• Tidak ada hasil yang ditemukan

Index of /intel-research/silicon

N/A
N/A
Protected

Academic year: 2017

Membagikan "Index of /intel-research/silicon"

Copied!
55
0
0

Teks penuh

(1)

2/5/2003 Intel Corp. George Bourianoff 1

The future of nano-computing

George Bourianoff

Intel Corporation

Presented to

International Engineering Consortium and

Electrical and Computer Engineering Department

Heads

(2)

Future of Nanocomputing

Silicon highway

Scalable new

technology

Scalable new

technology

origins

characteristics

limits

criteria

criteria

(3)

2/5/2003 Intel Corp. George Bourianoff 3

Key messages

• CMOS scaling will continue for next 12 –15

years

• Alternative new technologies will emerge

and begin to be integrated on CMOS by

2015

(4)

The future of nanocomputing

• Introduction

• Scaled CMOS

• Nano-computing, nano-technology and

nano-science

• Radical new technologies

• Challenges

(5)

2/5/2003 Intel Corp. George Bourianoff 5

The foundations of microelectronics

Central Breakthroughs:

•Band structure concept

•Minute amounts of impurities

control properties

•Advances in purification and

high quality crystal growth of Si

and Ge

Most basic semiconductor

devices were demonstrated

within 12 years

Beginning about 1946, we

began to utilize this

knowledge base

Government funded

research in solid state

physics in 1930’s and 40’s

laid the foundation

Bipolar transistor

1948

Field effect transistor

1953

LED

1955

Tunnel diode

1957

IC

1959

(6)

The beauty of silicon

1 GB

64 MB

4 MB

DRAMs

Cost per

Megabit

12”

8”

6”

Wafer diameter

0.15 µm

0.35 µm

0.8 µm

Feature size

2000

1995

1990

1. Scaling device

dimensions

downward

For four decades, the semiconductor

industry has steadily reduced the

unit cost of IC components by

$6.50

$3.14

$0.10

2. Scaling wafer

diameter

(7)

2/5/2003 Intel Corp. George Bourianoff 7 2008 70 nm 2011 50 nm 2014 35 nm

6.00 10.00 13.50 9 9-10 10 3 4 4 2.1 E6 3.7 E6 4.6 E6

140 100 70 165 120 85

1.9 2.1 2.2 - 2.3 9 7 5 210 145 110 2.5/2.3 2.7/2.4 2.9/2.5

30 22 17 0 0 0 330 240 170 2.8/2.9 2.9/3.0 3.0/3.1

55 38 20 14.1 16.1 23.1

1.8 < 1.8 < 1.8 0 0 0 1.4 <1.5 <1.5

Brick Walls on the ITRS

YEAR TECHNOLOGY NODE 1999 180 nm 2002 130 nm 2005 100 nm

On-chip local frequency (MHz) 1.25 2.10 3.50

Number of metal levels - Logic 6-7 7-8 8-9

Number of optional levels 0 2 2

Jmax (A/cm2) - wire (at 105oC) 5.8 E5 9.6 E5 1.4 E6

Local wiring pitch - DRAM non-contacted (nm) 360 260 200

Local wiring pitch - Logic (nm) 500 325 230

Local wiring AR-Logic (Cu) 1.4 1.5 1.7

Cu local dishing (nm) 18 14 11

Intermediate wiring pitch - Logic (nm) 560 405 285

Intermediate wiring h/w AR - Logic (Cu DD via/lin) 2.0/2.1 2.2/2.1 2.4/2.2

Cu intermediate wiring dishing -

15 um wide wire (nm) 64 51 41

Dielectric erosion, intermediate wiring

50% density (nm) 64 51 41

Global wiring pitch - Logic (nm) 900 650 460

Global wiring h/w AR - Logic - Cu DD via/line (nm) 2.2/2.4 2.5/2.7 2.7/2.8

Cu global wiring dishing, 15 um wide wire (nm) 116 95 76

Contact aspect ratio - DRAM, stacked cap 9.3 11.4 13

Conductor effective resistivity (uohm -cm) 2.2 2.2 2.2

Barrier/cladding thickness (nm) 17 13 10

Interlevel metal insulator effective

dielectric constant (k) - Logic 4.0 - 3.5 3.5 - 2.7 2.2 - 1.6

Solutions Exist

Solutions being pursued No known solutions

2008 70 nm 2011 50 nm 2014 35 nm

6.00 10.00 13.50 9 9-10 10 3 4 4 2.1 E6 3.7 E6 4.6 E6

140 100 70 165 120 85

1.9 2.1 2.2 - 2.3 9 7 5 210 145 110 2.5/2.3 2.7/2.4 2.9/2.5

30 22 17 0 0 0 330 240 170 2.8/2.9 2.9/3.0 3.0/3.1

55 38 20 14.1 16.1 23.1

(8)

Silicon Nanotechnology is Here!

