• Tidak ada hasil yang ditemukan

BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA

N/A
N/A
Protected

Academic year: 2022

Membagikan "BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA"

Copied!
14
0
0

Teks penuh

(1)

BAB IV

HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA

Pada bab ini dijelaskan bagaimana menentukan besarnya energi panas yang dibawa oleh plastik, nilai total laju perpindahan panas komponen Forming Unit mesin Pampac pada desain lama dan desain baru sebagai perbandingan untuk menentukan desain yang cocok untuk cooling forming mesin pampac

4.1 DATA ANALISIS PERHITUNGAN

Data analisis meliputi data dimensional dari komponen yang akan digunakan dalam penelitian dan material lain yang terkait. Berikut data dari air pendingin, material PVDC, Specifikasi forming unit hingga pamameter settingan mesin untuk menentukan besar energi pada mesin pampac

A. Air Pendingin

 Debit Air pendingin (Qh) : 0,00016 [m3/s]

 Dynamic viscosity (μ) : 0,00000152 [Kg /m.s]

 Media pendingin : Air

Density (ρ) : 1000 [Kg/m3]

 Temperatur Air keluar dari Chiller : 5 [oC] = 278 [oK]

 Panjang saluran pendinginan : 3 [m]

 Diameter saluran pendingin : 9 [mm] = 0,009 [m]

 Temperatur Air saat keluar cetakan : 12 [oC] = 285 [oK]

(2)

Pada proses pendinginan ini menggunakan chiller dalam prosesnya dan air merupakan media pendingin karena pada proses pendinginan yang ingin dicapai yaitu sebesar 15

°C sehingga memenuhi standar, temperature pada chiller di setting pada suhu 5°C yang merupakan titik bawah kemampuan dari mesin itu sendiri, melewati saluran pendingin kemudian masuk kedalam forming unit. Ketika mesin beroperasi di awal suhu yang keluar dari cetakan sebesar 12 oC.

B. Pysical Property Material PVDC

 Tebal bahan PVDC : 1,3[mm]=0,0013 [m]

Density (ρ) : 1630 [kg/m3]

 Thermal Konductifity (K) : 0,13 (W/moK]

 Panas Jenis (Cp) : 1.259 [J/kg K]

Menggunakan material PVDC sebagai bahan dasar pembentukan poket/ kemasan.

Data panas jenis, density dan Thermal Konductifity didapat nilai di atas yang merupakan standar dari PVDC yang didapat dari Manual book IWKA. Dengan syarat tebal dari PVDC yaitu sebesar 1,3 mm.

C. Spesifikasi Forming Unit

 Bahan material : Alumunium

 Thermal Conductifity : 237 [W/moK]

 Panjang Cetakan : 220 [mm] =0,22[m]

 Diameter luar cetakan (do) : 265 [mm]= 0,265[m]

 Diameter dalam cetakan (di)

Desain Lama : 180 [mm]= 0,18[m]

Desain Baru : 210 [mm]= 0,21[m]

 Jarak permukaan cetakan dengan saluran pendingin : 32,5[mm]=0,0325[m]

 Diameter saluran pendingingan : 10 [mm]= 0,01[m]

(3)

Data spesifikasi forming unit diambil dari data aktual pada forming unit mesin pampac BP102. Pada forming unit ini dilakukan modifikasi pada diameter dalam pada forming unit yang terdapat selisih diameter 30 mm yang artinya jarak cetakan dengan air pendingin menjadi lebih dekat dan volume air pendingin juga bertambah.

