transformasi

N (g/polibag) MSP Ke-

[image:45.595.105.506.57.780.2]

7 8 9 10

...%...

0 2.63 3.17 5.25ab 5.52ab

3 2.31 3.71 5.48a 6.35a

6 2.31 2.54 3.02bc 3.34bc

9 2.72 3.58 3.58abc 3.96bc

12 2.31 2.31 3.17bc 3.51bc

15 2.31 2.31 2.54c 2.85c

KK(%) 36.64 31.05 36.42 33.94

Keterangan: data merupakan hasil dari transformasi √y+4.0.

angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan tidak berbeda nyata pada uji DMRT taraf 5 %.

Gambar 21. Respon Persentase Pemekaran Daun ke-1 Terhadap Pupuk N Saat 9 dan 10 MSP

0 1 2 3 4 5 6 7

7 8 9 10

Per sen tase Pe m e kar an D au n ke -1 (% ) MSP Ke-

0 g N 3 g N 6 g N 9 g N 12 g N 15 g N

9 MSP(y = -1,5874x + 25,236) R² = 0,8027

10 MSP(y = -1,841x + 31,027) R² = 0,6932

0 5 10 15 20 25 30 35 40

0 3 6 9 12 15

(46)

Pupuk N memberikan respon yang linear terhadap persentase pemekaran

daun ke-1 saat 9 dan 10 MSP (Gambar 21). Saat 10 MSP, terjadi penurunan

persentase pemekaran daun ke-1 secara linear sampai dengan dosis 15 g N dengan

persamaan y = 31.027 – 1.841x.

Jumlah Daun

Pada saat 10 MSP, terlihat bahwa pupuk N memberikan pengaruh yang

nyata terhadap jumlah daun pada bibit (Tabel 20). Perlakuan yang memberikan

ra-ta-rata jumlah daun paling banyak adalah perlakuan 3 g N, tetapi tidak berbeda

se-cara nyata dengan kontrol (0 g N). Perlakuan yang jumlah daunnya paling sedikit

adalah perlakuan dengan dosis N paling tinggi (1.28 helai) (Gambar 22).

Tabel 20. Pengaruh Pupuk N Terhadap Jumlah Daun Saat 10 MSP

N (g/polibag) Jumlah Daun (helai)

0 1.44a

3 1.48a

6 1.45a

9 1.30bc

12 1.42ab

15 1.28c

KK(%) 5.76

Keterangan: angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan tidak berbeda nyata pada uji DMRT taraf 5 %.

Gambar 22. Pengaruh Pupuk N Terhadap Jumlah Daun Saat 10 MSP

Gambar 23 menunj

Gambar

Tabel 2. Rekapitulasi Hasil Sidik Ragam Peubah - Peubah yang Diamati pada
Gambar 8. Respon Persentase Hidup Bibit Terhadap Pupuk N Saat 7-10 MSP
Gambar 9. Pengaruh Pupuk N Terhadap Panjang Daun Pangkasan
Tabel 7. Pengaruh Pupuk N Terhadap Lebar Anak Daun Pangkasan
+7

Referensi

Dokumen terkait

Apabila Tim Pemeriksa memahami dengan baik proses tender/lelang, maka fakta-fakta lain yaitu tentang Ashpalt Mixing Plant (AMP), tentang Sertifikat Tenaga Ahli,

Untuk mendukung berbagai kegiatan Posyandu perlu adanya Sistem Informasi Posyandu (SIP) yang dapat digunakan untuk mempermudah jalannya kegiatan Posyandu seperti data

Penelitian ini bertujuan untuk mengetahui respons pertumbuhan dan produksi beberapa varietas kacang hijau dengan pemberian giberelin pada konsentrasi yang berbeda di

Pencapaian target kinerja APBD tahun anggaran 2016 secara umum dapat dijabarkan dalam tiap urusan pemerintah, baik urusan wajib maupun urusan pilihan. Berpedoman pada Peraturan

Bimbingan atau bantuan itu diberikan kepada individu. Yang dimaksudkan dengan individu di siniadalah orang yang mempunyai kemampuan-kemampuan dan berpotensi

Another application area where grid representations are currently studied is (indoor) navigation, where routes are computed along which persons, robots, or drones are moving

Berdasarkan data tersebut, dapat disimpulkan bahwa pembelajaran menggunakan model pembelajaran Snowball Throwing berbantuan media benda konkret berpengaruh terhadap hasil

data yang sudah diperoleh adalah dengan cara deskriptif, yaitu dengan. menjabarkan data yang diperoleh dengan kata atau kalimat