• Tidak ada hasil yang ditemukan

ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL MENGGUNAKAN PROGRAM GEOSLOPE

N/A
N/A
Protected

Academic year: 2021

Membagikan "ANALISIS STABILITAS LERENG DENGAN PERKUATAN GEOTEKSTIL MENGGUNAKAN PROGRAM GEOSLOPE"

Copied!
94
0
0

Teks penuh

(1)

commit to user

i

ANALISIS STABILITAS LERENG DENGAN PERKUATAN

GEOTEKSTIL MENGGUNAKAN PROGRAM GEOSLOPE

Slope Stability Analysis with Geotextile Reinforcement Using

Geoslope Computer Program

SKRIPSI

Disusun untuk Memenuhi Persyaratan Memperoleh Gelar Sarjana Teknik pada Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret

Disusun oleh :

USWATUN CHASANAH

I 0108153

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS SEBELAS MARET

SURAKARTA

2012

(2)

commit to user

(3)

commit to user

(4)

commit to user

iv

MOTTO

Hidup adalah perjuangan yang harus diiringi dengan doa.

Usaha, berdoa, dan serahkan semua kepada Allah SWT.

(5)

commit to user

v

PERSEMBAHAN

Dengan segenap cinta dan rasa bangga, karya ini kupersembahkan kepada :

1. Ibu dan Bapak, yang selalu mendoakan, mendukung, dan menyayangiku dengan tulus ikhlas. Terima kasih telah menjadi orang tua terbaik untuk anakmu ini.

2. Adik-adik tercinta, M. Rahmat Hidayatullah dan Sabrina Rizqi M., yang selalu menjadi penyemangatku.

(6)

commit to user

vi

ABSTRAK

Uswatun Chasanah, 2012, Analisis Stabilitas Lereng dengan Perkuatan Geotekstil Menggunakan Program Geoslope, Skripsi, Jurusan Teknik Sipil,

Fakultas Teknik, Universitas Sebelas Maret, Surakarta.

Kondisi lereng dengan beban yang besar dan kemiringan yang curam dapat menyebabkan terjadinya kelongsoran sehingga diperlukan sebuah perkuatan lereng, salah satunya yaitu dengan geotekstil. Geotekstil sering digunakan karena memiliki beberapa keunggulan, antara lain mudah dalam pelaksanaan, murah, dan dapat meningkatkan stabilitas lereng secara efektif.

Penelitian ini bertujuan untuk mengetahui pengaruh kemiringan lereng, panjang geotekstil, dan jarak vertikal antar geotekstil (Sv) terhadap angka keamanan lereng yang dilakukan dengan membandingkan dua perhitungan yaitu perhitungan manual dan progam Geoslope. Analisis yang dilakukan dengan perhitungan manual, yaitu stabilitas internal dan eksternal (untuk lereng dengan perkuatan), serta stabilitas terhadap kelongsoran (untuk lereng dengan perkuatan dan tanpa perkuatan). Sedangkan analisis dengan program Geoslope dilakukan untuk mengetahui stabilitas terhadap kelongsoran lereng.

Berdasarkan hasil penelitian diperoleh bahwa besarnya penurunan rata-rata nilai SF akibat kemiringan lereng sebesar 19,401%, 43,431%, 15,558%, 26,081%, dan 15,18% terhadap penggeseran, penggulingan lereng atas, penggulingan lereng bawah, kelongsoran lereng atas, dan kelongsoran lereng bawah. Besarnya peningkatan rata-rata nilai SF pada panjang geotekstil 8 m sebesar 60,014%, 59,978%, 45,612%, 69,339%, 116,522%, 74,931%, 41,81%, 15,18%, dan 9,915% terhadap cabut tulangan lereng atas, cabut tulangan lereng bawah penggeseran, penggulingan lereng atas, penggulingan lereng bawah, kelongsoran lereng atas, kelongsoran lereng bawah, dan kelongsoran lereng secara keseluruhan. Sedangkan pada panjang geotekstil 10 m, 23,84%, 25,005%, 43,16%, 44,48%, 74,313%, 67,917%, dan 7,565% terhadap cabut tulangan lereng atas, cabut tulangan lereng bawah penggeseran, penggulingan lereng atas, penggulingan lereng bawah, dan kelongsoran lereng secara keseluruhan. Besarnya penurunan rata-rata nilai SF pada Sv 1 m sebesar 50,04%, 49,93%, 49,526%, 49,997%, 32,932%, 35,68%, dan 27,115% terhadap putus tulangan lereng atas, putus tulangan lereng bawah, cabut tulangan lereng atas, cabut tulangan lereng bawah, kelongsoran lereng atas, kelongsoran lereng bawah, dan kelongsoran lereng secara keseluruhan. Sedangkan pada Sv 1,5 m sebesar 33,27%, 33,43%, 33,332%, 33,336%, 15,441%, 11,549%, dan 10,176% terhadap putus tulangan lereng atas, putus tulangan lereng bawah, cabut tulangan lereng atas, cabut tulangan lereng bawah, kelongsoran lereng atas, kelongsoran lereng bawah, dan kelongsoran lereng secara keseluruhan. Perhitungan stabilitas lereng dengan perhitungan manual dan program Geoslope memberikan rata-rata selisih SF sebesar 3,71%.

(7)

commit to user

vii

ABSTRACT

Uswatun chasanah,, 2012, Slope Stability Analysis with Geotextile Reinforcement Using Geoslope Computer Program, Thesis, Civil Engineering Department,

Engineering Faculty, Sebelas Maret University, Surakarta .

The condition of a slope with a heavy load and a steep slope can cause the landslide therefore it requires a reinforcement, one of them is with geotextile. Geotextile is often used because it has several advantages, such as simple in installation, inexpensive, and can increase the stability of slope effectively.

This study aims to know the influence of slope, length, and vertical distance between geotextile layers for safety factor of the slope that is analyzed by comparing manual calculation and Geoslope Computer Program. Analysis by manual calculation consist of internal and external stability (to the slope with reinforcement), and stability against the landslide (for the slope with and without reinforcement). While the analysis by Geoslope Computer Program was conducted to find out stability of the landslide.

Based of the results it is found that the slope safety factor (SF) decrease 19,401%, 43,431%, 15,558%, 26,081%, and 15,18% for sliding, overturning of upper slope, overturning of lower slope, landslide of upper slope, and landslide of lower slope respectively. By using of 8 m geotextile length the SF increase 60,014%, 59,978%, 45,612%, 69,339%, 116,522%, 74,931%, 41,81%, 15,18%, and 9,915% for reinforcement pull out of upper and lower slope, sliding, overturning of upper slope, overturning of lower slope, landslide of upper slope, landslide of lower slope, and landslide of overall respectively. By using of 10 m geotextile length the SF increase 23,84%, 25,005%, 43,16%, 44,48%, 74,313%, 67,917%, and 7,565% for pull out of reinforcement, sliding, overturning of upper slope, overturning of lower slope, and landslide of overall respectively. By using 1 m of vertical distance between geotextile layers the SF increase 50,04%, 49,93%, 49,526%, 49,997%, 32,932%, 35,68%, and 27,115% for rupture of reinforcement, pull out of reinforcement, landslide of upper slope, landslide of lower slope, and landslide of overall respectively. By using 1,5 m of vertical distance between geotextile layers the SF increase 33,27%, 33,43%, 33,332%, 33,336%, 15,441%, 11,549%, and 10,176% for rupture of reinforcement, pull out of reinforcement, landslide of upper slope, landslide of lower slope, and landslide of overall respectively. The stability of slope with manual calculation and Geoslope Computer Program is almost the same, with average difference of SF 3,714%.

(8)

commit to user

viii

KATA PENGANTAR

Segala puji syukur kehadirat Allah SWT, yang telah memberikan rahmat dan hidayahNya sehingga penulis dapat menyelesaikan skripsi ini dengan baik. Penyusunan skripsi dengan judul “Analisis Stabilitas Lereng dengan Perkuatan Geotekstil Menggunakan Program Geoslope” ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Fakultas Teknik Universitas Sebelas Maret Surakarta. Proses penyusunan skripsi ini tidak bisa lepas dari bantuan berbagai pihak sehingga pada kesempatan ini penyusun menyampaikan terima kasih kepada :

1. Pimpinan Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta.

2. Dr. Niken Silmi Surjandari, ST, MT, selaku Pembimbing Skripsi I. 3. Bambang Setiawan, ST, MT, selaku Pembimbing Skripsi II.

4. Ir. AMF. Subratayati, MSi dan Wibowo, ST, DEA, selaku Pembimbing Akademik.

5. Rekan-rekan mahasiswa Teknik Sipil angkatan 2008.

6. Semua pihak yang telah membantu penyusunan skripsi ini yang tidak dapat disebutkan satu persatu.

Penulis menyadari bahwa masih banyak kekurangan dan keterbatasan ilmu dalam penyusunan skripsi ini. Oleh karena itu, penulis berharap dengan kekurangan dan keterbatasan tersebut, skripsi ini dapat memberikan manfaat bagi penulis khususnya dan pembaca pada umumnya.

