• Tidak ada hasil yang ditemukan

Construction Stancu Hurwitz

N/A
N/A
Protected

Academic year: 2017

Membagikan "Construction Stancu Hurwitz"

Copied!
5
0
0

Teks penuh

(1)

Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

CONSTRUCTION OF STANCU-HURWITZ OPERATOR FOR TWO VARIABLES

Ioana Tas¸cu and Andrei Horvat-Marc

2000 Mathematics Subject Classification: 41A10, 41A36

Keywords and phrases:Hurwitz’s identity, linear positive operator of Stancu-Hurwitz type.

Abstract.In this paper we construct and study a linear bivariate oper-ator of Stancu-Hurwitz type. The approximation formula has the degree of exactness (1) and for the remainder we use a method of T. Popoviciu.

1.Introduction

In a paper published in 1902 by Hurwitz A. [3] there has been given an identity, generalizing the classical identity of Abel - Jensen, namely

(u+v)(u+v +β1+. . .+βm)m−1 = =P

u(u+βi1 +. . .+βik)

k−1v(v+β

j1 +. . .+βjm−k)

m−k−1, (1)

where β1, . . . , βm are m nonnegative parameters.

In the special case β1 = β2 = . . . = βm = β, this identity reduces to the case of Abel-Jensen:

(u+v)(u+v+mβ)m−1 =

m

X

k=0

m k

!

u(u+kβ)k−1v(v+ (mk)β)m−k−1.

Replacing in (1) u=x and v = 1−x, the identity becomes

(1 +β1+. . .+βm)m−1 = =P

x(x+βi1+. . .+βik)k−1(1x)(1x+β

j1+. . .+βjm−k)

m−k−1. (2)

(2)

S(β1,...,βm)

m f

(x) = m

X

k=0

w(β1,...,βm) m,k (x)f

k m

!

, (3)

where

(1 +β1+. . .+βm)m−1w(β1,...,βm)

m,k (x) = =P

x(x+β1+. . .+βik)k−1(1x)(1x+β

j1+. . .+βjm−k)

m−k−1. (4)

This operator is interpolatory at both sides of the interval [0,1] and repro-duces the linear functions.

2.Construction of Stancu-Hurwitz operator for two variables

We consider the space of real-valued bivariate functions C(D), where Dis the unit square [0,1]×[0,1] and we construct by a tensor product a bivariate

polynomials of Stancu-Hurwitz type given by the formula

S(β1,...,βm;γ1,...,γn)

m,n f

(x, y) = m

X

k=0 n

X

γ=0

w(β1,...,βm) m,k (x)v(γ1

,...,γn) n,ν (y)f

k m,

ν n

! , (5)

where

(1 +β1+. . .+βm)m−1w(βm,k1,...,βm)(x) =P

x(x+βi1+. . .+βik)k−1(1−x)(1−x+βj1+. . .+βjm−k)

m−k−1 (6)

(1 +γ1+. . .+γn)vn,ν(γ1,...,γn)(y) =P

y(y+γs1+. . .+γsν)

ν−1(1y)(1y+γ

t1+. . .+γtn−ν)

n−ν−1 (7)

and β1, . . . , βm, γ1, . . . , γn are nonnegative parameters.

This operators represents an extension to two variables of the second op-erators of Cheney-Sharma [1] because for the special cases β1 =. . .=βm =β and γ1 =. . .=γn =γ we obtain the Cheney-Sharma-Stancu operator

Sm,n(β,γ)f(x, y) = m

X

k=0 n

X

ν=0

w(β)m,k(x)vn,ν(γ)(y)f k m,

ν n

(3)

where

(1 +mβ)m−1w(β)

m,k(x) =

m k

!

x(x+kβ)k−1(1x)(1x+(mk)β)m−k−1

(1 +nγ)n−1v(γ)

n,ν(y) =

n γ

!

y(y+νγ)ν−1(1y)(1y+ (nν)γ)n−ν−1

Theorem 2.1.The polynomial defined at (5) is interpolatory in the corners of the square D and the approximation formula

f(x, y) =S(β1,...,βm;γ1,...,γn)

m,n f

(x, y) +R(β1,...,βm;γ1,...,γn)

m,n f

(x, y) (8) has the degree of exactness (1,1).

