• Tidak ada hasil yang ditemukan

Analisis Nilai Produksi Pada PT Intan Pariwara Medan Menggunakan Multilayer Perceptron Neural Network

N/A
N/A
Protected

Academic year: 2021

Membagikan "Analisis Nilai Produksi Pada PT Intan Pariwara Medan Menggunakan Multilayer Perceptron Neural Network"

Copied!
9
0
0

Teks penuh

(1)

56

Analisis Nilai Produksi Pada PT Intan Pariwara Medan Menggunakan Multilayer Perceptron Neural Network

Ryan Dhika Priyatna

1)

, Muhammad Riza Syahputra

2)

STKIP AL Maksum Langkat, Stabat, Indonesia

[email protected]

ABSTRAK

Multi layer perceptron banyak digunakan untuk menyelesaikan persoalan contohnya dalam menyelesaikan produksi suatu perusahaan disini penulis menggunakan perceptron untuk digunakan sebagai analisa suatu produksi dan memprediksi jumlah suatu barang yang bertujuan agar tidak terjadi kekurangan persediaan produksi dan dapat memenuhi permintaan Analisis dilakukan berdasarkan nilai bobot (w) dan threshold (θ) pada setiap input pada perhitungan manual dengan excel, dan hasil perhitungan tersebut sama dengan target produksi. Analisis juga dilakukan terhadap bobot yang diberikan pada setiap input dan dapat dilihat dari nilai net (n). Tujuan dari analisa ini adalah mempunyai nilai net (n) berdasarkan hasil threshold (θ) menentukan bahwa nilai akan sama dengan target jika proses multiple – neuron perceptron pada hidden key mendapatkan nilai yang akurat.

Kata kunci : threshold, excel, multiple, neuron , perceptron

ABSTRACT

Multi layer perceptron is widely used to solve problems, for example in completing the production of a company here the author uses perceptron to be used as an analysis of a production and predicts the amount of an item that aims to avoid a shortage of production inventory and can meet demand. The analysis is carried out based on the value of weight (w) and threshold (θ) for each input in manual calculations with excel, and the results of these calculations are the same as the production target. Analysis is also carried out on the weight given to each input and can be seen from the net value (n). The purpose of this analysis is to have a net value (n) based on the results of the threshold (θ) determining that the value will be the same as the target if the multiple-neuron perceptron process on the hidden key gets an accurate value.

Keywords : threshold, excel, multiple, neuron , perceptron

(2)

57 Produksi merupakan suatu proses yang sangat penting dan mempengaruhi perkembangan perusahaan . Persediaan barang sangat bergantung pada proses produksi, jika produksi yang dihasilkan minimum maka persediaan akan minimum dan tidak dapat memenuhi permintaan secara maksimal. Namun sebaliknya, jika produksi yang dihasilkan maksimal maka persediaan akan maksimal dan dapat memenuhi permintaan secara maksimal. Hal yang sering menjadi permasalahan dalam dunia wirausaha adalah jika

Produksi yang dihasilkan maksimal namun permintaan minimum maka terjadi penumpukan persediaan barang. Hal tersebut kurang efisien dan jika terjadi terus menerus maka bisnis tersebut juga akan mengalami kerugian.

Sebelumnya sudah dilakukan proses untuk memprediksi jumlah produksi menggunakan Metode Fuzzy Mamdani dan hasil tersebut hampir mendekati nilai target, dan dapat dijadikan acuan untuk dapat memenuhi permintaan pada produksi selanjutnya.

Jaringan Saraf Tiruan (Artificial Neural Networks) merupakan pembelajaran dan penyesuaian dari suatu obyek atau input sesuai dengan target. Salah satu model jaringan saraf tiruan adalah model perceptron. Model jaringan perceptron merupakan metode pembelajaran dengan pengawasan dalam sistem jaringan saraf. Perceptron dapat digunakan untuk mengenali pola karakter, simbol, dan juga input sesuai dengan target.

Pada penelitian ini, jaringan syaraf tiruan digunakan untuk menganalisis prediksi jumlah produksi barang berdasarkan hasil produksi sebelumnya untuk proses produksi selanjutnya. Dalam penelitian ini model yang digunakan yaitu model multiple-neuron perceptron yang dapat membantu mengetahui proses produksi sesuai dengat target. Untuk nilai net (n) yang dihasilkan harus sama dengan target (t). Jika berbeda maka harus dilakukan tahap training kembali untuk mendapatkan nilai bobot (w) dan threshold (θ) terbaik yang dapat digunakan untuk proses testing.