Surakarta, Mei 2012

(9)

commit to user

ix

DAFTAR ISI

HALAMAN JUDUL ... i

HALAMAN PERSETUJUAN ... ii

HALAMAN PENGESAHAN ... iii

MOTTO ... iv

PERSEMBAHAN ... v

ABSTRAK ... vi

ABSTRACT ... vii

KATA PENGANTAR ... viii

DAFTAR ISI ... ix

DAFTAR GAMBAR ... xii

DAFTAR TABEL ... xv BAB 1. PENDAHULUAN ... 1 1.1. Latar Belakang ... 1 1.2. Rumusan Masalah ... 2 1.3. Batasan Masalah ... ... 2 1.4. Tujuan Penelitian ... 3 1.5. Manfaat Penelitian... 3

BAB 2. LANDASAN TEORI ... 4

2.1. Tinjauan Pustaka ... 4

2.2. Dasar Teori ... 5

2.2.1. Lereng ... 5

2.2.2. Struktur Perkerasan Beton Semen ... 6

2.2.3. Pembebanan pada Lereng ... 7

2.2.4. Analisis Stabilitas Lereng ... 8

2.2.5. Analisis Stabilitas Lereng dengan Perkuatan ... 9

2.2.6. Geotekstil ... 13

(10)

commit to user

x

BAB 3. METODE PENELITIAN ... 17

3.1. Uraian umum ... 17

3.2. Pemodelan Lereng... ... 17

3.3.1 Pengumpulan Data ... 17

3.3.2 Perencanaan Struktur Jalan Raya ... 19

3.3.3 Variasi Pemodelan Lereng ... 21

3.3. Analisis dengan Perhitungan Manual... 22

3.4. Analisis dengan Program Geoslope... ... 23

3.4.1. Pengaturan Awal ... 22

3.4.2. Membuat Sketsa Gambar ... 24

3.4.3. Analysis Settings ... 24

3.4.4. Mendefinisikan Parameter Tanah ... 25

3.4.5. Menentukan Parameter Tiap Lapisan Tanah ... 26

3.4.6. Menggambar Entry and Exit Bidang Longsor ... 27

3.4.7. Menggambar Beban Merata ... 28

3.4.8. Menggambar Perkuatan Geotekstil ... 28

3.4.9. Memeriksa Masukan Data... 29

3.4.10.Solving The Poblem... 29

3.4.11.Menyimpan Data ... 30

3.5. Pembahasan Hasil Penelitian... ... 31

3.6. Kesimpulan... ... 31

3.7. Diagram Alir Penelitian... ... 31

BAB 4. ANALISIS DAN PEMBAHASAN ... 33

4.1. Analisis Stabilitas Lereng Tanpa Perkuatan ... 33

4.1.1. Analisis dengan Perhitungan Manual... 33

4.1.2. Analisis dengan Program Geoslope ... 37

4.2. Analisis Stabilitas Lereng dengan Perkuatan ... 38

4.2.1. Stabilitas Internal ... 39

4.2.2. Stabilitas Eksternal ... 41

(11)

commit to user

xi

4.2.2.2. Analisis pada Lereng 2. ... 46

4.2.3. Stabilitas terhadap Kelongsoran Lereng ... 48

4.2.3.1. Analisis dengan Perhitungan Manual. ... 48

4.2.3.2. Analisis dengan Program Geoslope ... 51

4.3. Pembahasan ... 55

4.3.1. Hubungan Kemiringan Lereng, Panjang Geotekstil, dan Jarak Vertikal antar Geotekstil dengan Stabilitas Internal 56 4.3.2. Hubungan Kemiringan Lereng, Panjang Geotekstil, dan Jarak Vertikal antar Geotekstil dengan Stabilitas Eksternal ... 59

4.3.3. Hubungan Kemiringan Lereng, Panjang Geotekstil, dan Jarak Vertikal antar Geotekstil dengan Stabilitas terhadap Kelongsoran Lereng ... 65

4.3.4. Perbandingan Hasil Analisis Stabilitas Lereng dari Perhitungan Manual dengan Progra Geoslope ... 71

4.3.5. Permasalahan pada Penggunaan Geotekstil ... 72

BAB 5. KESIMPULAN DAN SARAN ... 74

5.1. Kesimpulan ... 74

5.2. Saran... ... 75

DAFTAR PUSTAKA ... 77

(12)

commit to user

xii

DAFTAR GAMBAR

Gambar 2.1. Tipikal Struktur Perkerasan Beton Semen ... 6

Gambar 2.2. Distribusi Beban Kendaraan ( Giroud dan Noiray, 1981) ... 8

Gambar 2.3. Analisis Kestabilan Lereng dengan Metode Keseimbangan Batas ... 9

Gambar 2.4. Perlawanan Perkuatan Tanah terhadap Gaya-Gaya yang Meruntuhkan ... 10

Gambar 3.1. Sketsa Kondisi Lereng ... 18

Gambar 3.2. Sketsa Struktur Jalan Raya dan Pembebanannya ... 19

Gambar 3.3. Dimensi Kendaraan dan Kedudukannya ... 20

Gambar 3.4. Penyaluran Beban oleh Roda ... 20

Gambar 3.5. Jendela Pengaturan Kertas Kerja... 23

Gambar 3.6. Jendela Pengaturan Skala Gambar ... 23

Gambar 3.7. Jendela Pengaturan Jarak Grid ... 23

Gambar 3.8. Jendela Penggambaran Model Geometri Lereng ... 24

Gambar 3.9. Jendela Penentuan Project ID ... 24

Gambar 3.10. Jendela Penentuan Metode Analisis ... 25

Gambar 3.11. Jendela Penentuan Bidang Longsor ... 25

Gambar 3.12. Jendela Pendefinisian Parameter Tanah ... 26

Gambar 3.13. Jendela Penggambaran Lapisan Tanah ... 26

Gambar 3.14. Jendela Penggambaran Parameter Tanah ... 27

Gambar 3.15. Jendela Penggambaran Bidang Longsor ... 27

Gambar 3.16. Jendela Penggambaran Beban Merata... 28

Gambar 3.17. Jendela Penggambaran Perkuatan ... 28

Gambar 3.18. Jendela Verifikasi Data Masukan ... 29

Gambar 3.19. Jendela Proses Running Program ... 30

Gambar 3.20. Jendela Penyimpanan Data... 30

Gambar 3.21. Diagram Alir Penelitian ... 32

(13)

commit to user

xiii

Gambar 4.2. Hasil Analisis Kelongsoran Lereng dengan Program

Geoslope ... 38

Gambar 4.3. Sketsa Lereng dan Tekanan Tanah Aktif yang Bekerja ... 39

Gambar 4.4. Tegangan yang Bekerja pada Lapisan Tanah ... 42

Gambar 4.5. Tekanan Tanah Aktif Akibat Beban Merata ... 43

Gambar 4.6. Bidang Longsor Lereng dengan Perkuatan ... 48

Gambar 4.7. Hasil Analisis Kelongsoran Lereng Akibat Perkuatan dengan Program Geoslope ... 52

Gambar 4.8. Hubungan antara Sv dengan Nilai SFr ... 56

Gambar 4.9. Hubungan antara Panjang Geotekstil dan Sv dengan SFp .... 58

Gambar 4.10. Hubungan antara Kemiringan Lereng dan Panjang Geotekstil dengan SF terhadap Penggeseran ... 60

Gambar 4.11. Hubungan antara Kemiringan Lereng dan Panjang Geotekstil dengan SF terhadap Penggulingan ... 62

Gambar 4.12. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng 1 untuk Kemiringan 70o ... 65

Gambar 4.13. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng 1 untuk Kemiringan 90o ... 66

Gambar 4.14. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng 2 untuk Kemiringan 70o ... 66

Gambar 4.15. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng 2 untuk Kemiringan 90o ... 67

Gambar 4.16. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng Keseluruhan untuk Kemiringan 70o-70o ... 67

Gambar 4.17. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng Keseluruhan untuk Kemiringan 70o-90o ... 68

(14)

commit to user

xiv

Gambar 4.18. Hubungan antara Panjang Geotekstil dan Sv dengan SF terhadap Kelongsoran Lereng pada Lereng Keseluruhan untuk Kemiringan 90o-70o ... 68 Gambar 4.19. Hubungan antara Panjang Geotekstil dan Sv dengan SF

terhadap Kelongsoran Lereng pada Lereng Keseluruhan untuk Kemiringan 90o-90o ... 69 Gambar 4.20. Perbandingan Nilai SF dari Hasil Perhitungan Manual dengan

Program Geoslope ... 71 Gambar 4.21 Hasil Analisis Lereng secara Keseluruhan pada Variasi 2.... 72 Gambar 4.22. Hasil Analisis Lereng secara Keseluruhan Setelah Perencanaan

(15)

commit to user

xv

DAFTAR TABEL

Tabel 2.1. Faktor Kapasitas Dukung Terzaghi ... 13

Tabel 2.2. Sifat Mekanik Geotekstil ... 15

Tabel 3.1. Data Parameter Tanah Hasil Uji Laboratorium ... 18

Tabel 3.2. Klasifikasi Lereng ... 18

Tabel 3.3. Variasi Pemodelan Lereng ... 21

Tabel 3.4. Gambaran Output Penelitian ... 30

Tabel 4.1. Analisis pada Lereng 1 ... 34

Tabel 4.2. Analisis pada Lereng 2 ... 35

Tabel 4.3. Analisis pada Lereng secara Keseluruhan ... 36

Tabel 4.4. Rekapitulasi Perhitungan Stabilitas Internal pada Lereng 1 .. 40

Tabel 4.5. Rekapitulasi Perhitungan Stabilitas Internal pada Lereng 2 .. 41

Tabel 4.6. Rekapitulasi Perhitungan Tekanan Akibat Beban Merata ... 43

Tabel 4.7. Rekapitulasi Perhitungan Momen Aktif ... 45

Tabel 4.8. Rekapitulasi Perhitungan Momen Pasif ... 45

Tabel 4.9. Perhitungan Tanahan Momen oleh Perkuatan Geotekstil pada Lereng 1 ... 49

Tabel 4.10. Perhitungan Tanahan Momen oleh Perkuatan Geotekstil pada Lereng 2 ... 49

Tabel 4.11. Perhitungan Tanahan Momen oleh Perkuatan Geotekstil pada Lereng secara Keseluruhan ... 50

Tabel 4.12. Rekapitulasi Hasil Analisis Stabilitas Lereng ... 52

Tabel 4.13. Persentase Penurunan Nilai SF Akibat Pertambahan Jarak Vertikalantar Geotekstil (Sv) pada Stabilitas terhadap Putus Tulangan (SFr) ... 57

Tabel 4.14. Persentase Penurunan Nilai SF Akibat Pertambahan Panjang Geotekstil (Sv) pada Stabilitas terhadap Cabut Tulangan (SFp) ... 58

(16)

commit to user

xvi

Tabel 4.15. Persentase Penurunan Nilai SF Akibat Pertambahan Jarak Vertikalantar Geotekstil (Sv) pada Stabilitas terhadap Cabut Tulangan (SFp) ... 59 Tabel 4.16. Persentase Penurunan Nilai SF terhadap Penggeseran Akibat

Pertambahan Kemiringan Lereng ... 61 Tabel 4.17. Persentase Peningkatan Nilai SF terhadap Penggeseran Akibat

Pertambahan Panjang Geotekstil... 62 Tabel 4.18. Persentase Penurunan Nilai SF terhadap Penggulingan Akibat

Pertambahan Kemiringan Lereng ... 63 Tabel 4.19. Persentase Peningkatan Nilai SF terhadap Penggulingan Akibat

(17)

commit to user

ABSTRAK

Uswatun Chasanah, 2012, Analisis Stabilitas Lereng dengan Perkuatan Geotekstil Menggunakan Program Geoslope, Skripsi, Jurusan Teknik Sipil,

Fakultas Teknik, Universitas Sebelas Maret, Surakarta.