D. Parameter Setting Machine

 Speed Machine : 55 [Pcs/min]

 Temperatur Heating Roll(Tf1) : 120 [oC]= 393 [oK]

 Cycle Time : 0,90 [detik]

 Temperatur Colling Forming(Twi) : 14 [oC]= 287 [oK]

 Temperatur Ruangan (Tp1) : 25 [oC]= 298 [oK]

Parameter mesin pampac merupakan standar acuan yang digunakan untuk menjalankan mesin pampac pada saat SAT mesin telah ditentukan temperatur heating roll 120 oC dan 14 oC didapat dari eksperimen awal yang di jadikan standar parametter

4.2 PENGUKURAN DIMENSI PVDC

Pengukuran ketebalan komponen yang bersangkutan dengan mesin sangat dibutuhkan untuk mendapatkan nilai actual dari komponen tersebut. Hal ini bertujuan untuk mengindari terjadinya kesalahan material yang digunakan, PVDC di ukur menggunakan digital caliper dengan acuan name sheet, di ukur pada 3 titik bersilang sepanjang 50cm. Didapat 1,3 mm sebagai tebal dari bahan yang akan digunakan untuk eskperimen.

(4)

4.3 ANALISA PERPINDAHAN PANAS

Analisis Perpindahan panas pada forming unit mesin pampac ini menggunakan persamaan dari perpindahan panas secara konveksi dan konduksi. Radiasi di abaikan karena nilai perpindahan tersebut kecil atau hampir tidak ada. Analisis dimulai dari menghitung volume plastik yang masuk dalam forming unit kemudian mencari besarnya energi panas menggunakan persamaan Konveksi dan Konduksi selanjutnya akan di dapat nilai dan melakukan eksperimen dari hasil perhitungan.

4.3.1 Volume Plastik Saat masuk Forming Unit

Setelah diketahui besaran dari masing- masing dimensi forming unit dan spesifikasi dari plastik dapat dihitung besarnya volume plastik ketika masuk dalam forming unit dengan persamaan berikut :

Vplastik = 2. π . r .t. Tebal Plastik

= 2.3,14 . 0,1325[m] . 0,22[m]. 0,0013[m]

= 6,28 . 0,029 m² . 0,0013[m]

= 2,4.10-4 [m3]

Jadi volume plastik yang masuk dalam forming unit sebesar 2,4 x 10-4 m3 dengan mengalikan volume forming unit dengan Tebal plastik, nilai ini kemudian akan digunakan untuk mengetahui massa dari plastik.

4.3.2 Massa Plastik (kg/s)

plastik =

= [ ] [ ] ( )

= 0,43 [kg/s]

(5)

Didapat Massa plastik sebesar 0,43 kg/s, masa plastik ini akan digunakan untuk mengetahui energi panas yang dilepas oleh plastik dengan mengalikan masa jenis plastik dan temperature dari cooling unit.

4.3.3 Energi yang dilepas plastik oleh temperature cooling

Energi yang dilepaskan oleh temperatur pendinginan adalah massa dari plastik dikalikan dengan massa jenis plastik dan perbedaan temperature didalamnya, dan besarnya dapat dihitung dengan menggunakan persamaan berikut :

Ẇ = mplastik . Cpplastik . (Tf1-Twi)

= 0,43 [kg/s] . 1.259 [J/kg.oK] . ( 393-287 [oK])

= 57,385 [J/s]

= 57,385 [Watt]

Setelah memasukkan data dari perhitungan volume plastik dan masa plastik kedalam persamaan diperoleh besarnya energi yang dilepas plastik dengan massa 0,43 kg/s adalah sebesar 57.385 watt. Sebagai cacatan Tfl merupakan temperatur rata-rata.

4.3.4 Energi yang diterima oleh cetakan

Dalam mesin ini hanya terdapat 1 cetakan yang artinya nilai Qplastik sama dengan nilai energi yang diterima oleh ceyakan

=

= [ ]

= 57,385 [Watt]

Jadi panas yang ditrasfer ke cetakan adalah sebesar 57,385 Watt. Nilai energi panas yang diterima oleh cetakan ini dijadikan acuan untuk keberhasilan system pendingin menyerap energi panas dari plastik dan nilai tersebut harus mampu diserap oleh cooling forming untuk menghindarai kegagalan proses thermoforming.

