• Tidak ada hasil yang ditemukan

Kata kunci: Afinitas pengikatan, Interaksi, Kitin, Kitosan

N/A
N/A
Protected

Academic year: 2021

Membagikan "Kata kunci: Afinitas pengikatan, Interaksi, Kitin, Kitosan"

Copied!
9
0
0

Teks penuh

(1)

STUDI INTERAKSI DAN KARAKTERISASI KITIN DAN KITOSAN DENGAN ION Fe

Maria Erna1,2*), Emriadi2), Admin Alif 2)and Syukri Arief2) 1)

Program Studi Pendidikan Kimia FKIP Universitas Riau, Kampus Binawidya km 12,5 Pekanbaru, 28293

2)

Jurusan Kimia FMIPA Universitas Andalas, Padang 3)

ABSTRAK

Telah dipelajari interaksi kitin dan kitosan dengan ion Fe berdasarkan afinitas pengikatan, perubahan bentuk spektrum dari gugus fungsinya menggunakan Fourier transform Infrared spectroscopy (FT-IR) dan bentuk morfologi permukaan partikel menggunakan Scanning Electron Microscopy

(SEM). Hasil penelitian menunjukkan interaksi kitin dan kitosan dipengaruhi oleh

konsentrasi awal Fe, pH, jumlah massa dan waktu interaksi. Makin besar konsentrasi awal Fe maka afinitas pengikatan makin besar dan sebaliknya makin besar massa kitin dan kitosan maka makin menurun afinitas pengikatannya. Afinitas pengikatan minimum kitin dengan ion Fe adalah 11,7 ppm/mg dengan bentuk spektrum FT-IR kitin tidak banyak mengalami perubahan. Sedangkan berdasarkan foto SEM permukaan partikel kitin setelah berinteraksi dengan ion Fe terlihat permukaannya banyak yang mulus dan sedikit pori-porinya. Untuk afinitas pengikatan minimum kitosan adalah 12,64 ppm/mg dan bentuk spektrum FT-IR terjadi pergeseran absorban -OH dan puncak –NH2 terjadi perpendekan.

Sedangkan foto SEM permukaan partikel kitosan setelah berinteraksi dengan ion Fe terlihat permukaan kitosan berpori tetapi jumlahnya sedikit, sehingga ion Fe lebih banyak diserap.

Kata kunci: Afinitas pengikatan, Interaksi, Kitin, Kitosan

PENDAHULUAN

Kitin merupakan biopolimer dan jika mengalami deasetilasi (kehilangan gugus asetil) disebut dengan kitosan. Kitin diisolasi dari kulit invertebrata laut (misalnya udang, ketam dan kepiting), serangga, jamur serta ragi. Pada invertebrata, kitin berfungsi sebagai matriks penyusun eksoskeleton, sedangkan pada jamur berfungsi sebagai pembentuk dinding sel. Kitosan bersifat

(2)

biodegradable, bioaktif, biokompatible, polikationik, berat molekul tinggi, dapat diperbaharui, tidak toksit dan tidak larut dalam air tetapi larut dalam asam asetat. (Morimoto, 2002)

Pada penelitian ini dipelajari interaksi kitin dan kitosan dengan ion Fe. Hal ini dilakukan menginggat senyawa-senyawa tersebut berpotensi dimanfaatkan sebagai absorben, sensor dan inhibitor korosi pada logam serta mengingat sumber kitin dialam sangat melimpah yaitu kedua setelah selullosa.

Pada penelitian ini interaksinya dipelajari dengan cara menghitung afinitas pengikatan kitindan kitosan terhadap konsentrasi awal ion Fe, nilai pH larutan, massa dan waktu interaksi. Sehingga akan didapatkan afinitas minimal kitin dan kitosan terhadap ion Fe. Juga dipelajari karakterisasi gugus fungsi kitin dan kitosan setelah berinteraksi dengan ion Fe menggunakan Fourier transform

Infrared spectroscopy (FT-IR) dan bentuk morfologi permukaan partikel kitin dan

kitosan dipelajari menggunakan Scanning Electron Microscopy (SEM).

BAHAN DAN METODE

Bahan yang digunakan adalah Kitin dan Kitosan (produksi laboratorium kimia analitik IPB dengan bahan baku dari limbah udang), NaOH, HCl, dan serbuk Fe.