Jaringan syaraf tiruan adalah sistem komputasi dimana arsitektur dan operasi

diilhami dari pengetahuan tentang sel syaraf biologis dalam otak. Istilah jaringan syaraf

tiruan digunakan karena jaringan syaraf ini diimplementasikan dengan menggunakan

program komputer yang mampu menyelesaikan sejumlah proses perhitungan selama proses

pembelajaran, cara kerja jaringan syaraf tiruan meniru cara kerja otak manusia.

(3)

58 Jaringan syaraf tiruan tidak diprogram untuk menghasilkan keluaran tertentu. Semua keluaran atau kesimpulan yang ditarik oleh jaringan didasarkan pada pengalamannya selama mengikuti proses pembelajaran. Prinsip jaringan saraf tiruan secara sederhana digambarkan pada Gambar 1.

Gambar 1. Prinsip Dasar Jaringan Syaraf Tiruan

Pada gambar di atas, input neuron X

1

, X

2

, dan X

n

, dengan bobot hubungan masing-masing adalahW

1

, W

w

, dan W

n

. Ketiga impuls neuron yang ada dijumlahkan menjadi :

Net = X

1

W

1

+ X

2

W

2

+…+ X

n

W

n

Sebuah Single-neuron perceptron dapat mengklasifikasikan vektor-vektor input ke dalam

dua kategori, karena output dapat berupa 0 atau 1. Sebuah multiple-neuron perceptron dapat

mengelompokkan input ke dalam banyak kategori. Masing-masing kategori diwakili oleh

vektor output yang berbeda. Karena setiap elemen dari vektor output dapat berupa 0 atau 1,

terdapat total dari 2S kategori yang mungkin, dimana S merupakan jumlah neuron.

(4)

59 Adapun metode penelitian yang akan dilakukan dalam oleh penulis dalam penulisan ini adalah sebagai berikut:

1. Penelitian perpustakaan (Library Research)

Penelitian perpustakaan adalah penelitian dengan sumber-sumber perpustakaan. Penelitian ini dimaksudkan untuk mendapatkan landasan teori tentang suatu produk dan proses produksi dari suatu perusahaan yang memadai untuk penyusunan penelitian ini, dalam hal ini data dan keterangan yang dikumpulkan dari sumber - sumber seperti buku -buku teks, jurnal-jurnal, serta materi - materi lainnya yang berhubungan dengan masalah yang ditinjau dalam penyusunan penelitian ini.

2. Penelitian lapangan ( Field Research) a). Pengumpulan Data

Metode penelitian ini dilakukan langsung pada objek penelitian, data serta keterangan yang dikumpulkan dengan cara teknik pengumpulan data yang dilakukan melalui permintaan data persedian dan penjualan dari PT Intan Pariwara Medan. Tujuan dari pengumpulan data adalah untuk mendapatkan data - data dan keterangan -keterangan yang berhubungan dengan masalah yang diteliti.

b). Observasi

Pengumpulan data dengan melakukan pengamatan pada banyaknya produk yang akan di pasarkan terutama di bagian buku pendidikan.

3. Metode Pengembangan Perangkat Lunak Metode yang digunakan untuk membangun

sistem ini adalah model waterfall. Model ini terdiri dari beberapa tahapan, yaitu: analisis,

desain, pengodean, pengujian, dan tahap penerapan program.

(5)

60 III. HASIL PENELITIAN DAN PEMBAHASAN

Adapun algoritma dasar dalam perceptron adalah sebagai berikut : 1. Inisialisasi semua bobot (w

i

) dan bias (b), umumnya W

i

= b = 0.

Tentukan laju pemahaman (α). Untuk penyederhanaan, biasanya α=1.

2. Selama ada elemen vektor input (s) yang respon output (y) tidak sama dengan target (t), maka lakukan :

a. Set aktivasi unit input : X

i

= S

i

( i = 1, …, n ) b. Hitung respon unit output : Net = Σ

i

X

i

W

i

+ b 3. Perbaiki bobot pola menurut persamaan :

jika y ≠ t, ada perubahan bobot dan bias

Wi (new) = Wi (old) + Δw (i=1, …,n) dengan (Δw = α t x

i

)

b (new) = b (old) + Δb dengan (Δb = α t) dan,jika y = t, tidak ada perubahan bobot dan bias 𝑊𝑖 (new) = 𝑊𝑖 (old)

𝑏 (new) = 𝑏 (old)

4. Lakukan iterasi terus menerus hingga semua pola input memiliki output jaringan yang sama dengan targetnya dan iterasi dihentikan.