(6)

4.3.5 Analisis total perpindahan panas pada desain lama (Qlm)

Perpindahan panas yang terjadi pada cetakan dari Forming unit desain lama (Qlm) secara Konduksi analisa total perpindahan panasnya sebagai berikut :

( ⁄ )( ) Dimana :

Two = Adalah tempertur rata-rata dari Maka,

Tr1 =

Tr1 = 72,5 [oC]

Tr1 = 345,5 [oK]

Maka total laju panas adalah

[ ] [ ]

[ ⁄ ] ( [ ] [ ])

= 49.526 [Watt]

Hasil Tersebut memperlihatkan bahwa Nilai laju panas yang didapat sebesar 49.526 Watt nilai ini lebih kecil 7.859 watt dari nilai panas yang dibawa oleh plastik yaitu sebesar 57.385 watt. ini artinya desain lama tidak mampu menyerap semua energi panas yang dibawa oleh plastik sehingga terjadi kegagalan pendinginan, panas yang gagal diserap akan terakumulasi dan menyebabkan plastik lengket pada cetakan dan putus.

(7)

4.3.6 Analisis total perpindahan panas yang di pindahkan pada desain baru (Qdb) Dari kegagalan pendinginan tersebut dibuatlah desain baru dengan memperbesar diameter dalam forming unit untuk mengurangi jarak pendinginan serta menambah volume air pendingin dengan plastik saat proses thermoforming.

Pada penggunaan desain baru ini material dan parameter setting disamakan dengan parameter setting dengan desain yang lama, hanya saja pada desain ini yang dirubah adalah jarak antara permukaan yang terkena panas dengan permukaan pendingin maka hasil analisa dari desain baru ini sebagai berikut :

[ ] [ ]

[ ⁄ ] ( [ ] [ ])

= 82.345 [Watt]

Nilai laju panas yang didapat sebesar 82.345 Watt dengan material dan setingan parameter yang sama dan merubah diameter bagian dalam dari forming unit nilai ini lebih besar dari nilai panas yang dibawa oleh plastik yaitu 57.385 watt. Secara teoritis desain baru mampu menyerap energi panas yang dibawa oleh plastik. Dari perhitungan ini akan dilakukan eksperimen untuk membuktikan kebenaran nilai laju aliran panas pada thermoforming.

4.3.7 Analisis perpindahan panas dengan mengukur temperatur air pendingin yang keluar dari cetakan molding (Konveksi)

( )

Nilai h= . Nu

Nilai Nu di cari dari Reynolds Number Re =

(8)

Kecepatan aliran fluida air :

Vs =

dimana nilai dari A (Luas Permukaan) adalah A = 2.π.r2

= 2 . 3,14 . 0,009[m]

= 0,05 [m2] Maka nilai untuk Vs

Vs = [ ] [ ]

= 0,00032 m/s

Maka nilai dari Reynolds Number adalah

Re =

[ ] [ ] [ ]

= 631,57

Karena Re <2000 maka efek dari kekerasan dan factor geseknya di abaikan. Untuk nilai dari bilangan Nusselt pada aliran Laminar temperatur dinding seragam adalah : Nu = 3,66

Jadi nilai Koefisien perpindahan panas Konveksi (h) dari aliran pendinginan tersebut adalah :

Nilai hair = Nu

Nilai hair = 3,66. [ ] [ ]

= 86.742 [W/m2K]

Nilai panas yang diserap oleh air pendingin

QKonveksi = 86.742 [W/m2K]. 0,05 [m2]. (287 (k) – 278 (k))

= 39.034 [Watt]

(9)

4.4 Analisis Hasil Eksperimen

Dari modifikasi tersebut dilakukan eksperimen terhadap kinerja mesin dengan cara, mengatur setting temperatur Forming unit dengan settingan Cooling Forming 14 oC .

