• Tidak ada hasil yang ditemukan

INFLUENCE OF USING NON-STANDARD SPECIMEN ON COMPRESSIVE STRENGTH OF NORMAL AND HIGH STRENGTH CONCRETE EXPERIMENTAL AND SIMULATION.

N/A
N/A
Protected

Academic year: 2021

Membagikan "INFLUENCE OF USING NON-STANDARD SPECIMEN ON COMPRESSIVE STRENGTH OF NORMAL AND HIGH STRENGTH CONCRETE EXPERIMENTAL AND SIMULATION."

Copied!
16
0
0

Teks penuh

(1)

commit to user

I

INFLUENCE OF USING NON-STANDARD SPECIMEN ON COMPRESSIVE STRENGTH OF NORMAL AND HIGH STRENGTH CONCRETE

EXPERIMENTAL AND SIMULATION Thesis

Submitted to the Post Graduate of Civil Engineering Program in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in

Material and Structural Engineering

Name: Abdulati Mohamed Esbata S941208012

POST GRADUATE

CIVIL ENGINEERING PROGRAMS SEBELAS MARET UNIVERSITY

(2)
(3)
(4)

commit to user

IV

STATEMENT OF ORIGINALITY

This is to certify that I have write this thesis by myself -standard Specimen on Compressive Strength of Normal and High Strength Concrete

sources of which are listed on the list of references.

If then the pronouncement proves wrong, I am ready to accept any academic punishment, including the withdrawal or cancellation of my academic degree.

Surakarta, _________________2014

ABDULATI MOHAMED ESBATA NIM. S941208012

(5)

commit to user

V

ACKNOWLEDGMENT

I would like to express my greatest appreciation to my supervisors, Prof. SA.

Kristiawan, M.Sc.Ph.D and Dr. Techn. Ir. , MT for their guidance

and precious supervision during this research. I would like also to express my grateful thanks to Dr. Kusno Adi Sambow,ST,PhD who was my first supervisor for guidance me in the proposal of this thesis.

Also I would like to express my greatest appreciation to department of civil engineering staff in Seblas Maret University.

My deep appreciations and my great thanks to my dear family; mother, father, wife, brothers and sisters, whom supported me in my study.

Finally, I would like to express my thanks to everyone who has helped me during my master study.

Surakarta, _________________2014

ABDULATI MOHAMED ESBATA NIM. S941208012

(6)

commit to user

VI

ABSTRAK

Kuat tekan beton adalah salah satu tes yang paling penting untuk properti konstruksi untuk pengendalian kualitas beton dan desain konstruksi baru, ada cetakan yang berbeda yang digunakan untuk pengecoran beton spesimen selama beton bekerja sesuai dengan berbagai standar di negara yang berbeda. Di sisi lain, diketahui bahwa bentuk dan ukuran spesimen beton yang berbeda dapat menyebabkan perbedaan hasil kuat tekan.

Dalam penelitian ini pengaruh ukuran spesimen dan bentuk pada kuat tekan beton mutu normal dan tinggi diteliti menggunakan studi eksperimental dan simulasi. Penelitian eksperimental dilakukan untuk enam jenis spesimen yang berbeda berbentuk kubus kubus dengan sisi 150 mm, 100 mm dan 75 mm, pada silinder dengan ukuran 150x300 mm, 100x200 mm, 75x150 mm. Pada enam tingkat kekuatan beton yang berbeda adalah 20,30,40,50,60 dan 70 MPa sesuai dengan spesimen kubus standar dan diuji di hari ke 28 . Untuk studi eksperimental, kepadatan mengeras, tes non-destruktif (Rebound hammer dan UPV), kuat tekan dan kuat tarik belah untuk tingkat kekuatan beton yang berbeda dilakukan dan beberapa analisis yang dilakukan untuk mendapatkan faktor konversi dan beberapa hubungan antara tes tersebut.

Studi simulasi dilakukan dengan menggunakan software ANSYS untuk dua ukuran specimen kubus yang berbeda dengan ukuran 150 mm dan 75 mm. Pada perbedaan tingkat kekuatan dua beton yang berbeda adalah 20 MPa pada kuat tekan yang normal dan 70 MPa pada kuat tekan yang tinggi. Analisis ini dilakukan untuk mengetahui pengaruh ukuran dan bentuk pada tes kuat tekan beton mutu normal dan tinggi. Hasil analisis menunjukkan bahwa untuk semua pengujian, ada pengaruh yang lebih besar dari variasi ukuran dan bentuk spesimen, dengan mengubah tingkat kuat tekan. Kuat tekan meningkat ketika ukuran spesimen menurun. Juga Kuat tekan kubus 150 mm umumnya lebih tinggi dari kekuatan silinder dengan ukuran 150x300 mm dan faktor konversi kuat tekan bervariasi antara 0,76-0,88 pada perancangan kubus dengan kuat tekan 20 sampai 70 MPa. Faktor konversi kuat tekan antara standar dan non-standar spesimen dengan kekuatan beton yang berbeda pada 28 hari yang setara 150 mm spesimen kubus standar telah ditentukan dan disajikan dalam tabel 4.7.Korelasi antara (split tensile test / Schmidt hammer test / UPV test) specimen kubus standar 150x150 mm dan kuat tekan spesimen non-standar yang telah ditentukan dan disajikan dalam tabel 4.8 dan 4.9.Pengaruh ukuran dan bentuk pada tes kuat tekan beton mutu normal dan tinggi telah dianalisa dengan menggunakan software ANSYS. Hal ini menyebabkan penurunan seiring meningkatnya kuat tekan.

