• Tidak ada hasil yang ditemukan

Methane to Methanol: Tobin Marks, Northwestern University

N/A
N/A
Protected

Academic year: 2017

Membagikan "Methane to Methanol: Tobin Marks, Northwestern University"

Copied!
18
0
0

Teks penuh

(1)

Methane to Methanol

What’s Known and Questions/Challenges

Tobin Marks

NAS Workshop March 7-8, 2016

1. Properties of Methane

2. Naïve Generalizations

3. Conventional Approaches to Methanol

4. Homogeneous Catalytic Approaches

5. Immobilized Homogeneous Catalytic Approaches

6. Enzymatic Approaches

(2)

Properties of Methane

Selective methane activation challenging because of “noble

gas”-like electronic configuration

Large Bond Dissociation Enthalpies

(3)

Some Naïve Generalizations

Creative Catalytic Chemistry Important but Alone is Insufficient

Excellent Engineering is Essential for a Successful Process

Issues:

Thermodynamics

Heat and Mass Transfer Management

Management of Toxic Intermediates and Byproducts

Catalytic Selectivity

Product Separation, Purification

Catalyst Cost & Supply Security

Catalyst Lifetime, Regeneration

Others?

Emerging Tools for Catalyst Discovery, Optimization, Downselection

Operando and Ex-situ Spectroscopy to Probe Catalyst Structure & Dynamics

New Chemical/Analytical Techniques to Probe Mechanism

High Throughput Experimentation for Optimization, Discovery

Materials Science of Catalyst Supports, Plant Construction Materials

Ligand Supply, Design

High-Powered Computation for Both Understanding and Prediction

(4)

Methane

Methanol. Thermodynamic Considerations

Practiced on

a huge scale

ICI Process

Dream

Current Indirect US MeOH

Price ≈ $0.75/Gallon

(5)

Direct Methane to Methanol Conversion.

Heterogeneous Catalytic

Casey, P.S. et al Ind. Eng. Chem. 1994, 33, 1120-1130.

Hutchings, G.J.; Scurrell, M.S.; Woodhouse, J.R. Chem. Soc. Rev. 1989, 18, 251-283. Gesser, H. D.; Hunter, N. R.; Prakash, C. B. Chem. Rev. 1985, 85, 235

Lunsford, J. H. Catal. Today 2000, 63, 165

Alvarez-Galvan, M. C.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R. M.; Fierro, J. L. G. Catal.

Today 2011, 171, 15

Tabata, K.; Teng, Y.; Takemoto, T.; Suzuki, E.; Bañares, M. A.; Peña, M. A.; Fierro, J. L. G.

Catal. Rev. 2002, 44, 1

Holmen, A. Catal. Today 2009, 142, 2

Brown, M. J.; Parkyns, N. D. Catal. Today 1991, 8, 305 Zhang, Q.; He, D.; Zhu, Q. J. Nat. Gas Chem. 2003, 12, 81

Many attempts using huge variety of conditions and catalysts

Very high dilution

Excess methane

Short contact times

Low temperatures

(6)

Methanol Synthesis on Cu/ZnO/Al

2

O

3

with H

2

+ CO + CO

2

 Both CO and CO2 hydrogenation pathways, depending on rxn conditions  Cu active site; rxn temperature = 230 – 280ᵒC; 40-100 atm pressure  99% yield (when recirculating); ~ 25% conversion per pass

 Simultaneous WGS; Possible ZnO synergistic effects

Potential energy surface for methanol synthesis reactions after fitting of DFT & microkinetic model to experimental data

Agreement between experimental & computed TOF data

Grabow & Mavrikakis ACS Catal., 2011, 1, 365–384

http://bioweb.sungrant.org/Technical/Bioproducts/Bioproducts+from+Syngas/Methanol/Default.htm

(7)

Olah, G. A.; Goeppert, A.; Czaun, M.; Mathew, T.; May, R.B.; Prakash, G. K. S. J. Am. Chem. Soc. 2015, 135, 8720–8729.

Olah, G. A.; Goeppert, A.; Czaun, M.; Prakash, G. K. S. J. Am. Chem. Soc. 2013, 135, 10030–10031

Single Step Bi-reforming & Oxidative Bi-Reforming of

Methane (Natural Gas) with Steam & Carbon Dioxide to

Metgas (CO-2H

2

) for Methanol Synthesis

NiO/MgO and CoO/MgO catalysts in tubular flow reactor up to 42 atm & 830–910°C. Catalysts for metgas production stable for 100s of hours. No obvious demonstration of MeOH formation in peer-reviewed publication.

(8)
(9)

Shilov. Homogeneous Catalytic Oxidation of Methane

Original. Pt(IV) as oxidant

Shilov discovered that the combination of [PtCl4]2− and [PtCl6]2−, under

conditions similar to those of CH4 H/D exchange, oxidizes alkanes to a mixture of products, primarily alcohols and alkyl chlorides

Labinger and Bercaw JOMC, 2015, 793, 47-53; Nature 2002, 417, 507-514.

(10)

Shilov Chemistry. Homogeneous Catalytic Oxidation of Methane

Labinger & Bercaw JOMC, 2015,793,47-53

Bercaw & Labinger refinement with Cu(II) oxidant Original Cycle. Pt(IV) as oxidant

TON ≈ 100 for p-TOSH

(11)

Electrophilic Methane Functionalization → Methyl Derivatives

Periana, R. A. et al. Science 1998, 280, 560–564; Accts. Chem. Res. 2012, 45, 885-898.