Kondisi lereng dengan beban yang besar dan kemiringan yang curam dapat menyebabkan terjadinya kelongsoran sehingga diperlukan sebuah perkuatan lereng, salah satunya yaitu dengan geotekstil. Geotekstil sering digunakan karena memiliki beberapa keunggulan, antara lain mudah dalam pelaksanaan, murah, dan dapat meningkatkan stabilitas lereng secara efektif.

Penelitian ini bertujuan untuk mengetahui pengaruh kemiringan lereng, panjang geotekstil, dan jarak vertikal antar geotekstil (Sv) terhadap angka keamanan lereng yang dilakukan dengan membandingkan dua perhitungan yaitu perhitungan manual dan progam Geoslope. Analisis yang dilakukan dengan perhitungan manual, yaitu stabilitas internal dan eksternal (untuk lereng dengan perkuatan), serta stabilitas terhadap kelongsoran (untuk lereng dengan perkuatan dan tanpa perkuatan). Sedangkan analisis dengan program Geoslope dilakukan untuk mengetahui stabilitas terhadap kelongsoran lereng.

Berdasarkan hasil penelitian diperoleh bahwa besarnya penurunan rata-rata nilai SF akibat kemiringan lereng sebesar 19,401%, 43,431%, 15,558%, 26,081%, dan 15,18% terhadap penggeseran, penggulingan lereng atas, penggulingan lereng bawah, kelongsoran lereng atas, dan kelongsoran lereng bawah. Besarnya peningkatan rata-rata nilai SF pada panjang geotekstil 8 m sebesar 60,014%, 59,978%, 45,612%, 69,339%, 116,522%, 74,931%, 41,81%, 15,18%, dan 9,915% terhadap cabut tulangan lereng atas, cabut tulangan lereng bawah penggeseran, penggulingan lereng atas, penggulingan lereng bawah, kelongsoran lereng atas, kelongsoran lereng bawah, dan kelongsoran lereng secara keseluruhan. Sedangkan pada panjang geotekstil 10 m, 23,84%, 25,005%, 43,16%, 44,48%, 74,313%, 67,917%, dan 7,565% terhadap cabut tulangan lereng atas, cabut tulangan lereng bawah penggeseran, penggulingan lereng atas, penggulingan lereng bawah, dan kelongsoran lereng secara keseluruhan. Besarnya penurunan rata-rata nilai SF pada Sv 1 m sebesar 50,04%, 49,93%, 49,526%, 49,997%, 32,932%, 35,68%, dan 27,115% terhadap putus tulangan lereng atas, putus tulangan lereng bawah, cabut tulangan lereng atas, cabut tulangan lereng bawah, kelongsoran lereng atas, kelongsoran lereng bawah, dan kelongsoran lereng secara keseluruhan. Sedangkan pada Sv 1,5 m sebesar 33,27%, 33,43%, 33,332%, 33,336%, 15,441%, 11,549%, dan 10,176% terhadap putus tulangan lereng atas, putus tulangan lereng bawah, cabut tulangan lereng atas, cabut tulangan lereng bawah, kelongsoran lereng atas, kelongsoran lereng bawah, dan kelongsoran lereng secara keseluruhan. Perhitungan stabilitas lereng dengan perhitungan manual dan program Geoslope memberikan rata-rata selisih SF sebesar 3,71%.

(18)

commit to user

ABSTRACT

Uswatun chasanah,, 2012, Slope Stability Analysis with Geotextile Reinforcement Using Geoslope Computer Program, Thesis, Civil Engineering Department,

Engineering Faculty, Sebelas Maret University, Surakarta .

The condition of a slope with a heavy load and a steep slope can cause the landslide therefore it requires a reinforcement, one of them is with geotextile. Geotextile is often used because it has several advantages, such as simple in installation, inexpensive, and can increase the stability of slope effectively.

This study aims to know the influence of slope, length, and vertical distance between geotextile layers for safety factor of the slope that is analyzed by comparing manual calculation and Geoslope Computer Program. Analysis by manual calculation consist of internal and external stability (to the slope with reinforcement), and stability against the landslide (for the slope with and without reinforcement). While the analysis by Geoslope Computer Program was conducted to find out stability of the landslide.

Based of the results it is found that the slope safety factor (SF) decrease 19,401%, 43,431%, 15,558%, 26,081%, and 15,18% for sliding, overturning of upper slope, overturning of lower slope, landslide of upper slope, and landslide of lower slope respectively. By using of 8 m geotextile length the SF increase 60,014%, 59,978%, 45,612%, 69,339%, 116,522%, 74,931%, 41,81%, 15,18%, and 9,915% for reinforcement pull out of upper and lower slope, sliding, overturning of upper slope, overturning of lower slope, landslide of upper slope, landslide of lower slope, and landslide of overall respectively. By using of 10 m geotextile length the SF increase 23,84%, 25,005%, 43,16%, 44,48%, 74,313%, 67,917%, and 7,565% for pull out of reinforcement, sliding, overturning of upper slope, overturning of lower slope, and landslide of overall respectively. By using 1 m of vertical distance between geotextile layers the SF increase 50,04%, 49,93%, 49,526%, 49,997%, 32,932%, 35,68%, and 27,115% for rupture of reinforcement, pull out of reinforcement, landslide of upper slope, landslide of lower slope, and landslide of overall respectively. By using 1,5 m of vertical distance between geotextile layers the SF increase 33,27%, 33,43%, 33,332%, 33,336%, 15,441%, 11,549%, and 10,176% for rupture of reinforcement, pull out of reinforcement, landslide of upper slope, landslide of lower slope, and landslide of overall respectively. The stability of slope with manual calculation and Geoslope Computer Program is almost the same, with average difference of SF 3,714%.

(19)

commit to user

1

BAB 1

PENDAHULUAN

1.1.

Latar Belakang

Perkembangan transportasi di Indonesia yang semakin meningkat menyebabkan naiknya kebutuhan lahan untuk penggunaan jalan. Hal ini mendorong manusia untuk memanfaatkan setiap lahan yang ada sebaik mungkin, salah satunya di kawasan perbukitan dan berlereng yang topografinya cenderung beragam. Namun untuk mewujudkan transportasi yang aman, nyaman, dan memiliki konstruksi yang awet pada daerah lereng, diperlukan sebuah analisis terhadap tingkat keamanan lereng dalam perencanaannya.

Tingkat keamanan suatu lereng dipengaruhi oleh beberapa faktor, diantaranya adalah faktor kemiringan dan beban yang bekerja di atasnya. Kondisi lereng dengan beban yang besar dan kemiringan yang curam dapat menyebabkan terjadinya kelongsoran. Hal ini tentunya sangat membahayakan bangunan dan pengguna jalan di sekitar lereng sehingga diperlukan sebuah perkuatan lereng.

Pada saat ini banyak dijumpai alternatif perkuatan lereng, salah satunya yaitu dengan geotekstil. Hardiyatmo (2007) menyatakan geotekstil merupakan material lolos air buatan pabrik yang dibuat dari bahan-bahan sintesis, seperti

polypropylene, polyester, nylon, polyvinyl chloride, dan campuran dari

bahan-bahan tersebut. Seluruh material tersebut termasuk thermoplastic. Geotekstil sering digunakan karena memiliki beberapa keunggulan, antara lain mudah dalam pelaksanaan, murah, dan dapat meningkatkan stabilitas lereng secara efektif. Pemanfaatan geotekstil untuk perkuatan lereng dapat dilakukan dengan memasang geotekstil pada bagian lereng dengan jarak dan panjang tertentu sehingga lereng terjaga stabilitasnya.

(20)

commit to user

Ada beberapa metode dalam melakukan analisis stabilitas lereng, salah satunya yaitu metode keseimbangan batas (limit equilibrium method). Analisis stabilitas lereng dengan metode ini sangat membutuhkan ketelitian dan ketekunan untuk mendapatkan hasil yang akurat, sehingga analisis dapat dilakukan dengan menggunakan program komputer. Salah satu program komputer yang menggunakan prinsip metode keseimbangan batas (limit equilibrium method) dalam analisis stabilitas lereng yaitu program Geoslope. Kelebihan dari program ini yaitu dapat menghitung angka aman secara akurat dalam waktu yang singkat. Karena menggunakan prinsip metode keseimbangan batas (limit equilibrium

method), maka program ini mudah dipelajari oleh pemula.

Berdasarkan uraian di atas, maka penggunaan geotekstil pada lereng yang mempunyai beban yang tinggi dan kemiringan yang curam dengan menggunakan program Geoslope perlu dikaji lebih mendalam. Penelitian ini diharapkan mampu menjadi solusi untuk permasalahan tersebut.

1.2.

Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah sebagai berikut :

1. Bagaimana hubungan antara kemiringan lereng, panjang geotekstil, dan jarak vertikal antar geotekstil dengan angka keamanan (SF) ?

2. Bagaimana perbandingan hasil analisis stabilitas lereng menggunakan perhitungan manual dengan program Geoslope?

1.3.