Kata kunci: tingkat kuat tekan, pengaruh ukuran dan bentuk spesimen, faktor konversi, kuat tarik belah, uji Schmidt hammer, UPV.

(7)

commit to user

VII

ABSTRACT

Compressive strength of concrete is one of the most important test for construction properties for quality control of concrete and design new constructions, there are different molds that are used for casting concrete specimen during the concrete works according to various standards at different countries. On the other hand, it is known that different shapes and sizes of concrete specimen can cause differences in the results of compressive strength.

In this research the influence of specimen sizes and shapes on compressive strength of normal and high strength concrete are investigated using experimental and simulation study.

The experimental study was conducted for six different specimen types cube 150 mm, cube 100 mm, cube 75 mm, cylinder Ø150x300 mm, Ø100x200 mm, Ø75x150 mm. At six different concrete strength level was 20,30,40,50,60 and 70 MPa according to standard cube specimen and tested at 28 Days of age. For The experimental study, hardened density, non-destructive tests (Rebound hammer and UPV), compressive strength and splitting tensile strength for different concrete strength level were performed and some analyses were done to obtain conversion factors and some relations between these tests.

The simulation study was conducted by using ANSYS software for two different specimen size cube 150 mm, cube 75 mm, At two different concrete strength level was for normal compressive strength 20 MPa and for high compressive strength 70 MPa. The analyses were done to know the influence of size and shape on the compressive strength tests of normal and high strength concrete.

The results of analyses indicate that for all testing, there is a bigger influence of variation of size and shape of the specimens, by changing the compressive strength level. The compressive strength increases as the specimen size decreases.. Also The compressive strength of cube 150 mm is generally higher than strength cylinder Ø150x300 mm and The conversion factors of compressive strength between is varied from 0.76 to 0.88 for the designed cube compressive strength of 20 to 70 MPa. The conversion factors of compressive strength between standard and non-standard specimen at different concrete strength at 28 days to equivalent 150 mm standard cube specimen had been determined and presented in table 4.7.

The correlation between (split tensile test / Schmidt hammer test/UPV test) of standard specimen 150 x 150 mm cube to compressive strength of non-standard specimen had been determined and presented in the tables 4.8 and 4.9.

The effect of size and shape on the compressive strength tests of normal and high strength concrete had been analysis by using ANSYS software. This affected decrease as compressive strength increase.

Keywords: compressive strength level, influence of specimen sizes and shapes, conversion factors, splitting tensile strength, Schmidt hammer test, UPV.

(8)

commit to user

VIII

TABLE OF CONTENTS

COVER I

SHEET OF APPROVAL II

SHEET OF APPROVAL EXAMINATION III

STATEMENT OF ORIGINALITY IV

ACKNOWLEDGMENT V

ABSTRAK VI

ABSTRACT VII

TABLE OF CONTENTS VIII

LIST OF FIGURES VIII

LIST OF TABLES VIII

LIST OF SYMBOLS AND ABBREVIATIONS VIII

(9)

commit to user

IX Chapter I. Introduction.

1.1. Background 1

1.2 Problem formulation 2

1.3. Objectives 3

1.4. Scope and limitation 3

1.4.1 Experimental study 3

1.4.2 Simulation study 4 1.5. Contribution of research 4

Chapter II. Literature Review and Basic Theory

2.1. Literature Review 5

2.1.1. Specimen shape and size in different standards 5 2.1.2. Effects of Specimen Size and Shape 9

2.1.3. Effects of Capping 9

2.1.4. Hardened concrete tests 9

2.2. Basic Theory 12

2.2.1. Specimen shape and size in different standards 12 2.2.2. Effects of Specimen Size and Shape 14 2.2.3. Effects of Capping: 20 2.2.4. Hardened concrete tests 21 2.3 The difference between this research and previous researches 34 2.4 Hypothesis of the research 35