10000

10000

1000

1000

100

100

10

10

10

10

1

1

0.1

0.1

0.01

0.01

Micron

Micron

Nano

Nano

meter

meter

-

-1970

1980

1990

2000

2010

2020

1970

1980

1990

2000

2010

2020

Nominal feature size

Nominal feature size

(9)

2/5/2003 Intel Corp. George Bourianoff 9

The ingredients of scaling

Material Evolution in MOS

Material Evolution in MOS

2000’s 60’s 70’s 80’s 90’s Al SiO2 Al-Si SiO2 Poly Al-Cu SiO2 WSi2/Poly Ti/TiN Al-Cu SiO2 TiSi2/Poly Ti/TiN W Al-Cu SiO2 TiSi2/Poly Ti/TiN W Low K Al-Cu SiO2/SiN

CSi2/Poly

Ti/TiN W

ELK

Cu

Silicon Silicon Silicon Silicon Silicon Silicon

New materials

Improved processing

New geometries

Scaling Will continue as long as

(10)

Transistor Scaling

70nm transistor

for 0.13µm process

2001 production

70nm

30nm transistor

Prototype

30nm

Demo: 2000

15nm

15nm transistor

prototype

Source:

Intel (IEDM, Dec 2001)

0

100

200

300

400

500

0

0.2 0.4 0.6 0.8

Drain Voltage (V)

Drain Current (µA/µm)

Vg = 0.8V

(11)

2/5/2003 Intel Corp. George Bourianoff 11

New Materials

Gate

Gate

Silicide

Silicide

added

added

Channel

Channel

Strained

Strained

silicon

silicon

Changes

Changes

Made

Made

Future

Future

Options

Options

High

High

-

-

k

k

gate

gate

dielectric

dielectric

New

New

transistor

transistor

structure

structure

Transistor

Transistor

Source: Intel

The problem: High Ioff current

The problem: High

(12)

New Geometries

Source

Source

Drain

Drain

Gate

Gate

Gate

Gate

Silicon

Silicon

Drain

Drain

Source

Source

Id

(

Id (

mAmA

/µm)/µm)

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

1.2

1.2

Source: Intel

Source: Intel

(ISSDM, Sep 2002)

(13)

2/5/2003 Intel Corp. George Bourianoff 13

Improved processing

EUV

EUV

Lithography

Lithography

Prototype Exposure Tool

Prototype Exposure Tool

50nm Lines Printed

50nm Lines Printed

with EUV Lithography

with EUV Lithography

EUV lithography in commercialization phase

Cost effectiveness is key challenge

EUV lithography in commercialization phase

Cost effectiveness is key challenge

Source:

(14)

The limits of logic scaling

• For an

arbitrary

switching device made of

of a single electron in a dual quantum well

– Operating at room temperature

• It can be shown a power dissipation limit of

100 W/cm**2

(15)

2/5/2003 Intel Corp. George Bourianoff 15

CMOS device circa 2016

Cost

10

-11

$/gate

Size

8 nm / device

Speed

0.2 ps /operation

(16)

The future of nanocomputing

– Introduction

– Scaled CMOS

Nano-computing, nano-technology and nano-science

A taxonomy

• New devices

• New architectures

• Alternative state variables

– Radical new technologies

– Challenges

(17)

2/5/2003 Intel Corp. George Bourianoff 17

Architecture

Devices

State

variables

Data

represent

ations

A taxonomy for nano-computing

CNT FETs Molecular Spintronics Quantum CNN Crossbar Quantum Boolean Molecular state Spin orientation

Flux quanta Quantum state Electric charge associative patterns analogue Digital Scaled CMOS probabilities

Heir-archy

bi

ot

ec

h

Mem

ory d

evice

s

sensors

(18)

The future of nanocomputing

– Introduction

– Scaled CMOS

Nano-computing, nano-technology and nano-science

• A taxonomy

New devices

• New architectures

• Alternative state variables

– Radical new technologies

– Challenges

(19)
(20)