Batasan Masalah

Agar penelitian ini tidak terlalu luas tinjauannya dan tidak menyimpang dari rumusan masalah yang ditetapkan, maka perlu adanya pembatasan terhadap masalah yang ditinjau. Batasan-batasan masalah yang diambil dalam penelitian ini adalah sebagai berikut :

1. Data tanah yang digunakan adalah data tanah di Desa Bantas, Kecamatan Selemadeg Timur, Kabupaten Tabanan, Provinsi Bali.

(21)

commit to user

2. Lereng digambarkan dengan menggunakan permodelan dua dimensi, yang terdiri dari dua lereng, yaitu lereng atas dan lereng bawah.

3. Tanah urugan kembali (backfill) di belakang dan di dalam zona tanah perkuatan dianggap sama dengan tanah asli.

4. Beban terletak pada lereng dua (lereng bawah). 5. Tidak meninjau dari segi biaya dan waktu. 6. Tidak memperhitungkan adanya muka air tanah.

7. Analisis stabilitas lereng menggunakan metode keseimbangan batas. 8. Perhitungan dilakukan dengan perhitungan manual dan program Geoslope.

1.4.

Tujuan Penelitian

1. Mengetahui hubungan antara kemiringan lereng, panjang geotekstil, dan jarak vertikal antar geotekstil dengan angka keamanan (SF).

2. Mengetahui perbandingan hasil analisis stabilitas lereng menggunakan perhitungan manual dengan program Geoslope.

1.5.

Manfaat Penelitian

Manfaat dari penelitian ini yaitu :

1. Menambah pengetahuan tentang stabilitas lereng.

2. Mendapatkan gambaran tentang visualisasi kelongsongan lereng dalam bentuk dua dimensi.

3. Mengenal dan dapat mengoperasikan program Geoslope.

4. Menghemat waktu dalam menyelesaikan permasalahan dalam bidang geoteknik dengan memanfaatkan program.

(22)

commit to user

4

BAB 2

LANDASAN TEORI

2.1. Tinjauan Pustaka

Widiyanto, (1993), menyimpulkan bahwa penanggulangan kelongsoran subgrade jalan raya dengan stabilitas lereng memberikan angka keamanan yang kecil. Kondisi tersebut memberikan indikasi bahwa badan jalan dalam keadaan labil sehingga perlu dilakukan peningkatan stabilitas lereng. Hal ini dapat dilakukan dengan memperbaiki sifat fisis tanah maupun dengan membangun dinding penahan yang disertai dengan sistem drainase di bawah permukaan jalan yang baik.

Geotekstil adalah kelompok bahan geosintetik yang mudah meloloskan air. Geotekstil sebenarnya merupakan bahan, baik yang berasal dari serat-serat asli seperi jute, kertas filter, papan kayu, dan bambu, maupun serat-serat sintetis (fiber) yang banyak berhubungan dengan pekerjaan-pekerjaan tanah. Awalnya pemanfaatan geotekstil untuk percepatan konsolidasi, pengganti pasir sebagai bahan drainase (vertical sand drain) yang banyak dilakukan di India, atau sebagai kertas filter yang banyak dilakukan di Belanda (Suryolelono, 2000).

Metode keseimbangan batas telah digunakan untuk stabilitas lereng dalam waktu yang lama. Metode keseimbangan konvensional memiliki beberapa keterbatasan, salah satunya hanya memenuhi persamaan kesetimbangan gaya. Metode tersebut tidak menganggap tegangan dan perpindahan dari suatu lereng. Keterbatasan ini dapat diatasi dengan menggunakan program yang mampu menganalisis gaya dan tegangan geser total pada pada permukaan longsor sehingga dapat digunakan untuk menentukan angka keamanan (Krahn, 2003).

(23)

commit to user

Studi kasus analisis stabilitas lereng pada badan jalan Wonosari km 15-16 Piyungan, Yogyakarta dengan menggunakan program Geoslope diperoleh hasil berupa angka aman dan bentuk bidang longsor yang dimungkinkan terjadi pada badan jalan tersebut (Setiawan, 2004 dalam Takhmiluddin dan Arianto, 2008).

Penelitian ini diharapkan mampu melengkapi penelitian-penelitian sebelumnya, yakni dengan meninjau tidak hanya pada satu konstruksi lereng tanpa perkuatan, melainkan dua konstruksi lereng yang diberi perkuatan geotekstil. Selain itu, analisis pada penelitian ini juga dilakukan dengan dua metode, yakni perhitungan manual dan program Geoslope sehingga hasil analisis tersebut dapat dibandingkan.

2.2. Dasar Teori

2.2.1. Lereng

Lereng adalah suatu permukaan tanah yang miring dan membentuk sudut tertentu terhadap suatu bidang horizontal. Pada tempat dimana terdapat dua permukaan tanah yang berbeda ketinggian, maka akan ada gaya-gaya yang mendorong sehingga tanah yang lebih tinggi kedudukannya cenderung bergerak ke arah bawah yang disebut dengan gaya potensial gravitasi yang menyebabkan terjadinya longsor (Tjokorda, dkk, 2010).

Longsoran lereng adalah pergerakan massa tanah batuan dalam arah tegak, mendatar, atau miring dari kedudukan semula sebagai akibat ketidak mampuan lereng menahan gaya geser yang bekerja pada batas antara massa yang bergerak dan massa yang stabil (Skempton and Hutchinson, 1969 dalam Wicaksono, 2003).

(24)

commit to user Christoper, dkk, (1991), mengklasifikasikan:

1. Struktur timbunan dengan kemiringan lereng < 70o yang lerengnya diperkuat, disebut lereng tanah bertulang (Reinforced Soil Slope, RSS).

2. Struktur timbunan dengan kemiringan lereng > 70o yang lerengnya diperkuat, disebut struktur dinding tanah distabilisasi secara mekanis (Mechanically

Stabilized Earth wall, MSE-wall)

2.2.2. Struktur Perkerasan Beton Semen

Perkerasan beton semen (perkerasan kaku) adalah struktur yang terdiri atas pelat beton semen yang bersambung (tidak menerus) tanpa atau dengan tulangan, atau menerus dengan tulangan, terletak di atas lapis pondasi bawah atau tanah dasar, tanpa atau dengan lapis permukaan beraspal (SNI PD T-14-2003).

Pada umumnya perkerasan beton semen dilapisi dengan perkerasan aspal di atasnya. Namun struktur perkerasan beton semen secara tipikal sebagaimana terlihat pada Gambar 2.1.

Gambar 2.1. Tipikal Struktur Perkerasan Beton Semen

Bahan pondasi bawah pada perkerasan beton semen berdasarkan SNI PD T-14-2003 dapat berupa :

1. Bahan berbutir.

2. Stabilisasi atau dengan beton kurus giling padat (Lean Rolled Concrete). 3. Campuran beton kurus (Lean-Mix Concrete).

(25)

commit to user

Tebal pondasi minimum yang mempunyai mutu sesuai dengan SNI No. 03-6388-2000 dan AASHTO M-15 serta SNI No. 03-1743-1989 adalah 10 cm. Perancangan tebal perkerasan beton semen dapat dihitung dengan menggunakan beberapa metode diantaranya; metode AASHTO , AUSTROAD 2000, metode Bina Marga, metode Asphalt Institute, metode ROAD NOTE 29, dan lain-lain. Pada umumnya tebal perkerasan beton semen berkisar antara 20 - 30 cm.

Bahan-bahan yang digunakan untuk perkerasan beton semen harus sesuai dengan peraturan yang telah ditetapkan. Daftar berat isi (γ) bahan-bahan yang digunakan untuk perkerasan beton semen berdasarkan Peraturan Pembebanan Jembatan Bab III hal. 37 dalam Herma, dkk 2010 adalah sebagai berikut :

1. Beton bertulang : 24 kN/m3

2. Beton biasa : 22 kN/m3

3. Perkerasan jalan beraspal : 20 – 25 kN/m3

2.2.3. Pembebanan pada Lereng

Gaya yang ditimbulkan oleh adanya struktur jalan raya di atas konstruksi lereng harus mampu ditahan oleh lereng tersebut. Gaya tersebut yaitu gaya vertikal yang disebabkan oleh beban perkerasan dan beban kendaraan. Gaya-gaya yang berasal dari kendaraan nantinya akan diteruskam pada perkerasan sebagai tekanan vertikal. Tekanan vertikal dapat ditentukan dengan menggunakan penyebaran tekanan ( 2H: 1V atau α = ± 260) dari Giroud dan Noiray (1981).

Tekanan ban (p’) pada kedalaman (h) dari permukaan dapat diperoleh dengan rumus :

 

2  2

α

 2

α

2.1.

Keterangan :

p’ = tekanan ban pada kedalaman h (kN/m2)

(26)

commit to user

B + 2 h tg

α

B

Tanah Dasar α

h

L

pc p' h = tebal perkerasan (m)

α = sudut penyebaran beban terhadap vertikal (0) L = panjang bidang kontak (m)

B = lebar bidang kontak (m)

Gambar 2.2. Distribusi Beban Kendaraan ( Giroud dan Noiray, 1981)

Beban gandar (P) disebarkan mengikuti penyebaran tekanan yang bersudut α terhadap vertikal. Bidang kontak ekivalen tekanan ban di atas permukaan jalan adalah B x L .

Untuk kendaraan berat dengan roda lebar dan ganda :   √2

 ,     0,5  2.2.

Giroud dan Noiray, 1981, menyatakan besarnya tekanan ban (pc) untuk kendaraan

proyek sebesar 620 kPa.

2.2.4. Analisis Stabilitas Lereng

Salah satu metode yang digunakan untuk analisis stabilitas terhadap kelongsoran lereng yaitu metode keseimbangan batas dengan asumsi bentuk bidang longsor berupa lingkaran seperti yang terlihat pada Gambar 2.3.

(27)

commit to user

Gambar 2.3. Analisis Stabilitas Lereng dengan Metode Keseimbangan Batas

Menurut Suryolelono, (1993), apabila digunakan Ordinary Slices Method maka persamaan angka keamanan

 

∑&'&( !"#$ %

∑&'&()*+,θ %

- 1,3 2.3.