Chapter III. Research Methodology

3.1. Location of Research 36

3.2. Sample Population 36

3.3. Data Collection 37

3.4. 38

(10)

commit to user

X

3.4.2. Casting concrete 39

3.4.3. Compacting and curing 39 3.4.4. Tests on fresh concrete: 39 3.4.5. Tests on hardened concrete 40 3.5. Test of data: validation and clarification 44 3.5.1. Variability associated with compressive strength test 44 3.5.2 Effects of Cylinder End Condition on Within-Test Variation 46

3.6. Data Analysis 47

3.6.1 Experimental analysis 47

3.6.2 Simulation analysis 47

3.7. Flow chart of research 48

Chapter IV. Result and Discussions

4.1 Experimental Result 49

4.1.1 Introduction 49

4.1.2 Tests on fresh concrete 49 4.1.3 Experiments on hardened concrete (non-destructive tests) 50 4.1.4 Experiments on hardened concrete (destructive test) 53 4.1.5 Validity of Correlation between Compressive Strength and

Nondestructive Tests of UPV and Schmidt hammer for Non-standard specimen. 62

4.2 Simulation Works 65

4.2.1 Introduction 65 4.2.2 Modeling 65

4.2.3 Meshing 66

4.2.4 Simulation result and discussion 68 4.3 Comparison between Simulation Result and Experimental Result 79

Chapter V

5.1 Conclusions of the Research 80

(11)

commit to user

XI LIST OF FIGURES

Figure 2.1: Wall effect (Neville, 2002) 15 Figure 2.2: Loading of the specimen in splitting tensile test. 22 Figure 2.3: Correlation Curves Obtained by Different Investigators with a Schmidt

Rebound Hammer 24

Figure 2.4: Methods of propagation and receiving ultrasonic pulses (BS 12504-4,

2004). 25

Figure 2.5: Relationships between UPV and Es (Yildirim & Sengul, 2011) 29 Figure 2.6: Relationships between Static and Dynamic Modulus of Elasticity

(Yildirim & Sengul, 2011). 29 Figure 2.7: Relationships between UPV and Es, Ed and G (Trtnik, 2008) 30

Figure 2.8 33

Figure 3.1: Slump test 39

Figure 3.2: Compressive strength testing machine 40 Figure 3.3: Cylinder specimens under splitting tension 41 Figure 3.4: Rebound hammer test 41 Figure 3.5: Pulse velocity instrument (V. Malhotra, N. Carino, 2004). 43 Figure 3.6: Between-lab and within-lab variability from (Kennedy et al., 1995) 45 Figure 3.7: Flow chart of the research 48 Figure 4.1: Compressive strength versus PUNDIT (the lines are trend line connecting different strength levels for 150 mm cube specimen) 51 Figure 4.2: Cubic specimens' compressive strength vs. rebound number 53 Figure 4.3: Cubical specimens' compressive strength vs. splitting tensile strength. 54 Figure 4.4: Cylindrical specimens' compressive strength vs. splitting tensile

strength 55

Figure 4.5: All specimens' compressive strength 56 Figure 4.6: Relationship between standard cube specimens (Actual compressive strength) to non-standard cube specimen (Nominal compressive strength) 57

(12)

commit to user

XII

Figure 4.7: Compressive strength of cubic specimens for different mix design. 57 Figure 4.8: Relationships between standard cube specimens (Actual compressive strength) to cylinder specimen (Nominal compressive strength) 58 Figure 4.9: Compressive strength of cylinder specimens for different mix design. 58 Figure 4.10: Conversion factor between standard specimens (cube 150 mm) to

non-standard cube specimen. 60

Figure 4.11: Conversion factor between standard specimens (cube 150 mm) to

cylindrical specimen. 61

Figurers 4.12: The coarse mish by ANSYS software 67 Figurers 4.13: The fine mish by ANSYS software 67 Figure 4.14: Horizontal displacements in the elements of the surface loading of concrete specimen equal to zero 68 Figure 4.15: Principle stress of cube 75 mm 69 Figure 4.16: Principle stress of cube 150 mm 70 Figure 4.17: Horizontal displacements in the elements of the surface loading of concrete specimen not equal to zero. 70 Figure 4.18: Principle stress of cube 75 mm 71 Figure 4.19: Principle stress of cube 150 mm 72 Figure 4.20: Horizontal displacements in the elements of the surface loading of concrete specimen equal to zero. 73 Figure 4.21: Principle stress of cube 75 mm 74 Figure 4.22: Principle stress of cube 150 mm 74 Figure 4.23: Horizontal displacements in the elements of the surface loading of concrete specimen not equal to zero. 75 Figure 4.24: Principle stress of cube 75 mm 76 Figure 4.25: Principle stress of cube 150 mm 77