CNT-FET Device Structure

E-beam Ti/Au gate

Mo S/D

8 nm

ZrO2

1.4 nm diameter single wall CNT

(21)

2/5/2003 Intel Corp. George Bourianoff 21

Nanowire Gating Geometries

S D

G

SiO2 Si

Back gate

S D

G

Top gate

S D

G

Coaxial gate

(22)

Top-gated p-Si Nanowire

Transistors

S D G 1500 1000 500 0 -I DS (n A )

-2 -1 0 1 20.01 0.1 1 10 100 1000 -I DS (n A ) 700 nA/V 250 mV/dec

VDS= -1 V

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 I DS ( µ A)

-4 -3 -2 -1 0 VDS (V)

-2.0 VGS

-1.5 VGS

-1.0 VGS

-0.5 VGS

0.0 VGS

+0.5 VGS

Si

SiO

x

D

S

G

1 µm

(23)

2/5/2003 Intel Corp. George Bourianoff 23

Crossed Nanowire Structures: A

Powerful Strategy for Creation &

Integration of Nanodevices

ƒ

Nanowires serve dual purpose: both active devices and

interconnects.

ƒ

All key nanoscale metrics are defined during synthesis and

subsequent assembly.

ƒ

Crossed nanowire architecture provides natural scaling and

potential for integration at highest densities.

ƒ

No additional complexity (with added material).

(24)

Crossed Nanowire FETs

400

200

0

-200

-400

C

u

rrent (nA

)

-1.0

-0.5

0.0

0.5

1.0

Bias (V)

S D

G

Vg(V):

0 1 2 3 10-2 100 102 Curre nt (nA ) 5 4 3 2 1 0 Gate (V)

ƒ

In crossed nanowire FETs (cNW-FET), all critical nanoscale metrics

are defined by synthesis and assembly:

channel width by the active nanowire diameter (to 2 nm)

channel length by the gate nanowire diameter (to 1-2 nm)

gate dielectric oxide coating on the nanowires (to 1 atomic layer)

(25)

2/5/2003 Intel Corp. George Bourianoff 25

Device Demonstrated

P-N Junction

(26)

Room temperature Single

Electron Transistor (SET)

Single electron

Single electron

in “island”

in “island”

controls current

controls current

flow from

flow from

source to drain

source to drain

Typical sizes

Typical sizes

of the

of the

TiOx

TiOx

lines are 15

lines are 15

-

-

25

25

nm widths and

nm widths and

30

30

-

-

50 nm

50 nm

lengths.

lengths.

Typical island

Typical island

sizes are 30

sizes are 30

-

-

50

50

nm by 35

nm by 35

-

-

50

50

nm

nm

(27)

2/5/2003 Intel Corp. George Bourianoff 27

Spin resonance transistor (SRT)

• Transistors that control

spins rather than charge

• More energy efficient than

conventional transistors

• Combines magnetic and

electrostatic fields

• May enable quantum

computing

Courtesy Eli

(28)

A Molecular Electronic Switch

(2-amino-4-ethyinylphenyl-4-ethylphenyl-5-nitro-1-benzenethiolate)

Au

Silicon Nitride

1000 Self Assembled

Molecules (SEM)

Au

IV

Characteristics

1

1

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Voltage (V)

Current

(

pA

)

(29)

2/5/2003 Intel Corp. George Bourianoff 29

The future of nanocomputing

– Introduction

– Scaled CMOS

Nano-computing, nano-technology and nano-science

A taxonomy

New devices

New architectures

• Alternative state variables

– Radical new technologies

– Challenges

(30)

Emerging Research Architectures

ARCHITECTURE 3-D INTEGRATION

QUANTUM CELLULAR AUTOMATA DEFECT TOLERANT ARCHITECTURE MOLECULAR ARCHITECTURE CELLULAR NONLINEAR NETWORKS QUANTUM COMPUTING DEVICE IMPLEMENTATION CMOS with dissimilar material systems Arrays of quantum dots Intelligently assembles nanodevices Molecular switches and memories Single electron array architectures Spin resonance transistors, NMR devices, Single flux quantum devices ADVANTAGES Less interconnect delay, Enables mixed technology solutions High functional density. No interconnects in signal path

Supports hardware with defect densities >50% Supports memory based computing Enables utilization of single electron devices at room temperature Exponential performance scaling, Enables unbreakable cryptography CHALLENGES Heat removal, No design tools, Difficult test and measurement

