INSTRUMEN TES LEMBAR SOAL TES
Nama Sekolah : Nama Siswa :
Hari/ Tanggal : Kelas/ No. Absen :
Mata Pelajaran : Matematika Alokasi Waktu : 2 x 45 menit
Kerjakan soal di bawah ini dengan benar dan jelas! 1. Selesaikan operasi penjumlahan berikut!
a.
(
x2+3y)
+(
−7y+4x2−5) b. (x+2y−z)+ (2x−y+3z)2. Selesaikan operasi pengurangan berikut! a. 7p−8−q−5p−2q−3
b. 3m3n
−8m−7n−12−m3n
−27m−5n 3. Selesaikan operasi kali berikut!
a. (3x−5) (2x+6) b.
(
4x2−y
)
(x+2x−7) 4. Selesaikan operasi bagi berikut!a. 64a3b2∶4ab b. 28a4b c3
∶
(
2abc ×7a2c)
5. Selesaikan operasi pangkat berikut!a. (4a+7b)2 b. (9p−5p)3
6. Selesaikan operasi berikut! a. (4x+1)2−(2x−2)2 b. (4a+b)3−
(
48a4b3c∶
(
8a b2×2bc)
)
Lampiran 6
KUNCI JAWABAN TES skor 1. a.
(
x2+3y)
+(
−7y+4x2−5) =(
x2+4x2)
+(3y−7y)−5 ... 1= (1+4)x2
+(3−7)y−5 ... 1 = 5x2−4y−5 ... 1
b. (x+2y−z)+ (2x−y+3z) = (x+2x)+(2y−y)+(−z+3z) ... 1 = (1+2)x+(2−1)y+(−1+3)z ... 1 = 3x+y+2z ... 1
Skor maksimum: 6
2. a. 7p−8−q−5p−2q−3 = (7p−5p)+(−q−2q)+(−8−3) ... 1 = (7−5)p+(−1−2)q+(−11) ... 1
= 2p−3q−11 ... 1
b. 3m3n
−8m−7n−12−m3n
−27m−5n
=
(3
m3n−m3n)
+(−8m−27m)+(−7n−5n)−12 ... 1 = (3−1)m3n+(−8−27)m+(−7−5)n−12 ... 1 = 2m3n−35m−12n−12 ... 1
Skor maksimum: 6
3. a. (3x−5) (2x+6) = 3x(2x+6)−5(2x+6) ... 1 = 3x(2x)+3x(6)−5(2x)−5(6) ... 1 = 6x2
+18x−10x−30 ... 1
= 6x2
= 6x2
+ (18−10)x−30 ... 1 = 6x2+8x−30 ...
1
b.
(
4x2−y)
(x+2x−7) = 4x2(x+2x−7)−y(x+2x−7) ... 1 = 4x2(x)+4x2(2x)+4x2(−7)−y(x)−y(2x)−y(−7) .... 1 = 4x3+8x3−28x2−xy−2xy+7y ... 1=
(4
x3 +8x3)
−28x2
+(−xy−2xy)+7y ... 1 = (4+8)x3−28x2+(−1−2)xy+7y ... 1 = 12x3−28x2−3xy+7y ... 1
Skor maksimum 12
4.
a. 64a3b2∶4ab =64a3b2
4ab
...
1= 4ab ×16a2b
4ab
... 1
= 16a2b ... 1
b. 28a4b c3
∶
(
2abc ×7a2c)
= 28a4
b c3
2abc ×7a2c
... 1
= 28a
= 14a3b c2×2ac 14a3b c2
... 1
= 2ac
... 1
Skor maksimum: 7
5. a. (4a+7b)2 =
1(4a)2+2(4a)1(7b)1+1(7b)2 ... 1 = 1(16a2
)
+2(4a) (7b)+1(49b2
)
... 1 = 16a2+8a(7b)+49b2 ... 1 = 16a2+56ab+49b2 ... 1
b. (9p−5p)3 =
1(9p)3+3(9p)2(−5p)1+3(9p)1(−5p)2+1(−5p)3 ... 1
= 1(729p3
)
+3(81
p2)
(−5p)+3(9p)(
25p2)
+1(−125p3)
... 1= 729p3
+243p2(−5p)+27p
(25
p2)
−125p3 ... 1 = 729p3−1215p3+675p3−125p3 ... 1 = 64p3 ...
1
Skor maksimum 9
6. a. (4x+1)2−(2x−2)2
=
(1
(4x)2+2(4x)1(1)1+1(1)2)
−(1
(2x)2+2(2x)1(−2)1+1(−2)2)
... 1=
(
1(16
x2)
+2(4x)(1)+1(1))
−(
1(4x2)
+2(2x) (−2)+1(4))
... 1= 16x2+8x+1−4x2+8x−4 ... 1 =
(16
x2−4x2
)
+(8x+8x)+(1−4) ... 1 = (16−4)x2+(8+8)x+(−3) ... 1 = 12x2+16x−3 ...
1
b. (4a+b)3−
(
48a4b3c∶(
8a b2×2bc)
)
=
(1
(4a)3+3(4a)2(b)1+3(4a)1(b)2+1(b)3)
−¿(
48a4b3c
8a b2×2bc
)
... 1=
(
1(64
a3)
+3
(
16a2)
(b)+3(4a)
(
b2)
+1(b3
)
)
−¿
(
48a4
b3c
16a b3c
)
... 1=
(
64a3+48a2(b)+12a(
b2)
+b3)
−¿(
16a b3
c ×3a3
16a b3c
)
...1
= 64a3
+48a2b
+12a b2 +b3
−3a3 ... 1 =
(64
a3−3a3
)
+48a2b
+12a b2
+b3 ... 1
= (64−3)a3+48a2b+12a b2+b3 ... 1 = 61a3
+48a2b
+12a b2
+b3 ... 1