5. Pengolahan data

Pada penelitian ini data diperoleh pada PT Intan Pariwara Medan dengan input vektor data

jumlah permintaan, persediaan, dan produksi

(6)

61

Table 1. Data

Number of Demand, Stock and Production

Data awal pada tabel akan mengalami proses transformasi. Proses transformasi ini digunakan pada tahap training dan tahap testing. Transformasi data ini dilakukan agar data berada pada interval 0-1, sehingga konvergensi lebih cepat tercapai. Pada penelitian ini data di transformasi pada tabel 2.

Table 2. Data Transformation Process

Function Vector Value n

X

1

Demand

1 n > 2164,5

0 n ≤ 2164,5

X

2

Stock

1 n > 350

0 n ≤ 350

t Production

1 n > 2500

0 n ≤ 2500

Setelah melalui proses transformasi data maka nilai awal data mempunyai nilai antara 0 dan 1 berdasarkan nilai tengah dari keseluruhan data pada setiap vektor input dan target.

Dari tabel 2 dapat ditentukan bahwa vektor permintaan (X

1

), vektor persediaan (X

2

) dan produksi (t) atau target. Hasil proses transformasi dari data awal dapat dilihat pada tabel 3.

Book Name Demand Production Stock

Detik Detik SMP 2500 3000 500

Detik Detik SMA 3250 3500 250

Detik Bahasa Inggris 3250 3500 250

Detik Mate / Prog . IPA 2200 2600 400

Detik Mate / Prog.IPS 1018 1300 282

Detik Geografi 1017 1300 283

Detik Ekonomi 929 1300 371

Detik Fisika 2300 2600 300

Detik Kimia 3400 2700 300

Detik Biologi 1500 1300 200

(7)

62 Tabel 3. Hasil Proses Transformasi Data

X

1

X

2

t

1 1 1

1 0 1

1 0 1

1 1 0

0 0 0

0 0 0

0 1 0

1 0 1

1 0 1

0 0 0

Selanjutnya, pemodelan jaringan perceptron dibentuk dan output dari jaringan perceptron (net atau y) harus dihitung. Agar mendapatkan bobot (w) dan bias (b) yang diinginkan, program perceptron harus training. Setelah mendapatkan bobot (w) dan bias (b) yang diinginkan, output yang diperoleh dari pemrograman perceptron (net atau y) dibandingkan dengan target (t) yang telah ditentukan.

Perhitungan manual yang didapat (net atau y) harus sama dengan target (t). Jika tidak sama maka lakukan iterasi terus menerus hingga semua input memiliki output jaringan yang sama dengan targetnya dan iterasi dihentikan.

Perhitungan untuk menganalisis prediksi produksi barang dengan data input, yakni: nilai bobot W

1

= 1, W

2

= -2, W

3

= 2, W

4

= 1, W

5

= 2, dan W

6

= -2, nilai threshold P

1

(θ) = 1, P

2

(θ)

= 1, dan n (θ) = 2. Pada perhitungan manual dengan model multiple-neuron perceptron berdasarkan fungsi logika sederhana gerbang XOR yang memiliki hidden key untuk mendapatkan nilai (net atau y) sama dengan bias (b) = 0.

Tabel 4. Hasil Perhitungan Epouch 1

X

1

X

2

P

1

P

2

X

3

X

4

n a t

1 1 4 2 2 1 3 1 1

1 0 2 1 2 0 2 1 1

1 0 2 1 2 0 2 1 1

1 1 4 2 2 1 3 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 2 1 0 1 0 0 0

1 0 2 1 2 0 2 1 1

1 0 2 1 2 0 2 1 1

(8)

63 Ket :

P

1

= W

1

.X

1

+ W

3

.X

2

P

2

= W

2

.X

1

+ W

4

.X

2

n = W

1

.X

1

+ W

2

.X

2

+

+ W

n

.X

n

Pada proses testing epouch 1 didapat (net atau y) sudah sama dengan target (t) sehingga proses iterasi dapat dihentikan. Pada Gambar 2 menujukkan proses multiple-neuron perceptron berdasarkan fungsi logika sederhana gerbang XOR untuk hasil perhitungan epouch 1.

Gambar 2. Proses Multiple-Neuron Perceptron

Maka analisis untuk memprediksi produksi barang sesuai dengan permintaan dan persediaan, dimana jika produksi yang dihasilkan maksimal maka persediaan akan maksimal dan dapat memenuhi permintaan secara maksimal dan sebaliknya.

IV. SIMPULAN a. Kesimpulan

1. Pada jaringan syaraf tiruan model multiple-neuron perceptron berdasarkan fungsi logika sederhana gerbang XOR dengan perhitungan manual didapat (net atau y) sudah sama dengan target (t) pada epouch 1. Maka dapat digunakan untuk menganalisis prediksi produksi barang dan dapat digunakan untuk memprediksi produksi selanjutnya sampai pada batas yang diinginkan.