Keterangan :

SF = angka keamanan

R = jari-jari lingkaran longsor (m) c = kohesi tanah (kN/m2)

ϕ = sudut gesek dalam tanah (0)

ai = panjang lengkung lingkaran pada irisan ke-i (m) Wi = berat irisan tanah ke-i (kN/m)

Ni =Wi. cos θi

(28)

commit to user 2.2.5. Analisis Stabilitas Lereng dengan Perkuatan

Pada konstruksi lereng dengan sistem perkuatan lereng, gaya yang meruntuhkan akan dilawan dengan oleh kemampuan geser dan tarik dari bahan perkuatan tersebut (Suryolelono, 1993). Pada Gambar 2.4, tampak pengaruh bahan geotekstil dalam memberikan konstribusi perlawanan terhadap gaya yang melongsorkan cukup berperan, apabila bahan tersebut terpotong oleh bidang longsor.

Gambar 2.4. Perlawanan Perkuatan Tanah terhadap Gaya-Gaya yang Meruntuhkan

Dalam praktek, analisis stabilitas lereng didasarkan pada konsep keseimbangan plastis batas. Adapun maksud analisis stabilitas adalah untuk menentukan faktor aman dari bidang longsor yang potensial. Faktor aman didefinisikan dengan memperhatikan tegangan geser rata-rata sepanjang bidang longsor potensial, dan kuat geser tanah rata-rata sepanjang permukaan longsoran.

Faktor aman (SF) merupakan nilai banding antara gaya yang menahan dan gaya yang menggerakkan (Hardiyatmo, 2007).

  / 2.4. / Keterangan :

τ = tahanan geser maksimum yang dapat dikerahkan oleh tanah (kN)

τd = tegangan geser yang terjadi akibat gaya berat tanah yang akan longsor (kN)

(29)

commit to user

Menurut teori Mohr-Coulomb, tahanan geser (τ) yang dapat dikerahkan oleh tanah, disepanjang bidang longsornya dinyatakan oleh :

/  1 2 3 2.5. Keterangan :

c = kohesi (kN/m2)

σ = tegangan normal (kN)

φ = sudut gesek dalam tanah (0)

Dengan cara yang sama, dapat dituliskan persamaan tegangan geser yang terjadi (τd) akibat beban tanah dan beban-beban lain pada bidang longsornya :

/  1 2 3 2.6. Keterangan :

cd = kohesi (kN/m2)

φd = sudut gesek dalam yang bekerja sepanjang bidang longsor (0)

Analisis stabilitas lereng dengan perkuatan terdiri dari analisis stabilitas internal, stabilitas eksternal, dan stabilitas terhadap kelongsoran lereng. Stabilitas internal terdiri dari dari stabilitas terhadap putus dan cabut tulangan, yang berupa stabilitas terhadap gaya-gaya internal yang diperhitungkan terhadap panjang dan jarak spasi antar perkuatan. Stabilitas terhadap gaya-gaya eksternal terdiri dari kemampuan perkuatan lereng dalam menahan gaya geser, guling, dan keruntuhan dasar pondasi akibat kuat dukung tanah. Anggapan yang digunakan adalah perkuatan lereng tanah merupakan satu kesatuan seperti pada konstruksi dinding penahan tanah. Sedangkan tinjauan stabilitas terhadap kelongsoran lereng dapat digunakan berbagai metode, salah satunya adalah merode keseimbangan batas (Suryolelono, 1993).

1. Stabilitas internal

a. Angka keamanan (SF) terhadap putus tulangan 5 σ6

7. 8 - 1,5 2.7.

Keterangan :

(30)

commit to user Sv = jarak tulangan arah vertikal (m) Ta = kuat tarik ijin tulangan (kN/m)

σh = tekanan horizontal tanah pada kedalaman yang ditinjau (kN/m2) b. Angka keamanan (SF) terhadap cabut tulangan

: 2;

σ

8<

σ

7. 8 - 1,5 2.8.

Keterangan :

SFp = angka keamanan terhadap cabut tulangan

; = koefisien gesek antara tanah dan tulangan, dapat diambil ; = tg (2ϕ/3)

σv = tekanan vertikal tanah pada kedalaman yang ditinjau (kN/m2) Le = panjang perkuatan yang berada di belakang garis longsor (m) σh = tekanan horizontal tanah pada kedalaman yang ditinjau (kN/m2) Sv = jarak tulangan arah vertikal (m)

2. Stabilitas eksternal

a. Angka keamanan terhadap geser

 ∑ > - 1,5 2.9.

Keterangan :

F = gaya yang melawan (kN)

∑E = jumlah gaya geser (kN) b. Angka keamanan terhadap guling

 ∑ @∑ @:

A - 1,5 2.10.

Keterangan :

∑MP = jumlah momen pasif (kNm) ∑ MA = jumlah momen aktif (kNm)

c. Angka keamanan terhadap kuat dukung tanah

 22BC"

"<5DE+ - 1,5 2.11.

Berdasarkan rumus Terzaghi untuk tegangan ultimate yaitu :

(31)

commit to user Keterangan :

SF = angka keamanan terhadap kuat dukung tanah σult = kuat dukung tanah (kN/m2)

σterjadi = tegangan yang terjadi (kN/m2) c = kohesi tanah pondasi (kN/m2) γ = berat volume tanah pondasi (kN/m3)

q = tekanan overburden pada dasar pondasi (kN/m2) B = panjang perkuatan pada dasar konstruksi (m)

Nc, Nq, Nγ = koefisien-koefisien kuat dukung yang merupakan fungsi dari sudut geser dalam tanah, yang terdapat pada Tabel 2.1.

Tabel 2.1. Faktor Kapasitas Dukung Terzaghi

ф Nc Nq Nγ ф Nc Nq Nγ 0 5.70 1.00 0.00 26 27.09 14.21 9.84 1 6.00 1.10 0.01 27 29.24 15.90 11.60 2 6.30 1.22 0.04 28 31.61 17.81 13.70 3 6.62 1.35 0.06 29 34.24 19.98 16.18 4 6.97 1.49 0.10 30 37.16 22.46 19.13 5 7.34 1.64 0.14 31 40.41 25.28 22.65 6 7.73 1.81 0.20 32 44.04 28.52 26.87 7 8.15 2.00 0.27 33 48.09 32.23 31.94 8 8.60 2.21 0.35 34 52.64 36.50 38.04 9 9.09 2.44 0.44 35 57.75 41.44 45.41 10 9.61 2.69 0.56 36 63.53 47.16 54.36 11 10.16 2.98 0.69 37 70.01 53.80 65.27 12 10.76 3.29 0.85 38 77.50 61.55 78.61 13 11.41 3.63 1.04 39 85.97 70.61 95.03 14 12.11 4.02 1.26 40 95.66 81.27 115.31 15 12.86 4.45 1.52 41 106.81 93.85 140.51 16 13.68 4.92 1.82 42 119.67 108.75 171.99 17 14.60 5.45 2.18 43 134.58 126.50 211.56 18 15.12 6.04 2.59 44 151.95 147.74 261.60 19 16.56 6.70 3.07 45 172.28 173.28 325.34 20 17.69 7.44 3.64 46 196.22 204.19 407.11 21 18.92 8.26 4.31 47 224.55 241.80 512.84 22 20.27 9.19 5.09 48 258.28 287.85 650.67 23 21.75 10.23 6.00 49 298.71 344.63 831.99 24 23.36 11.40 7.08 50 347.50 415.14 1072.80 25 25.13 12.72 8.34

(32)

commit to user 3. Stabilitas terhadap kelongsoran lereng

Dalam tinjauan ini digunakan teori stabilitas tanpa perkuatan yang telah dibahas sebelumnya. Apabila kuat tarik bahan geotekstil untuk perkuatan satu lapis sebesar T (kN/m), maka besarnya angka keamanan lereng dengan perkuatan geotekstil ditentukan dengan menambahkan faktor aman lereng tanpa perkuatan dengan pengaruh tahanan momen oleh geotekstil:

  B ∑ 6F. G+ +H, +HI ∑ J+H,+HI +KF

θ

+ L - 1,3 2.13. Keterangan : SF = angka keamanan

SFu = angka keamanan lereng tanpa perkuatan R = jari-jari lingkaran longsor (m)

Wi = berat irisan tanah ke-i (kN/m)

θi = sudut tengah pias ke-i (0)

Ti = jumlah gaya tarik per meter lebar geotekstil yang tersedian untuk setiap lapisan tulangan (kN/m)

yi = R cos θi = lengan momen geotekstil terhadap O (m)

2.2.6. Geotekstil

Geotekstil merupakan material lembaran yang dibuat dari bahan tekstil polymeric, bersifat lolos air, yang dapat berbentuk bahan nir-anyam (non woven), rajutan atau anyaman (woven) yang digunakan dalam kontak dengan tanah atau material lain dalam aplikasi teknik sipil. Fungsi perkuatan pada geotekstil dapat diterjemahkan sebagai fungsi tulangan, seperti istilah pada beton bertulang. Dalam pengertian yang identik, tanah hanya mempunyai kekuatan untuk menahan tekan, tapi tidak dapat menahan tarik. Kelemahan terhadap tarik ini dipenuhi oleh geotekstil. Material ini dapat diletakkan di bawah timbunan yang dibangun di atas tanah lunak, dapat digunakan untuk membangun penahan tanah, dan dapat pula digunakan untuk perkuatan bahan perkerasan jalan (Hardiyatmo, 2007).

(33)

commit to user

Pemilihan geotekstil untuk perkuatan dipengaruhi oleh dua faktor, yaitu faktor internal dan eksternal. Faktor internal geotekstil terdiri dari kuat tarik geotekstil, sifat perpanjangan (creep), struktur geotekstil, dan daya tahan terhadap faktor lingkungan, sedangkan faktor eksternal adalah jenis bahan timbunan yang berinteraksi dengan geotekstil. Waktu pembebanan juga mengurangi kekuatan geotekstil karena akan terjadi degradasi pada geotekstil oleh faktor fatigue dan

aging. Untuk menutupi kekurangan tersebut, tidak seluruh kuat tarik geotekstil

yang tersedia dapat dimanfaatkan dalam perencanaan konstruksi perkuatan (Djarwadi, 2006). Tabel 2.2. menunjukkan sifat-sifat mekanik yang terdapat pada geotekstil.