Sedangkan alat-alat yang digunakan adalah oven, timbangan analitik, seperangkat alat refluk, Fourier transform Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), pH meter, Atomic Adsoption Spectroscopy (AAS) dan peralatan gelas yang umum dipakai.

Interaksi kitin dan kitosan dipelajari dengan mempersiapkan larutan induk Fe 1000 ppm dan larutan standar Fe (konsentrasi 1, 3, 6, 7 dan 9 ppm) serta disiapkan pH larutan Fe dengan variasi 2, 3, 4, 5, 6, 7, 8 dan 9 yang diatur menggunakan NH4OH 1 M atau asam asetat 10%. Kemudian disiapkan massa kitin dengan variasi 1, 3, 5, 7 dan 10 (mg). Masing-masing larutan dengan variasi pH dan berat dibiarkan dengan waktu interaksi (variasi: 7,5; 15; 30; 60; 120 dan 240 menit) dengan menggunakan Shaker 200 rpm pada temperatur ruang. Kemudian larutan disaring dan filtratnya siap untuk dianalisa konsentrasi Fe dengan menggunakan AAS. Afinitas pengikatan Fe pada kitin dan kitosan dihitung menggunakan persamaan:

(3)

m C C

qif

Keteranagan; q = Afinitas pengikatan (ppm/mg) Ci = Konsentrasi awal Fe (ppm)

Cf= Konsentrasi akhir Fe (ppm)

m = Massa kitin atau turunannya (mg)

Untuk menganalisa gugus fungsi yang terikat pada kitin dan kitosan digunakan

FT-IR dan bentuk permukaan partikelnya menggunakan SEM.

HASIL DAN PEMBAHASAN

Hasil interaksi kitin dan kitosan terhadap konsentrasi awal Fe dapat dilihat pada Gambar 1. Secara umum makin besar konsentrasi Fe maka afinitas pengikatannya makin besar. Menurut Taboada, et.al (2003) hal ini disebabkan melimpahnya pasangan elektron bebas dari nitrogen gugus amino pada struktur kitin dan kitosan yang mampu mengikat ion logam. Konsentrasi Fe awal yang digunakan untuk eksperimen selanjutnya adalah 7 ppm untuk kitin dan 9 ppm untuk kitosan, karena pada konsentrasi ini ion Fe yang diadsorpsi oleh kitin dan kitosan paling optimal.

0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 Konsentrasi Fe(ppm ) A fi n it a s p e n g ik a ta n F e ( p p m /m g ) Kitin Kitosan

Gambar 1. Afinitas pengikatan terhadap konsentrasi Fe

Gambar 2, menunjukkan afinitas pengikatan Fe oleh kitin dan kitosan dipengaruhi oleh pH larutan Fe, terlihat bahwa nilai pH minimal untuk kitin terjadi pada pH 5 dan kitosan pada pH 4. Pada pH ini larutan Fe3+ tidak

(4)

mengalami pengendapan sehingga menurunkan kapasitas adsorpsi kitin ( Burke, A., et.al, 2000) Sedangkan kitin dan kitosan pada range pH ini mengalami protonasi sehingga jumlah atom-atom nitrogen dengan elektron bebasnya menurun dalam media yang menyebabkan meningkatnya kelarutan biopolimer tersebut. (Zangmeister, R.A., et.al, 2006)

0 1 2 3 4 5 6 7 8 9 10 0 2 4 pH 6 8 10 A fi n it a s p e n g ik a ta n F e ( p p m /m g ) Kitin Kitosan

Gambar 2. Afinitas pengikatan Fe terhadap pH

Gambar 3. menunjukkan afinitas pengikatan Fe oleh kitin dan kitosan menurun dengan meningkatnya jumlah massa. Hal ini terjadi karena pada jumlah massa tinggi terbentuk ikatan hidrogen intermolekul yang akan mengurangi kemungkinan berinteraksi dengan ion Fe.(Xue, X.,et.al, 2009) Sedangkan massa kitin dan kitosan yang digunakan untuk eksperimen selanjutnya adalah 5 dan 7 mg, karena adsorpsinya paling optimal.