A. Hasil Eksperimen desain lama cooling 14 oC, Forming 120 oC

Tabel 4.1 Hasil Eksperimen dengan setting Temperatur Forming 14 oC Setting

Temperatur heater [oC]

Setting Forming[oC]

Temperatur Aktual Pada Forming[oC]

Waktu Perubahan

[menit]

Hasil Produk

120 14

14 2 Hasil bagus

14.8 4 Hasil bagus

15.6 8 Hasil bagus

17 10 PVDC lengket

21.4 12 Hasil Jelek

. 22 14 PVDC Putus

Gambar 4.1 Grafik Eksperimen dengan Setting Temperatur Forming 14 [oC]

14 14.8 15.6 17

21.4 22

0 5 10 15 20 25

2 4 8 10 12 14

T Forming (C)

Running Time (S)

forming unit

(10)

Dari hasil eksperimen diketahui suhu forming unit terus meningkat hingga suhu 22 oC, tidak bisa terjaga pada suhu 15 oC, hal ini mengakibatkan pembentukan poket tidak sempurna, kenaikan suhu ini karena panas dari plastik tidak mampu di serap oleh pendinginan. Energi yang dibawa plastik sebesar 57,385 Watt sedangkan kemampuan yang mampu diserap cooling unit hanya sebesar 49.526 Watt. Pada suhu 17 oC sudah terlihat karena terakumulasi panas yang tidak mampu diserap, temperatur Forming Unit selalu naik ketika mesin beroprasi hingga pada suhu 22 oC PVDC putus mengakibatkan proses produksi terhenti dimenit 14 sedangkan mesin dituntut untuk beroperasi selama 60 menit di tiap cycle.

B. Hasil Eksperimen desain Baru cooling 14 oC, Forming 120 oC.

Tabel 4.2 Hasil Eksperimen dengan setting Temperatur Forming 14 oC Setting

Temperatur heater

[oC]

Setting T.Forming

[oC]

Temperatur Aktual Pada

Forming [oC]

Waktu Perubahan

[menit]

Hasil Produk

120 14

14 5 Hasil Bagus

14,2 10 Hasil Bagus

14,4 15 Hasil Bagus

14.7 20 Hasil Bagus

15 30 Hasil Bagus

. 15.2 40 Hasil Bagus

15.1 50 Hasil Bagus

15,4 60 Hasil Bagus

(11)

Gambar 4.2 Grafik Eksperimen dengan Setting Temperatur Forming 14 oC

Hasil eksperimen desain baru menunjukkan ke stabilan suhu di angka 15 oC Modifikasi Forming unit dengan mengubah diameter dalam menunjukkan pengaruh yang signifikan artinya Pada desain baru total aliran panas yang bisa di alirkan desain tersebut adalah sebesar 82.345 [Watt]. Maka dari perhitungan tersebut, desain baru sudah mampu mengairkan panas yang dibawa oleh plastik ke aliran air pendingin. dan mesin mampu berjalan selama 60 menit. Ini menunjukkan desain baru mampu menyerap panas yang dibawa oleh plastik.

Keterangan hasil Produk :

1. Hasil Bagus : Jika bentuk dari poket hasil Thermoforming tidak ada cacat bentuk.

2. Hasil Jelek : Jika plastik bahan baku lengket pada cetakan permukaan plat Forming Unit bentuk dari poket produk tidak sesuai dengan cetakan.

3. Plastik Putus : ketika plastik menempel pada Forming Unit ketika mekanisme berputar plastik putus.

4. Forming Kondensasi : Permukaan Forming Unit terjadi kondensasi sehingga air kondensasi nantinya akan merusak lapisan permukaan Forming Unit.

14 14.2 14.4

14.7

15 15.2 15.1

15.4

13 13.5 14 14.5 15 15.5 16

5 10 15 20 30 40 50 60

T Forming (C)

Running Time (S)

Forming Unit

(12)

Gambar 4.3 Poket Kondisi Baik

Kondisi baik ini telah melalui hasil uji kamera dari segi dimensi masuk dalam standar poket yang baik yaitu tinggi poket 112 mm, lebar 78 mm dan panjang 306 mm.

kemudian dilakukan uji ketahanan poket dengan pengecekan vacuum pressure.