Tabel 2.2. Sifat Mekanik Geotekstil

Jenis Geotekstil Struktur Tebal (mm) Berat perluas (gr/m2) Kuat Tarik kN/m Perpanjangan (%)

Polyfet IS50 Niranyam 1,90 200 15 35

Polyfet IS70 Niranyam 2,50 285 21,5 40

Polyfet IS80 Teranyam 2,90 325 24 40

Hate Renfox T Teranyam NA 250 40 21

Hate Renfox R Teranyam NA 325 60 44

Sumber : PT. Tetrasa Geosinido

Perancangan lereng dengan perkuatan geotesktil menurut Holtz, dkk, (1998), dalam Hardiyatmo, (2007), dapat dilakukan dengan dua metode, yaitu metode coba-coba dan metode langsung. Dalam perancangan coba-coba, hitungan dilakukan dengan membuat tampang lereng dengan susunan geotekstil secara coba-coba, kemudian dianalisis dengan program komputer. Dalam hitungan secara langsung, hitungan stabilitas lereng dilakukan dengan program komputer dan hitungan manual dilakukan dalam menghitung kebutuhan geotekstil.

Selain itu, dalam perancangan lereng dengan perkuatan geotekstil juga harus diperhatikan panjang dari geotekstil tersebut. Salah satu syarat yang harus dipenuhi yaitu panjang geotekstil yang berada di belakang garis longsor (Le) minimum adalah 1m. Tahanan cabut tulangan hanya dihitung pada tulangan yang panjangnya lebih besar dari 1 m. Jika tahanan cabut tulangan tidak cukup, maka panjang tulangan ditambah.

(34)

commit to user 2.2.7. Program Geoslope

Program Geoslope adalah sebuah paket aplikasi untuk pemodelan geoteknik dan geo-lingkungan. Software ini melingkupi SLOPE W, SEEP W, SIGMA W, QUAKE W, TEMP W, dan CTRAN W, yang sifatnya terintegrasi sehingga memungkinkan untuk menggunakan hasil dari satu produk ke dalam produk yang lain. Ini unik dan fitur yang kuat sangat memperluas jenis masalah yang dapat dianalisis dan memberikan fleksibilitas untuk memperoleh modul seperti yang dibutuhkan untuk proyek yang berbeda.

SLOPE W merupakan produk perangkat lunak untuk menghitung faktor keamanan lereng dan kemiringan batuan. Dengan SLOPE W, kita dapat menganalisis masalah baik secara sederhana maupun kompleks dengan menggunakan salah satu dari delapan metode kesetimbangan batas untuk berbagai permukaan yang miring, kondisi tekanan pori-air, sifat tanah, dan beban terkonsentrasi. Kita dapat menggunakan elemen tekanan pori air yang terbatas, tegangan statis, atau tekanan dinamik pada analisis stabilitas lereng. Selain itu kita juga dapat melakukan analisis probabilistik.

SLOPE W Define merupakan program yang digunakan untuk pemodelan permasalahan lereng dalam bentuk penggambaran pada layar komputer dalam aplikasi Computer Aided Design (CAD). Kemudian data yang telah dimodelkan tersebut dianalisis dengan menggunakan SLOPE W Solve. Perhitungan dilakukan sesuai dengan data masukan dan pengaturan analisis (Analysis Setting) yang telah ditentukan. SLOPE W Contour akan menampilkan grafis seluruh bidang longsor dan nilai faktor aman dapat ditunjukkan dala bentuk kontur faktor aman serta diagram dan poligon tiap pias tertentu.

(35)

commit to user

17

BAB 3

METODE PENELITIAN

3.1.

Uraian Umum

Penelitian ini dilakukan dengan membandingkan dua perhitungan yaitu perhitungan manual dan progam Geoslope. Variasi parameter yang digunakan pada penelitian ini antara lain kemiringan lereng, panjang geotekstil, dan jarak vertikal geotekstil, sedangkan parameter tetap yang digunakan yaitu parameter tanah, pembebanan, dan spesifikasi geotekstil. Tahapan pada penelitian ini adalah sebagai berikut :

1. Pemodelan Lereng

2. Analisis dengan perhitungan manual 3. Analisis dengan program Geoslope. 4. Pembahasan hasil penelitian. 5. Kesimpulan.

3.2.

Pemodelan Lereng

3.2.1. Pengumpulan Data

Data-data yang diperlukan pada penelitian ini antara lain: 1. Data Tanah

Data tanah yang digunakan pada penelitian ini adalah data sekunder yang diperoleh dari penelitian Tjokorda, dkk (2010) di Desa Bantas, Kecamatan Selemadeg Timur, Kabupaten Tabanan, Provinsi Bali. Tanah di lokasi tersebut merupakan tanah homogen dengan 3 jenis tanah seperti yang terdapat pada Tabel 3.1.

2. Geotekstil

Geotekstil yang digunakan pada penelitian ini yaitu geotekstil teranyam (woven) dengan jenis Hate Renfox R. Spesifikasi yang terdapat pada geotekstil tersebut antara lain :

(36)

commit to user a. Kuat tarik (Ta) : 60 kN/m

b. Perpanjangan (ε) : 44 %

Tabel 3.1. Data Parameter Tanah Hasil Uji Laboratorium

No. Jenis Pemeriksaan Tanah 1

(22-12m ) Tanah 2 (12 – 8 m ) Tanah 1 (8 m – 0 m ) 1 Berat isi γ (kN/m3) 21 19,5 21 2 Kohesi c (kN//m2) 1,8 2,9 1,8 3 Sudut geser ϕ (o) 24 15 24 Sumber : Tjokorda,dkk, 2010

Pembagian jenis tanah pada lereng ini dapat dilihat pada sketsa kondisi lereng pada Gambar 3.1.

Gambar 3.1. Sketsa Kondisi Lereng

Sedangkan untuk sudut kemiringan lereng yang digunakan yaitu 70o dan 90o. Alasan pemilihan kemiringan tersebut yaitu karena berdasarkan klasifikasi lereng yang dilakukan oleh Christopher, (1991), yang terdapat pada Tabel 3.2.

Tabel 3.2. Klasifikasi Lereng

Sudut Kemiringan Lereng

(o) Klasifikasi

70 Dinding tanah distabilisasi secara mekanis

90 Dinding tanah distabilisasi secara mekanis

Tanah 1 γ = 2,1 t/m3 Tanah 2 γ = 1,95 t/m3 Tanah 3 γ = 2,1 t/m3 H Badan jalan Lereng 1 Lereng 2 β β

(37)

commit to user

100 kN 100 kN 100 kN 100 kN

2 m 3 m 3 m 2 m

bahu jalan jalur tanah dasar jalur bahu jalan

pondasi bawah perkerasan beton

perkerasan aspal 3.2.2. Perencanaan Struktur Jalan Raya

Kelas jalan yang direncanakan pada penelitian lereng ini yaitu Arteri III dengan asumsi VLHR sebesar 8.000 smp/hari. Lebar jalur yang digunakan untuk kelas jalan Arteri IIIA pada penelitian ini yaitu 3 m dan lebar bahu sebesar 2 m (TPGJAK, 1997). Adapun struktur jalan yang direncanakan dapat dilihat pada Gambar 3.2.

Gambar 3.2. Sketsa Struktur Jalan Raya dan Pembebanannya 1. Perkerasan Jalan

Perkerasan yang digunakan yaitu perkerasan beton yang dilapisi dengan perkerasan aspal, sedangkan pondasi bawah direncanakan menggunakan beton tumbuk. Adapun rincian struktur jalan raya pada lereng yaitu :

Tebal perkerasan aspal = 10 cm

Tebal perkerasan beton = 30 cm

Tebal pondasi bawah = 15 cm, dengan

Berat isi aspal (γaspal) = 24 kN/m3

Berat isi beton (γbeton) = 24 kN/m3

2. Kendaraan

Pada perancangan ini diasumsikan pada saat dua buah kendaraan berpapasan dan sejajar. Beban as kendaraan yang digunakan pada penelitian ini yaitu MST sumbu triple (3 as) sebesar 20 ton sehingga beban untuk masing-masing roda kendaraan sebesar 100 kN (Bina Marga, 1984 dalam Kusnandar, 2008). Dimensi kendaraan truk 3 as dan kedudukannya ditunjukkan pada Gambar 3.3.

(38)

commit to user B + 2 h tg α 0,48 m Tanah Dasar 26 0,55 m 620 kPa p' 0,24 m

Gambar 3.3. Dimensi Kendaraan dan Kedudukannya Keterangan :

a1 = a2 = 30 cm ;

Ma = Ms = muatan rencana sumbu b1 = 12,50 cm

b2 = 50,00 cm 3. Perhitungan beban

a. Beban perkerasan

Berat perkerasan aspal = 0,10 x 24 = 2,4 kN/m2 Berat perkerasan beton = 0,30 x 24 = 7,2 kN/m2 Berat pondasi bawah = 0,15 x 24 = 3,6 kN/m2+ Berat total perkerasan (qperkerasan)= 0,15 x 1 x = 13,2 kN/m2 b. Beban kendaraan

Beban roda kendaraan (P) = 100 kN

  √2

  

100√2

620  0,48 

L = 0,5 B = 0,24 m

Distribusi beban kendaraan dapat dilihat pada Gambar 3.4.

(39)

commit to user Maka tekanan akibat roda kendaraan

 

2   2 

α

  2 

α



2  0,48  2  0,55   261000,24  2  0,55  26  63,59 / !

c. Beban total (qtotal)

qtotal = qperkerasan + 4

= 13,2 + (4 x 63,59) = 267,58 kN/m2=

3.2.3. Variasi Pemodelan Lereng

Variasi pemodelan lereng yang digunakan pada penelitian ini ditinjau dari beberapa kondisi, seperti sudut kemiringan lereng, panjang geotekstil, dan jarak vertikal antar geotekstil. Variasi tersebut dapat dilihat pada Tabel 3.3. berikut :

Tabel 3.3. Variasi Pemodelan Lereng

No.