(13)

commit to user

XIII LIST OF TABLES

Table 2.1: Correction factors to convert concrete strength to equivalent 150 mm standard cube strength (Mansur and Islam, 2002). 15 Table 2.2: Correction factors to convert concrete strength to equivalent Ø 150 x 300 mm standard cylinder strength (Mansur and Islam, 2002). 16 Table 2.3: Transition coefficients of different specimens to standard specimens 17 Table 2.4: Conversion factors with sizes and shapes of the specimen for normal strength concrete (Yi et al., 2006). 18 Table 2.5: Conversion factors with sizes and shapes of the specimen for high-strength

concrete (Yi et al., 2006). 19

Table 2.6: Relationships between concrete compressive strength and ultrasonic pulse velocity (Trtnik et al., 2009) 32 Table 3.1: Sample population for one concrete class 37 Table 3.2: Sample population for six concrete classes 37 Table 3.3: Concrete Mix Design 38 Table 4.1: Slump test results 49 Table 4.2: Hardened density test results 50 Table 4.3: Summary of PUNDIT results for 150 mm cubes 51 Table 4.4: Summary of rebound hammer results for standard cubic specimen

150 mm 52

Table 4.5: Summary result of splitting tensile strength. 54 Table 4.6: Compressive strength test results for cubic and cylindrical specimens 56 Table 4.7: Conversion Factors to Convert Concrete Strength to Equivalent 150 mm

Standard Cube Specimen. 60

Table 4.8: Validity of correlation between compressive strength and UPV test. 63 Table 4.9: Validity of correlation between compressive strength and schmidt hammer

test. 64

Table 4.10: Properties of concrete material were defined in ANSYS software 66 Table 4.11: Result of principle stress of cube 75 mm 68

(14)

commit to user

XIV

Table 4.12: Result of principle stress of cube 150 mm 69 Table 4.13: Result of principle stress of cube 75 mm 71 Table 4.14 Result of principle stress of cube 150 mm 71 Table 4.15: Result of principle stress of cube 75 mm 73 Table 4.16: Result of principle stress of cube 150 mm 74 Table 4.17: Result of principle stress of cube 75 mm 75 Table 4.18: Result of principle stress of cube 150 mm 76 Table 4.19: Result of maximum principle stress of cube 75 mm and 150 mm 78

(15)

commit to user

XV

LIST OF SYMBOLS AND ABBREVIATIONS

ACI = American Concrete Institute

ASTM = American Society of Testing and Materials BS = British Standard

CF = Conversion factor for effect of specimen type mm = milimeter

f'c = Compressive strength of concrete (N/mm2)

fcy = Compressive strength of concrete cylinder (N/mm2)

f cu = Compressive strength of concrete cube (N/mm2) HSC = High-strength concrete

NSC = Normal-strength concrete kg = Kilogram

l = Length or height of specimen l/d = Aspect ratio

mm = Millimeter

MPa = Mega Pascal or Newton per square millimeter

n = Number of samples N = Newton

(16)

commit to user

XVI LIST OF APPENDIX Appendices A AP A-1 Appendices B AP B-1 Appendices C AP C-1 Appendices D AP D-1

Referensi

Dokumen terkait

diatas, maka penulis tertarik untuk mengambil judul “ Analisis Perhitungan Beban Penyusutan Aset Tetap dan Dampaknya Terhadap Sisa Hasil Usaha pada KPRI

Adapun tujuan dari penelitian ini ialah mengetahui pengaruh rasio biobriket pelepah kelapa ( Cocos nucifera ) bagian pangkal dengan perekat daun kembang sepatu

Penelitian ini berusaha untuk mendapatkan sebanyak banyaknya data yang berkaitan dengan strategi adaptasi petani paska serangan hama lalat buah dalam rangka memenuhi kebutuhan

Gombak Kuala Langat Kelang Petaling W.P Jelebu Jempol Port Dickson Kuala Pilah Tampin Rembau Rompin Bera NEGERI SEMBILAN SELANGOR Hulu Langat Seremban Sepang Penyediaan 11%

Berdasarkan hasil penelitian, seharusnya pemerintah lebih gencar dalam mengsosialisasikan konsep green hotel kepada masyarakat dan pengusaha hotel sehingga konsep

6 Tahun 2003 Tentang Larangan Gelandangan dan Pengemis di Kota Medan dilakukan oleh Dinas Sosial dan Tenaga Kerja Kota Medan dan untuk mengetahui kendala- kendala yang dihadapi

Sebuah skripsi yang diajukan untuk memenuhi salah satu syarat untuk memperoleh gelar Sarjana pada Program Studi Pendidikan Kimia. Fakultas Pendidikan Matematika

Bagi morley kelompok ini sangat menarik karena mereka memiliki pemikiran yang berbeda untuk menanggapi program nationwide, mereka menyatakan bahwa program Nationwide