(5)

0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12

Massa kitin dan turunannya (m g))

A fi n it a s p e n g ik a ta n F e ( p p m /m g ) Kitin Kitosan

Gambar 3. Afinitas pengikatan Fe terhadap massa kitin dan turunannya

Gambar 4 menunjukkan waktu interaksi kitin yang paling minimal diperlukan waktu 15 menit dengan afinitas pengikatan 11,7 ppm/mg, sedangkan kitosan waktu minimal terjadi pada waktu 7,5 menit dengan afinitas pengikatan 12,64 ppm/mg. 1,16 1,18 1,2 1,22 1,24 1,26 1,28 0 15 30 45 60 75 90 105 120

Waktu interaksi (m enit)

A fi n it a s p e n g ik a ta n F e ( p p m /m g ) Kitin kitosan

(6)

Bentuk spektrum FT-IR kitin setelah menyerap ion Fe3+ dapat dilihat pada Gambar 5. Terlihat bahwa gugus asetil amino pada puncak 1158, 1378 dan 1558 cm-1 tidak berubah jika dibandingkan dengan spektrum standar kitin, tetapi persentase transmitannya lebih tinggi, hal ini menunjukkan bahwa banyak gugus fungsi dari kitin berikatan dengan ion Fe3+.

500 750 1000 1250 1500 1750 2000 2500 3000 3500 4000 4500 1/cm 55 60 65 70 75 80 85 90 95 100 %T 3 4 5 0 .6 5 3 2 7 1 .2 7 3 1 0 9 .2 5 2 9 2 9 .8 7 2 8 8 5 .5 1 1 6 5 6 .8 5 1 6 2 9 .8 5 1 5 6 6 .2 0 1 4 2 1 .5 4 1 3 7 9 .1 0 1 3 1 7 .3 8 1 1 5 7 .2 9 1 1 1 6 .7 8 1 0 7 2 .4 2 1 0 2 4 .2 0 9 5 0 .9 1 8 9 4 .9 7 7 5 0 .3 1 7 0 2 .0 9 5 9 4 .0 8 5 5 9 .3 6 5 2 8 .5 0 5 0 3 .4 2 46 8 .7 0 Sampel 1

Gambar 5. Spektrum FT-IR kitin setelah beinteraksi dengan ion Fe

Gambar 6, menunjukkan foto permukaan partikel kitin yang telah berinteraksi dengan ion Fe. Terlihat permukaannya mulus dan tidak berpori sehingga Fe hanya berikatan dipermukaan kitin.

(7)

Gambar 6. Foto SEM permukaan partikel kitin setelah berinteraksi

Gambar 7 menunjukkan spektrum FT-IR kitosan setelah berinteraksi dengan larutan Fe, terlihat terjadi pergeseran absorban -OH menjadi 3466 cm-1, puncak –NH2 terjadi perpendekan. Hal ini menunjukkan afinitas pengikatan

kitosan terhadap Fe lebih baik dibandingkan dengan kitin.

500 750 1000 1250 1500 1750 2000 2500 3000 3500 4000 4500 1/cm 65 70 75 80 85 90 95 100 %T 3 4 6 6 .0 8 2 9 2 4 .0 9 2 3 7 4 .3 7 1 5 8 7 .4 2 1 3 8 1 .0 3 1 3 2 3 .1 7 1 1 5 3 .4 3 1 0 8 9 .7 8 1 0 3 1 .9 2 9 4 7 .0 5 8 9 3 .0 4 6 6 7 .3 7 5 9 7 .9 3 52 4 .6 4 Sampel 2

(8)

Sedangkan foto permukaan partikel kitosan setelah berinteraksi dengan Fe dapat dilihat pada Gambar 8, terlihat permukaan kitosan berpori tetapi jumlahnya sedikit, sehingga ion Fe lebih banyak diserap dibandingkan dengan kitin.

Gambar 8. Foto SEM permukaan partikel kitin setelah berinteraksi

KESIMPULAN

Berdasarkan hasil dan pembahasan dapat dibuat kesimpulan sebagai berikut:

Interaksi kitin dengan ion Fe dipengaruhi konsentrasi awal Fe, pH larutan

Fe, massa kitin dan waktu interaksi.

Kondisi interaksi minimum kitin terjadi pada konsentrasi awal Fe 7 ppm,

pH 5, massa kitin 5 mg dan waktu interaksi 15 menit dengan afinitas pengikatan 11, 7 ppm/mg.

Kondisi interaksi minimum kitosan terjadi pada konsentrasi awal Fe 9

ppm, pH 4, massa kitin 7 mg dan waktu interaksi 7,5 menit dengan afinitas pengikatan 12,64 ppm/mg.