Proof. We can write

(1+β1+. . .+βm)m−1(1+γ1+. . .+γn)n−1

S(β1,...,βm;γ1,...,γn)

m,n f

(x, y) = (1−x)(1−x+β1+. . .+βm)m−1(1y)(1y+γ

1+. . .+γn)n−1f(0,0) +(1−x)(1−x+β1+. . .+βm)m−1y(y+γ

1+. . .+γn)n−1f(0,1) +x(x+β1+. . .+βm)m−1(1−y)(1−y+γ1+. . .+γn)n−1f(1,0)

+x(1−x)y(1−y)

m−1

P

k=1 n−1

P

ν=1w

(β1,...,βm)

m,k (x)v(γn,ν1,...,γn)(y)f

k m, ν n

+x(x+β1+. . .+βm)m−1y(y+γ1+. . .+γn)n−1f(1,1)

(9)

and we can see that the polynomial reproduces the values of the function

f ∈C(D) in the corners of the square D: (0,0),(1,0),(0,1),(1,1). Hence

S(β1,...,βm;γ1,...,γn)

m,n f

(0,0) = f(0,0)

S(β1,...,βm;γ1,...,γn)

m,n f

(1,0) = f(1,0)

S(β1,...,βm;γ1,...,γn)

m,n f

(0,1) = f(0,1)

S(β1,...,βm;γ1,...,γn)

m,n f

(1,1) = f(1,1)

(10)

it follows that the operator reproduces the linear functions and the approxi-mation formula (8) has the degree of exactness (1,1).

(4)

Theorem 2.2.If the function f has continuous second-order partial deriva-tives on the square D, then the remainder of the approximation formula (5) can be represented under the form:

R(β1,...,βm;γ1,...,γn)

m,n f

(x, y) = 1

2

R(β1,...,βm)

m e2,0

(x)f(2,0)(ξ, y)+1 2

R(γ1,...,γn)

n e0,2

(y)f(0,2)(x, η)

−1

4

R(β1,...,βm)

m e2,0

(x)R(γ1,...,γn)

n e0,2

(y)f(2,2)(ξ, η),

(11)

where e2,0(x, y) =x2, e0,2(x, y) =y2.

Using a theorem of Peano-Milne-Stancu type the remainder can have an integral representation.

References

[1] Cheney, E. W., Sharma, A., On a generalization of Bernstein polyno-mials, Rev. Mat. Univ. Parma, 5 (1964), 77-84.

[2] Horova, I., Budikova, M., A note on D. D. Stancu operators, Ricerche di Matem., 44 (1995), 397-407.

[3] Hurwitz, A.,Uber Abels Verallgemeinerung der binomischen Formel,¨ Acta Math., 26 (1902), 199-203.

[4] Jensen, L. W., Sur une identit´e d’Abel et sur d’autres formules ana-logues, Acta Math., 26 (1902), 307-318.

[5] Milne, W. E., The remainder in linear methods of approximation, J. Res. Mat. Bur. Standards, 43 (1949), 501-511.

[6] Peano, G., Resto nelle formule di quadratura expresso con un integrale definito, Atti Acad. Naz. Lincei Rend., 22 (1913), 562-569.

[7] Popoviciu, T.,Sur le reste dans certaines formules lin´eaires d’approximation de l’analyse, Mathematica, Cluj, 1(24) (1959), 95-142.

[8] Stancu, D. D., Evaluation of the remainder term in approximation for-mulas by Bernstein polynomials, Math. Comp., 17 (1963), 270-278.

[9] Stancu, D. D., The remainder of certain linear approximation formulas in two variables, J. SIAM Numer. Anal. B, 1 (1964), 137-163.

(5)

[11] Stancu, D. D., Use of an identity of A. Hurwitz for construction of a linear positive operator of approximation, Rev. Analyse Num´er. Th´eorie de l’approximation, Cluj, 31 (2002), 115-118.

[12] Stancu, D. D., Ci¸sma¸siu, C., On an approximating linear positive op-erator of Cheney-Sharma, Rev. Anal. Numer. Cluj, 26 (1997), 221-227.

Tascu Ioana and Andrei Horvat-Marc North University of Baia Mare

Department of Mathematics and Computer Science Victoriei 76, 43012 Baia Mare, Romania

Referensi

Dokumen terkait

Although the luids on other planets may be different (for example, liquid hydrocarbons on Titan), precipitation, surface runoff, and subsurface low can still occur, and

Hasil analisa untuk mendeskripsikan dimensi dari variabel entrepreneurial leadership dapat dijabarkan dengan menunjukan skor tertinggi berdasarkan perolehan

SURYA WIRA JAYA Tidak memenuhi syarat Gugur..

Capaian Program Jumlah cakupan peningkatan sarana dan prasarana kerja aparatur.

Dalam penelitian ini, metode deskriptif verifikatif dengan pendekatan kuantitatif tersebut digunakan untuk menguji pengaruh Variabel Inflasi Indonesia dan Tingkat

Pada hari ini Sabtu tanggal Lima Belas bulan April tahun Dua Ribu Tujuh Belas (Sabtu, 15- 04-2017), kami yang bertanda tangan dibawah ini Pokja Unit Layanan Pengadaan

Jalan Slamet Riyadi No. Pendaftaran dan Pengambilan Dokumen Kualifikasi / Download Dokumen dilakukan mulai Hari Kamis / tgl. Jadwal Pelaksanaan dilihat dalam aplikasi SPSE pada

Posted in artikel, download, education, English, Pendidikan, penelitian, reading, Soal-Soal Ujian, Ujian Nasional..