Gambar 4.4 Poket tidak sempurna Poket Menekan tablet

Poket tidak sempurna

(13)

Gambar 4.5 Poket gagal terbentuk

Selanjutnya untuk mengetahui Poket sesuai dengan standar visual yaitu poket terbentuk sempurna, dimensi sesuai standar, maka dilakukan pengecekan visual berupa potensi ketidak sempurnaan poket dan dimensi berikutnya menggunakan kamera khusus untuk memastikan dimensi sesuai standar.

Gambar 4.6 Pengecekan dengan kamera khusus

Pada hasil pengecekan dengan bantuan kamera, tidak terdapat adanya penyimpangan yang besar maupun kondisi abnormal lainnya sehingga dapat dikatakan sudah memenuhi standar. Selanjutnya dilakukan pengecekan vacuum pressure.

(14)

Gambar 4.7 Pengecekan vacuum pressure.

Dari hasil pengecekan vacuum pressure tidak di temukan poket berubah bentuk ataupun terdapat kebocoran, maka desain baru ini dinyatakan berhasil dan sudah memenuhi standar yang ditentukan.

Gambar

Tabel  4.1 Hasil  Eksperimen  dengan  setting  Temperatur  Forming 14  o C  Setting  Temperatur  heater [ o C]  Setting Forming[o C]  Temperatur  Aktual  Pada Forming[o C]  Waktu  Perubahan [menit]  Hasil Produk  120  14  14  2  Hasil  bagus 14.8 4 Hasil
Tabel  4.2 Hasil  Eksperimen  dengan  setting  Temperatur  Forming 14  o C  Setting  Temperatur  heater   [ o C]  Setting  T.Forming [oC]  Temperatur  Aktual  Pada Forming [oC]  Waktu  Perubahan [menit]  Hasil  Produk  120  14  14  5  Hasil  Bagus 14,2 10
Gambar  4.2 Grafik  Eksperimen  dengan  Setting  Temperatur  Forming 14  o C
Gambar  4.4 Poket tidak  sempurna Poket Menekan tablet
+3

Referensi

Dokumen terkait

Dari Tabel 4.6 diatas menunjukkan besarnya nilai adjusted R2 0,111 yang berati sebesar 11,1% variabel tingkat pengungkapan modal intelektual (ICD) dapat

Den asam asetat rosi menjad ma kecepatan pada alumin dingkan alu ada kedua l 5M dan 6M menurun dr an pelindun fisiensi laju : ibitor nhibitor 3 4 NTRASI   (Mola an Se osi larutan

Pada bab ini akan membahas hasil pencucian membran reverse osmosis dengan variasi konsentrasi larutan HCl dengan pompa low pressure, proses tahapan pembilasan,

Pada bab ini, penulis akan menampilkan tampilan hasil perancangan yang telah dijelaskan pada bab sebelumnya dari perancangan alat helm anti kantuk dengan menggunakan

Aliran komponen pipa dan plat sampai proses pengecekan dan pemberian kode produksi untuk semua tipe produk sama yaitu dari gudang dibawa ke mesin shearing (untuk

Dilihat pada Gambar 4.5, komponen plastik terlihat bahwa limbah kulkas yang memiliki berat yang paling tinggi yaitu sebesar 62.721 kg hal ini disebabkan oleh berat plastik pada

Power Conversion Unit merupakan komponen paling penting dalam pembangkit listrik berbasis mesin stirling, berfungsi mengubah energi panas matahari yang difokuskan

Pada fresh water cooler ini air tawar yang berfungsi untuk mendinginkan komponen mesin diesel yang panas akan didinginkan oleh air laut.. Air laut akan mengalir ke fresh water cooler