DAFTAR PUSTAKA

Aktas, Y., Andrieux, K., Alonso, M.J and Calvo, P. 2005. Preparation and in

vitro evaluation of chitosan nanoparticles containing a caspase inhibitor.

(9)

Atkins,P.W. 1987. Physical chemistry (Terjemahan). Jilid 2, Cetakan pertama,

Penerbit Erlangga. Jakarta.

Burke,A., Yilmaz,E dan Hasirci, N. 2000. Evaluation of Chitosan As a Potential

Medical Iron (III) Ion Adsorbent. Turki J.Med Sci. 30: 341-348

Fernandes-Kim, S.O. 2004. Physicochemical and Functional Properties of

Crawfish Chitosan as Affected by Different Processing Protocols. Thesis. The department of Food Science. Seoul National University

Franco, L.O., Mala, R.A and Takaki, G.C. 2004. Heavy Metal Biosorption by

Chitin and Chitosan Isolated from Cunninghamellia Elegans. Brazillian Journal of Microbiology. 35: 243-247

Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S. 1983. Highly

Deasetylated Chitosan and Its Properties. J. App.Polymer Science. 28: 1909-1917

Morimoto, Minoru, Saimoto, Hiroyuki and Yoshihiro. 2002. Control of

Functions of Chitin and Chitosan by Chemical Modification. 14: 205-222

Pang, H.T.,Chen,X.G.,Park,H.J and Keneddy,J.F. 2007. Preparation and

rheological properties of deoxycholate-chitosan and carboxymehyl-Chitosan in aqueous syatem. Carbohydrate polymer. 69: 419-425

Sugunan, A., Thanachayanont, C., Dutta, J and Hilborn, J.G. 2005.

Heavy-metal ion sensors using chitosan-capped gold nanopartikels. Science and

Technology of Advanced Materials. 6: 335-340

Taboada, E., Cabrera, G and Denas,G.,2003. Retention Capacity of Chitosan

for Copper and Mercury Ions. J. Chil.Chem.Soc. 48: No.1

Tang, Z.X., Qian, J.Q and Shi, L.U. 2007. Characterizations of immobilized

neutral lipase on chitosan nano-particles. Materials Letters. 61: 37 – 40

Xue,X.,Li,L and He,J. 2009. The Performance of Carboxymethyl Chitosan in

Gambar

Gambar 1. Afinitas pengikatan terhadap konsentrasi Fe
Gambar 2.  Afinitas pengikatan Fe terhadap pH
Gambar 3. Afinitas pengikatan Fe terhadap massa kitin dan turunannya
Gambar 5. Spektrum FT-IR kitin setelah beinteraksi dengan ion Fe
+3

Referensi

Dokumen terkait

 Pelayanan penunjang medis merupakan peralatan yang dimiliki Rumah Sakit dimana harus memenuhi standar sesuai dengan ketentuan peraturan perundang-undangan  Pedoman sesuai

Dengan kata lain, skenario dan parameter terbaik akan menghasilkan nilai akurasi dan rata- rata lama waktu pendeteksian terbaik jika diterapkan pada dataset sinyal yang digunakan

Berdasarkan hasil perhitungan pada analisis data, menunjukkan nilai signifikan 0,003 nilai tersebut mencapai taraf nyata < 0,05. Hal ini menunjukkan bahwa Ha

Secara khusus pengertian boneka adalah tiruan bentuk manusia dan bentuk binatang. Jadi sebenarnya boneka merupakan salah satu model perbandingan. Boneka dalam penampilannya

Observasi merupakan penelitian dan melakukan pencatatan yang terstruktur dan terorganisir terhadap fakta dan permasalahan yang diteliti. Observasi dapat dilakukan secara

Melinjo (Gnetum gnemon) adalah merupakan salah satu tanaman pangan, maka dengan ini penulis membuat perancangan mesin pengupas biji melinjo dimana dalam perancangan ini

 Mengembalikan nilai indeks dari karakter pertama yang berhasil ditemukan dari suatu substring dalam suatu string yang diawali indeks pada argumen kedua. Estu Sinduningrum,

package predefinedclasses; import java.io.BufferedReader; import java.io.DataOutputStream; import java.io.IOException; import java.io.InputStreamReader;