Limited fan out, Dimensional control (low temperature operation), Sensitive to background charge Requires pre-computing test Limited functionality Subject to background noise, Tight tolerances Extreme application limitation, Extreme technology

MATURITY Demonstration Demonstration Demonstration Concept Demonstration Concept

(31)

2/5/2003 Intel Corp. George Bourianoff 31

Quantum Cellular Automata

Adder circuit with carry

executed in QCA logic

Example of asynchronous,

CNN, nearest neighbor

architecture

(32)

Fault tolerant architecture

• All-memory architecture

• Defect tolerant

• Potentially self-repairing and

reconfigurable

(33)

2/5/2003 Intel Corp. George Bourianoff 33

Phase logic

• Store information in the

relative phase of 2 signals

• Multi-valued logic

possible depending on

frequencies of 2 signals

• Tunneling Phase logic

devices use RTDs to

create one of the signals

Courtesy: R

Courtesy: R

Keihle

Keihle

, University of

, University of

Minnesota

(34)

Quantum Computer

Selected technological

implementations

•Liquid-state NMR

•Linear ion trap

•Coupled quantum dots

Deterministically doped

semicondustor structures

31

P

31

P

e

-28

Si

Barrier layer

- - -

+ + +

(35)

2/5/2003 Intel Corp. George Bourianoff 35

The future of nanocomputing

– Introduction

– Scaled CMOS

Nano-computing, nano-technology and nano-science

• A taxonomy

• New devices

• New architectures

Alternative state variables

– Radical new technologies

– Challenges

(36)

Alternative state variables

• Electric charge

• Molecular state

• Spin orientation

• Electric dipole

orientation

• Photon intensity

• Photon polarization

• Quantum state

• Phase state

(37)

2/5/2003 Intel Corp. George Bourianoff 37

The future of nanocomputing

– Introduction

– Scaled CMOS

Nano-computing, nano-technology and nano-science

• A taxonomy

• New devices

• New architectures

Alternative state variables

Radical new technologies

(38)

Economic criteria

Economic relevance criteria

The risk adjusted ROI for any new technology must

exceed that of silicon

Caution

Sufficiently advanced technologies will create their

own applications. New technologies cannot

(39)

2/5/2003 Intel Corp. George Bourianoff 39

Technical criteria

CMOS compatibility

Energy efficiency

Scalability

Performance

Architectural compatibility

Sensitivity to parametric variation

Room temperature operation

(40)

Existence proof for alternate models

The brain is the

ultimate model for its

ability to deal with

complexity

• Little understanding on its architecture & organization

• It is however

– Orders of magnitude more powerful than the best microprocessor

– Self assembled

– Parallel operation

– Self repairing to a significant degree

– Fault tolerant

(41)

2/5/2003 Intel Corp. George Bourianoff 41

Breakthrough scientific

investigation is needed

1952 Achievements

Bulk

band structure

of solids

Doping

Crystal growth

2002 Needs

geometry dependent

energetic structure of

nanostructures

precise location of atoms

(42)

The integration challenge

Scalability Scalability Port Switch Port Switch Memory

Memory MemoryMemory

Scalability Scalability Node Node Controller Controller I/O Hub I/O Hub PCI

PCI--(X)(X)

Bridge Bridge InfiniBand* InfiniBand* Bridge Bridge I/O I/O Bridge Bridge PCI

PCI--(X)(X) Bridge Bridge InfiniBand* InfiniBand* Bridge Bridge I/O I/O Bridge Bridge Scalability Scalability Port Switch Port Switch Scalability Scalability Node Node Controller Controller I/O Hub I/O Hub Intel

(43)

2/5/2003 Intel Corp. George Bourianoff 43

Conclusions

• CMOS scaling will continue for next 12 –15

years

• Alternative new technologies will emerge

and begin to be integrated on CMOS by

2015

(44)

For further information on Intel's silicon technology,

please visit the Silicon Showcase at

(45)

2/5/2003 Intel Corp. George Bourianoff 45

(46)

For about four decades now we have exploited

(mined) our investment in basic science and we

have continuously evolved the devices based

(47)

2/5/2003 Intel Corp. George Bourianoff 47

Leakage is the limiter to SiO2 scaling

Integration is the key challenge to High K

Leakage is the limiter to SiO2 scaling

Leakage is the limiter to SiO2 scaling

Integration is the key challenge to High K

Integration is the key challenge to High K

Silicon substrate

Silicon substrate

Gate

Gate

3.0nm High

3.0nm High

-

-

k

k

90nm process

90nm process

1X

1X

1X

1X

Experimental high

Experimental high

-

-

k

k

1.6X

1.6X

< 0.01X

< 0.01X

Capacitance

Capacitance

Leakage

Leakage

Silicon substrate

Silicon substrate

1.2nm SiO

1.2nm SiO

22

Gate

Gate

Source: Intel

Transistor gate oxide thickness trend

1

10

100

1970 1980 1990 2000 2010 2020

First year in production

(48)

What new basic science is

needed?