X

X

2

P

1

P

2

0

0 1

1 P1

P2

n 0 1 n a

X3

X4 W1=

W22= 1

W3= W24=

1

Hidden Key

W5= 2

W6= 1

(9)

64 2. Dalam perhitungan manual didapat keakurasi yang sama dengan target (t). Akurasi pada perhitungan hidden key sangat mempengaruhi (net atau y), walaupun proses tersebut merupakan jalan pintas agar didapat hasil yang sama denga target (t).

b. Saran

1. Penelitian selanjutnya agar dapat menggunakan algoritma yang berbeda dari penelitian yang saat ini diteliti

2. Dalam penggunaan sebuah metode agar dapat dibandingkan dengan metode yang lain agar tingkat dan akurasi dari target bisa lebih baik.

DAFTAR PUSTAKA

Boy, Optimasi Penggunaan Membership Function Logika Fuzy . 2012. Skripsi. Medan.

Universitas Sumatera Utara

Djunaidi, Much., Setiawan, Eko., Wendi Adhista., Fajar. 2005. Penentuan Jumlah Produksi Dengan Aplikasi Metode Fuzzy – Mamdani. Jurnal Ilmiah Teknik Industri 4(2) : 95 – 104.

Elly Zendrato, Nofrida., Darnius, Open., Sembiring, Pasukat. 2012. Perencanaan Jumlah Produksi Mie Instan dengan Penegasan (Defuzifikasi) Centroid. Mathematics Subject Classification 2(2) : 115-126.

Kusumadewi, Sri, 2000, “Perancangan Sistem fuzzy : Studi Kasus Prediksi Jumlah Produksi dan Harga Jual Barang” dalam Jurnal Teknologi Industri Volume 5, No.1. Jogjakarta:

Jurusan Teknik Industri Fakultas Teknologi Industri Universitas Islam Indonesia.

M.Ettaouil,M.Lazaar,and Y.Ghanou .2013. Architecture optimization model for the multilayer perceptron and clustering” Journal of Theoretical and Applied Information Technology. Vol. 47 No.1. (Online)

Ramchoun, Hassan. 2016. Multilayer Perceptron: Architecture Optimization and Training.

International Journal of Interactive Multimedia and Artificial Intelligence vol (4).(Online)

Ulinnuha Musthofa, Muhammad., Kharirotul Umma, Zufida., Nur Handayani, Anik. 2017.

Analisis Jaringan Saraf Tiruan Model Perceptron Pada Pengenalan Pola Pulau di

Indonesia. Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) (11)1 : 89 –

100.(Online) jurnal.stmikasia.ac.id/index.php/jitika/article/download/56/43/(14 Juli

2020).

Gambar

Gambar 1. Prinsip Dasar Jaringan Syaraf Tiruan
Tabel 4.  Hasil Perhitungan Epouch 1
Gambar 2.  Proses Multiple-Neuron Perceptron

Referensi

Dokumen terkait

Delta Dunia Textile, mengetahui waktu pada masing – masing kegiatan dan metode yang sebaiknya digunakan perusahaan dalam proses produksi benang TR45 pada PT..

ANALISIS PRODUKTIVITAS HIGH BURNER MENGGUNAKAN PENDEKATAN FUNGSI PRODUKSI COBB DOUGLAS (Studi Kasus di PT. BAHAMA LASSAKA, Batur, Ceper, Klaten).. Diajukan Sebagai Salah Satu

yang telah digunakan dalam menentukan waktu penyelesaian suatu proses produksi, salah satunya dengan menggunakan metode PERT. Dengan metode tersebut maka dapat

Selain itu menggunakan metode job order costing adalah untuk memperbaiki perhitungan harga pokok produksi yang digunakan oleh perusahaan dengan mempertimbangkan persediaan bahan

berkat dan rahmat-Nya sehingga penulis dapat menyelesaikan tugas akhir yang berjudul “Peranan Perhitungan Harga Pokok Produksi Dengan Menggunakan Metode Job Order

Sehingga dengan kondisi tersebut maka perusahaan masih dapat menggunakan metode biaya tradisional dalam menghitung biaya produksi, dan juga karena dengan metode

Rancangan penelitian yang digunakan adalah rancangan deskriptif dengan menggunakan metode komparatif, yaitu membandingkan harga pokok produksi yang dihitung menggunakan metode

Jika ingin perhitungan biaya produksi dihitung secara akurat agar tidak menimbulkan kerugian dan dapat bersaing dengan perusahaan lainnya maka sebaiknya menggunakan metode ABC