Electrophilic Main Group Metals: Hg (II) & Tl(III) in Strong Acids

HgSO4 system catalytic in conc. H2SO4

85% Selectivity to MeSO4H in 50% yield

15% selectivity to CO2

Air regenerates catalyst

Catalyst inhibited by reaction product

MeOH formation requires product

(12)

Catalytica system, uses (bipyrimidine)Pt(II) complex as catalyst and fuming sulfuric acid as solvent/oxidant; capable of efficiently functionalizing methane at temperatures ~ 200 °C.

The ‘protected’ product is not of direct use and must be separately converted to a more useful compound, such as methanol, using a scheme such as that shown in Fig. 7b. At least at present, such an integrated multistep process seems not economically competitive with the currently used technology, the indirect conversion of methane to methanol via synthesis gas.

Periana, R. A. et al. Science 1998, 280, 560–564; Accts. Chem. Res. 2012, 45, 885-898. Labinger and Bercaw JOMC, 2015, 793, 47-53; Nature 2002, 417, 507-514.

Homogeneous Methane Oxidation by H

2

SO

4

/SO

3

Mediated by

Pt bipyrimidine Complexes (Periana)

(13)

Methane Oxidation by Zeolite-Supported Catalysts

M-ZSM-5, M = Fe, Cu; H

2

O

2

Oxidant

Hutchings G.J. et al Angew. Chem. Int. Ed. 2010, 51, 5129-5133; ACS Catal. 2013, 3, 1835-1844.

Aqueous medium, H2O2 oxidant

Low temperature (50ᵒC) helps selectivity

Both Fe2 and Cu required for max selectivity Closed catalytic cycle

Cu suppresses selectivity-lowering ∙OH TOF = 2,200 – 14,000 h-1

Selectivity > 90% ( + CO2)

Computation: Need proximate Fe centers

Transient, closely controlled ∙CH3

(14)

HCO2H

MeCOOH

MeOH CO2

ZSM-5; No Fe, Cu

(15)

Immobilized Periana Catalysts for Methane Oxidation

Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schüth, F. Angew. Chem. Int. Ed. 2009, 48, 6909-6912. Palkovits, R.; Schüth, F. et al, Chem. Commun. 2013, 49, 240-242.

Under the same conditions (fuming H2SO4), TON ≈ Periana catalyst MeOH selectivity ≈ 75%; rest is CO2

Catalyst can be multiply recycled

SEM

Pt EDX map

B. N-Doped Carbon Support

MeSO4H TON ≈ 6 - 9x of the system A above; 92 – 95% methyl selectivity,

Other product, CO2

Lobster shell

(16)

Enzymatic Methane to Methanol Conversion

Example: Fe

2

Dioxygenases: Methane Monooxygenase

Enzyme Structure CH4 Activating Q Site. O-O Cleavage Homolytic?

Banergee, R.; Proshlyakov, Y.; Lipscomb, J.D.; Proshlyakov, D.A. Nature 2015, 518, 431–434 Wang, W.; Liang, A.D.; Lippard, S.J. Acc. Chem. Res., 2015, 48 , 2632–2639.

Overall reaction requires separate pathways to channel 3 reagents

1. Electrons and protons via a three-amino-acid pore adjacent to Fe2 center 2. O2 migrates via hydrophobic cavities

3. Methane reaches active site via hydrophobic channel or linked cavities

4. Above rates closely coupled to avoid unproductive destruction of reductant by oxidant

(17)
(18)

Thoughts. Need Your Input!

Amazing how much we have learned about key catalytic mechanisms

New tools emerging to screen catalysts, catalytic mechanisms as never before Materials science of heterogeneous catalysts advancing rapidly

Computation has made impressive advances in understanding, predicting

Are alternative oxidants such as H2O2, N2O, SO3 realistic?

Are alternative products such as CH3SO3H realistic?

Are there “softer” oxidants which can replace or “tame” O2 or the above oxidants for

greater selectivity?

Advances have been made through biomimicry. Can we extend further, remembering that Nature is frequently trying to solve a different problem than we are?

Are enzymatic processes for methanol realistic? What about product separation from aqueous solutions?

Is the use of noble metal catalysts realistic?

Are homogeneous catalysts realistic? What about “single-site” heterogeneous catalysts? Are we using computation in the most effective way?

Referensi

Dokumen terkait

seperti perbankan, jasa penerbangan, hotel, konsultasi, adalah bisnis yang berbasiskan pelayanan 1. Dalam penjualan produk haji dan umrah, PT. NRA Tour & Travel

Pada masing-masing bagian jantung, atrium dan ventrikel dipisahkan oleh suatu katup yang berfungsi mencegah baliknya aliran darah dari ventrikel ke atrium yang secara

The Effect of Using Microsoft PowerPoint Presentation in Teaching Tenses on the Eighth Grade Students Tense Achievement at SMP Negeri 1 Jember in the 2012/2013 Academic Year;

[r]

Berdasarkan hasil penelitian menunjukkan bahwa koperasi dikota semarang sebanyak 50 koperasi yang dipakai untuk sampel penelitian sebagian kecil sudah menerapkan SAK ETAP,

Secara rinci hasil evaluasi penawaran untuk masing-masing penyedia dapat diminta langsung ke Panitia Pengadaan Barang dan Jasa SKPD Dinas Perkebunan Propinsi Sulawesi

Artinya terdapat pengaruh secara positif dan signifikan antara variabel transformasi organisasi, budaya organisasi terhadap kepuasan kerja pegawai serta kinerja pegawai

Optimalisasi Input Produksi pada Kegiatan Budidaya Udang Vanname (Litopenaeus vannamei): Studi.. Kasus pada UD Jasa Hasil Diri di Desa Lamaran Tarung