Kemiringan Perkuatan

Lereng 1 Lereng 2 Panjang Perkuatan

(P)

Jarak antar Perkuatan (Sv) (o) (o) (m) (m) 1 70 70 - - 2 70 70 5 0,5 3 70 70 5 1,0 4 70 70 5 1,5 5 70 70 8 0,5 6 70 70 8 1,0 7 70 70 8 1,5 8 70 70 10 0,5 9 70 70 10 1,0 10 70 70 10 1,5 11 70 90 - - 12 70 90 5 0,5 13 70 90 5 1,0 14 70 90 5 1,5 15 70 90 8 0,5 16 70 90 8 1,0 17 70 90 8 1,5 18 70 90 10 0,5 19 70 90 10 1,0 20 70 90 10 1,5

(40)

commit to user

Tabel 3.3. Variasi Pemodelan Lereng (Lanjutan)

3.3.

Analisis dengan Perhitungan Manual

Analisis dengan perhitungan manual dilakukan setelah mengetahui bidang longsor masing-masing lereng. Analisis yang dilakukan yaitu :

1. Stabilitas internal (untuk lereng dengan perkuatan). 2. Stabilitas eksternal (untuk lereng dengan perkuatan).

3. Stabilitas terhadap kelongsoran (untuk lereng dengan perkuatan dan tanpa perkuatan).

3.4.

Analisis dengan Program Geoslope

3.4.1. Pengaturan Awal

Pengaturan awal untuk melakukan analisis dengan program Geoslope terdiri dari beberapa tahap, diantaranya pengaturan kertas kerja, skala gambar, dan jarak grid. Kertas kerja merupakan ukuran ruang yang disediakan untuk melakukan

No.

Kemiringan Perkuatan

Lereng 1 Lereng 2 Panjang Perkuatan

(P)

Jarak antar Perkuatan (Sv) (o) (o) (m) (m) 21 90 70 - - 22 90 70 5 0,5 23 90 70 5 1,0 24 90 70 5 1,5 25 90 70 8 0,5 26 90 70 8 1,0 27 90 70 8 1,5 28 90 70 10 0,5 29 90 70 10 1,0 30 90 70 10 1,5 31 90 90 - - 32 90 90 5 0,5 33 90 90 5 1,0 34 90 90 5 1,5 35 90 90 8 0,5 36 90 90 8 1,0 37 90 90 8 1,5 38 90 90 10 0,5 39 90 90 10 1,0 40 90 90 10 1,5

(41)

commit to user

mendefinisikan masalah. Skala gambar merupakan perbandingan yang digunakan untuk mendefinisikan ukuran lereng sebenarnya terhadap gambar pada program. Grid diperlukan untuk memudahkan dalam menggambarkan titik supaya tepat dengan koordinat yang diinginkan. Adapun langkah-langkah pengaturan awal adalah sebagai berikut :

1. Mengatur kertas kerja, dari menu utama set klik page.

Gambar 3.5. Jendela Pengaturan Kertas Kerja 2. Mengatur skala gambar, dari menu utama set klik scale.

Gambar 3.6. Jendela Pengaturan Skala Gambar 3. Mengatur jarak grid, dari menu utama set klik grid.

(42)

commit to user 3.4.2. Membuat Sketsa Gambar

Pemodelan lereng dimulai dengan pembuatan sketsa gambar dari model, yang merupakan representasi dari masalah yang ingin dianalisis. Pemodelan tersebut dibuat dari menu utama sketch, kemudian klik lines untuk menggambar model geometri lereng seperti yang terlihat pada Gambar 3.8.

Gambar 3.8. Jendela Penggambaran Model Geometri Lereng

3.4.3. Analysis Settings

Analysis Settings merupakan tahapan untuk menentukan pengaturan dalam

menganalisis stabilitas kelongoran lereng. Langkah-langkahnya yaitu : 1. Menentukan Project ID, dari menu utama KeyIn klik analysis settings.

Project ID digunakan untuk mendefinisikan nama atau judul pada masalah

yang sedang dianalisis seperti terlihat pada Gambar 3.8.

(43)

commit to user

2. Menentukan metode analisis, klik tabsheet method pada analysis settings. Dalam tabsheet ini terdapat beberapa metode yang digunakan untuk analisis stabilitas lereng. Klik pada only Bishop, Ordinary, and Janbu seperti yang terdapat pada Gambar 3.10.

Gambar 3.10. Jendela Penentuan Metode Analisis

3. Menentukan bidang longsor, klik tabsheet slip surface pada analysis settings. Dalam tabsheet ini pergerakan arah kelongsoran dapat ditentukan sesuai dengan keinginan, baik dari arah kiri ke kanan maupun sebaliknya. Bidang longsor ditentukan dengan memilih option Entry and Exit seperti yang terdapat pada Gambar 3.11.

Gambar 3.11. Jendela Penentuan Bidang Longsor

3.4.4. Mendefinisikan Parameter Tanah

Jenis material yang diinput sesuai dengan uraian umum diatas. Material model yang digunakkan adalah Mohr-Coulomb. Parameter yang diperlukan yaitu berat

(44)

commit to user

isi tanah (γ), kohesi (c), dan sudut geser (ϕ). Sebelum dilakukan input data perlu dilakukan penyeragaman satuan masing-masing parameter. Langkah untuk mendefinisikan parameter tanah yaitu dari tampilan menu utama KeyIn klik

material properties seperti yang terdapat pada Gambar 3.12.

Gambar 3.12. Jendela Pendefinisian Parameter Tanah

3.4.5. Menentukan Parameter tiap Lapisan Tanah

Setelah parameter tanah didefinisikan, maka langkah selanjutnya yaitu menentukan parameter masing-masing lapisan tanah. Ada dua tahapan dalam menentukan parameter tiap lapisan tanah, yaitu :

1. Menggambar batas lapisan tanah, dari menu utama sketch klik lines.

Garis batas tiap lapisan tanah digambar sesuai dengan koordinat yang ditentukan seperti yang terlihat pada Gambar 3.13.

(45)

commit to user

2. Memilih parameter tanah, dari menu utama draw klik regions.

Pilih tipe material yang telah didefinisikan sebelumnya pada tabsheet regions

properties yang muncul seperti yang terdapat pada Gambar 3.14.

Gambar 3.14. Jendela Penggambaran Parameter Tanah

3.4.6. Menggambar Entry and Exit Bidang Longsor

Salah satu kesulitan dengan metode Grid and Radius adalah untuk memvisualisasikan luasan atau berbagai permukaan bidang longsor. Keterbatasan ini dapat diatasi dengan menentukan lokasi dimana percobaan bidang longsor kemungkinan akan masuk dan keluar dari permukaan tanah. Metode ini disebut

Entry and Exit. Untuk menggambarkan Entry and Exit bidang longsor yaitu dari

menu utama draw klik slip surface, kemudian pilih Entry and Exit seperti yang terdapat pada Gambar 3.15.

(46)

commit to user 3.4.7. Menggambar Beban Merata

Beban merata yang diperoleh dari perhitungan kemudian dimodelkan dalam program. Langkahnya yaitu dari menu utama draw klik pressure lines, kemudian masukkan besarnya berat isi beban yang dikehendaki, lalu mulailah menggambar seperti yang terdapat pada Gambar 3.16. Adapun panjang beban merata disesuaikan dengan panjang jalan yang direncanakan.

Gambar 3.16. Jendela Penggambaran Beban Merata 3.4.8. Menggambar Perkuatan Geotekstil

Spesifik geotekstil yang digunakan sesuai dengan yang dikeluarkan produsen, diantaranya kuat tarik yang digunakan. Langkah untk menggambar geotekstil pada model lereng yaitu pada menu utama draw klik reinforcement loads. Pilih

fabric, lalu ketik spesifikasi geotekstil yang digunakan seperti yang terlihat pada

Gambar 3.17.

(47)

commit to user 3.4.9. Memeriksa Masukan Data

Setelah data-data yang dibutuhkan untuk proses analisis termodelkan, maka dilakukan pemeriksaan data. Hal ini bertujuan untuk menghindari adanya kesalahan dalam proses pemasukan data. Jika dalam tabsheet verify tidak terdapat kesalahan (0 error), maka proses solving the problem dapat dilakukan. Langkah untuk melakukan pemeriksaan data yaitu dari menu utama tools klik verify seperti yang terlihat pada Gambar 3.18.

Gambar 3.18. Jendela Verifikasi Data Masukan

3.4.10.Solving The Poblem

Solving the problem bertujuan untuk menghitung angka keamanan pada lereng

berdasarkan data-data yang telah dimasukkan. Langkah untuk solving the problem yaitu dari menu utama tools klik SOLVE, kemudian klik start untuk memulai perhitungan. Selama perhitungan SOLVE menampilkan angka keamanan minimum dan jumlah slip surfaces yang sedang dianalisis seperti yang terdapat pada Gambar 3.19

(48)

commit to user

Gambar 3.19. Jendela Proses Running Program

3.4.11.Menyimpan Data

Setelah proses analisis selesai, hasil running program kemudian disimpan sehingga bisa dilihat kembali ketika dibutuhkan. Langkah yang harus dilakukan yaitu pada menu utama klik file, lalu pilih save seperti yang terdapat pada Gambar 3.20.

(49)

commit to user

3.5.

Pembahasan Hasil Penelitian

Pembahasan pada penelitian ini menitikberatkan pada output penelitian yang berupa hasil analisis stabilitas internal, eksternal, dan kelongsoran lereng. Gambaran output penelitian dapat dilihat pada Tabel 3.4.