Spin manipulation

, e.g.

transport, storage, detection,

creation, …

Geometry related quantum

effects

, e.g. quantum wedge,

parabolic wells, …

Precise location of atoms

e.g.

coherent manipulation of

entangled wavefunctions

R

s

r

P+ P+

Si

(49)

2/5/2003 Intel Corp. George Bourianoff 49

Transport in Si-Ge Core-Shell

Structures

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 I DS ( µ A)

-4 -3 -2 -1 0

VDS (V)

VGS= -1.1 V

-0.7 -0.9 -0.5 -0.3 0.0 S D G

Si

Ge

SiO

x 1000 800 600 400 200 0 -I DS (n A)

-1.0 0.0 1.0

VGS (V)

0.01 0.1 1 10 100 1000 -I DS (n A )

VDS= -1 V

1300 nA/V

330 mV/dec

G

S

D

(50)

Coaxially-Gated Si-Ge

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 I DS ( µ A)

-1.5 -1.0 -0.5 0.0

VSD (V)

O VGS -1 VGS

-2 VGS

3.0 2.5 2.0 1.5 1.0 0.5 0.0 I DS ( µ A)

-2 -1 0 1 2

0.1 1 10 100 1000 I DS (n A)

1.5 µA/V

450 mV/dec.

+1 VDS

Si

Ge

SiO

x
(51)

2/5/2003 Intel Corp. George Bourianoff 51

Devices Demonstrated

Nanowire FET

(52)

Photonic devices

Man-made crystals

produced by etching

precisely placed holes

in silicon or III-V

material

Can produce, detect and

manipulate light more

efficiently than

(53)

2/5/2003 Intel Corp. George Bourianoff 53

System software design needs to

facilitate emerging technologies

Challenge

• CMOS is based on Boolean logic and binary data

representation

• Alternative technologies will require “native”

logic systems and data representations to optimize

their performance

Solution?

• Design science must provide functional

(54)

Nano-computing,

(55)

2/5/2003 Intel Corp. George Bourianoff 55

Changing architectural paradigms

Current

Boolean logic

Binary data

representation

2D

Homogeneous

Globally interconnected

Synchronous

Von Neuman

3 terminal

Future

• Neural networks, CNN,

QCA,…

• Associative, patterned,

memory based, … data

representations

• 3D

• Non homogeneous

• Nearest neighbor

• Asynchronous

Referensi

Dokumen terkait

Dalam upaya menyikapi perkembangan hukum terkait dengan jual-beli melalui internet, Pemerintah telah mengeluarkan Undang-Undang Nomor 11 Tahun 2008 tentang Informasi dan

• Maternal plasma albumin progressively decreases while fetal albumin increases during the course of pregnancy,  higher concentrations of certain. protein-bound drugs in the

Wi-Fi merupakan kependekan dari Wireless Fidelity, yang memiliki pengertian yaitu sekumpulan standar yang digunakan untuk WLAN untuk terhubung dengan internet

Just with the gizmo that always be with your everywhere, you can read this publication Bakkhai (Greek Tragedy In New Translations) By Euripides So, it will certainly be so promptly

Pada sajak “Catatan Seorang Lelaki” karya Idrus Tintin di atas, terdapat citraan gerak gambaran sebenarnya pada bait 1 baris 2 ‘dimuntahkan’ dikatakan citraan gerak gambaran

Klasifikasi pengangkutan yang disediakan di dalam ini adalah untuk tujuan penerangan sahaja dan semata-mata berdasarkan sifat-sifat bahan yang tidak dibungkus seperti yang

Di  Batam  terdapat  banyak  lokasi  penangkapan  ikan  yang  umumnya  terletak  di  terumbu  karang  atau  perairan  sekitar  pulau‐pulau  kecil  yang 

Kajian ini mendapati ada kecenderungan ibu bapa dalam kalangan penjawat awam yang mahu menghadkan bilangan anak kepada saiz keluarga yang ideal iaitu tidak melebihi