Tabel 3.4. Gambaran Output Penelitian

Variasi Tinjauan Lereng

Stabilitas Internal Stabilitas Eksternal Stabilitas Kelongsoran Lereng SF Putus Tulangan SF Cabut Tulangan SF Geser SF Guling SF Kuat Dukung Tanah SF Manual SF Geoslope 1 Lereng 1 Lereng 2 Keseluruhan 2 Lereng 1 Lereng 2 Keseluruhan 3 Lereng 1 Lereng 2 Keseluruhan dst … … … …

Dari output tersebut maka dapat diperoleh beberapa data, antara lain :

1. Hubungan antara kemiringan lereng, panjang geotekstil, dan jarak vertikal antar geotekstil dengan angka keamanan (SF).

2. Perbandingan hasil analisis stabilitas lereng menggunakan perhitungan manual dengan program Geoslope.

3.6.

Kesimpulan

Tahap kesimpulan yaitu membuat kesimpulan dari pembahasan yang telah dilakukan pada penelitian ini.

3.7.

Diagram Alir Penelitian

Tahapan pada penelitian ini digambarkan dalam bentuk diagram alir seperti terlihat pada Gambar 3.21.

(50)

commit to user

Gambar 3.21. Diagram Alir Penelitian

SELESAI PEMBAHASAN

KESIMPULAN

ANALISIS STABILITAS LERENG

DENGAN PERHITUNGAN MANUAL

• Stabilitas internal

 Stabilitas terhadap cabut tulangan  Stabilitas terhadap putus tulangan

• Stabilitas eksternal

 Stabilitas terhadap geser  Stabilitas terhadap guling

 Stabilitas terhadap kuat dukung tanah

• Stabilitas terhadap kelongsoran lereng

ANALISIS STABILITAS LERENG

DENGAN PROGRAM GEOSLOPE

• Stabilitas terhadap kelongsoran lereng STUDI LITERATUR DAN PEMAHAMAN

PROGRAM GEOSLOPE

PENGUMPULAN DATA SEKUNDER

PEMODELAN LERENG TANPA PERKUATAN

ANALISIS STABILITAS LERENG

• Analisis dengan perhitungan manual

Analisis dengan program Geoslope MULAI

PEMODELAN LERENG DENGAN PERKUATAN

Trial panjang geotekstil

(51)

commit to user

33

BAB 4

ANALISIS DAN PEMBAHASAN

4.1.

Analisis Stabilitas Lereng Tanpa Perkuatan

Analisis stabilitas lereng tanpa perkuatan lereng dilakukan dengan perhitungan manual dan program Geoslope. Tinjauan perhitungan yaitu selebar 1 m ⊥ bidang gambar. Contoh perhitungan yang digunakan pada analisis ini yaitu variasi 1, dengan menggunakan tiga tinjauan kelongsoran, yaitu lereng 1, lereng 2, dan lereng secara keseluruhan.

4.1.1. Analisis dengan Perhitungan Manual

Untuk mengetahui bidang longsor kritis masing-masing tinjauan lereng, maka dilakukan analisis dengan program Geoslope. Metode yang digunakan dalam melakukan analisis tersebut yaitu Ordinary Slices Method. Bidang longsor kritis yang telah diperoleh kemudian dibagi menjadi beberapa pias seperti yang terlihat pada Gambar 4.1.

Gambar 4.1. Bidang Longsor Kritis Lereng

10 m 4 m O O O Lereng 1 Lereng Keseluruhan Lereng 2 γ = 21 kN/m3 c = 1,8 kN/m2 ϕ = 24o γ = 19,5 kN/m3 c = 2,9 kN/m2 ϕ = 15o γ = 21 kN/m3 c = 1,8 kN/m2 ϕ = 24o

(52)

commit to user 1. Perhitungan pada lereng 1

Langkah-langkah yang dilakukan sebelum menganalisis stabilitas lereng yaitu :

a. Menentukan berat irisan tanah (Wi). Wi = γ x Ai x 1

Contoh pada irisan 1

W1 = 21 x 0,5 x 4,292 x 1,1 x 1 = 49,573 kN

b. Menentukan besarnya sudut dari pusat irisan ke titik berat (θi).

Contoh pada irisan 1, diperoleh θ dari hasil pengukuran langsung sebesar 620.

c. Menentukan panjang garis longsor tiap irisan (αi)

Contoh pada irisan 1, diperoleh α dari hasil pengukuran langsung sebesar 4,431 m.

Perhitungan selanjutnya dapat dilihat pada Tabel 4.1. Tabel 4.1. Analisis pada Lereng 1

No. W θ c α cα .1 m W sin θ N=Wcosθ cα + N tan ϕ - (kN) (o) (kN/m2) (m) (kN) (kN) (kN) (kN) 1 49,573 62 1,80 4,431 4,224 43,770 23,273 18,338 2 119,358 47 1,80 2,067 1,976 87,293 81,402 39,963 3 153,557 40 1,80 1,636 1,939 98,705 117,632 55,318 4 177,986 34 1,80 1,424 1,645 99,528 147,557 68,260 5 196,373 27 1,80 1,297 1,483 89,152 174,970 80,236 6 181,608 23 1,80 1,266 1,384 70,960 167,171 76,708 7 115,715 17 1,80 1,208 1,322 33,832 110,659 51,443 8 46,235 12 1,80 1,172 1,233 9,613 45,225 22,245 9 5,796 7 2,35 1,164 1,218 0,706 5,753 4,277 10 2,216 3 2,90 1,000 1,219 0,116 2,212 3,493 11 1,050 -1 2,90 1,005 1,015 -0,018 1,050 3,196 Σ - - - 533,656 - 423,476  ∑     ∑  

θ

  423,476533,656  0,794

(53)

commit to user 2. Perhitungan pada lereng 2

Langkah-langkah yang dilakukan sebelum menganalisis stabilitas lereng yaitu :

a. Menentukan berat irisan tanah (Wi). Wi = γ x Ai x 1

Untuk irisan dengan beban jalan di atasnya, maka berat irisan diperoleh dengan cara

Wi = (γ x Ai x 1) + ( q x L x 1)

Dimana q merupakan besarnya beban jalan (kN/m2) dan L merupakan lebar irisan (m).

Contoh pada irisan 1

W1 = (19,5 x 0,5 x 1,273 x 0,5 x 1) + (267, 58 x 0,5 x 1) = 139,996 kN b. Menentukan besarnya sudut dari pusat irisan ke titik berat (θi).

Contoh pada irisan 1, diperoleh θ dari hasil pengukuran langsung sebesar 690.

c. Menentukan panjang garis longsor tiap irisan (αi)

Contoh pada irisan 1, diperoleh α dari hasil pengukuran langsung sebesar 1,367 m.

Perhitungan selanjutnya dapat dilihat pada Tabel 4.2. Tabel 4.2. Analisis pada Lereng 2

No. W θ c α cα .1 m W sin θ N=Wcosθ cα + N tan ϕ - (kN) (o) (kN/m2) (m) (kN) (kN) (kN) (kN) 1 139,996 69 2,90 1,367 3,964 130,697 50,170 17,407 2 149,902 57 2,90 0,909 2,636 125,718 81,642 24,512 3 23,273 47 2,90 0,974 2,825 17,021 15,872 7,078 4 29,211 37 2,90 0,838 2,430 17,580 23,329 8,681 5 33,462 29 2,90 0,762 2,210 16,223 29,267 10,052 6 32,688 22 2,90 0,607 1,760 12,245 30,308 9,881 7 18,318 16 2,90 0,380 1,102 5,049 17,608 5,820 8 5,852 10 2,35 0,585 1,375 1,016 5,763 3,940 9 1,288 5 1,80 0,669 1,204 0,112 1,283 1,775 10 1,515 -2 1,80 0,667 1,201 -0,053 1,514 1,875 11 0,683 -9 1,80 0,675 1,215 -0,107 0,674 1,515 Σ - - - 325,502 - 92,537

Gambar

Gambar 4.18.  Hubungan antara Panjang Geotekstil  dan Sv dengan SF   terhadap Kelongsoran Lereng pada Lereng Keseluruhan untuk    Kemiringan 90 o -70 o  ..............................................................
Tabel 4.15.      Persentase Penurunan Nilai SF Akibat Pertambahan Jarak     Vertikalantar Geotekstil (Sv) pada Stabilitas terhadap Cabut  Tulangan (SFp) ...................................................................
Gambar 2.1. Tipikal Struktur Perkerasan Beton Semen
Tabel 3.1. Data Parameter Tanah Hasil Uji Laboratorium   No.  Jenis Pemeriksaan  Tanah 1
+7

Referensi

Dokumen terkait

Misal- nya, pada fungsi pelayanan kesehatan masyarakat yang paling dominan dalam komponen program puskesmas ternyata belum banyak diatur menge- nai indikator mutu pelayanan

Masuknya bahasa daerah lain (akulturasi budaya) Masuknya bahasa multilingual (bahasa gaul) Berkurangnya penutur bahasa daerah di kalangan remaja Hilangnya tanda-tanda

Jadi rumusan masalah yang dapat ditarik dari penelitian ini adalah apakah ada peningkatan aktivitas belajar siswa selama pembelajaran ekonomi dengan diterapkannya asesmen

Syaiful Bahri Djamarah, Guru dan Anak Didik Dalam Interaksi Edukatif Suatu Pendekatan Teoritis Psikologis, (Jakarta: Rineka Cipta, 2010), hlm.1.. 5 Tinggi rendahnya pandangan

Terdapat 7 fakulti di Universiti Teknologi MARA Cawangan Perlis iaitu: a.. 6 Gambarajah 1: Graf Pencapaian PLO Mengikut Program.. 15 3.0 RUMUSAN PENCAPAIAN PLO MENGIKUT

Tujuan dari penelitian ini untuk mengetahui hubungan dukungan suami saat antenatal dan intranatal dengan bounding attachment pada ibu post partum di RSU Pancaran

Kas merupakan unsur aktiva yang paling lancar atau dengan kata lain kas merupakan modal kerja yang paling likuid, sehingga dengan ketersediaan kas yang

Menurut wawancara dengan Tolham Prabu Krisna, beliau mengatakan kalau saya pribadi lebih sering memakai bahasa Indonesia, karena kalau bertemu dengan orang lain, mereka