• Tidak ada hasil yang ditemukan

Dependensi Dalam Model Resiko Individual Untuk Asuransi Jiwa Kelompok

N/A
N/A
Protected

Academic year: 2021

Membagikan "Dependensi Dalam Model Resiko Individual Untuk Asuransi Jiwa Kelompok"

Copied!
10
0
0

Teks penuh

(1)

19

DEPENDENSI DALAM MODEL RESIKO INDIVIDUAL

UNTUK ASURANSI JIWA KELOMPOK

DEPENDENCE IN THE INDIVIDUAL RISK MODEL FOR GROUP LIFE INSURANCE

Getut Pramesti1 dan Sri Haryatmi Kartiko2

1

Program Studi Pendidikan Matematika, F PMIPA UNS,

2

Program Studi Matematika, F MIPA UGM

ABSTRAK

Dependensi resiko dalam suatu portofolio asuransi untuk jenis asuransi jiwa kelompok dapat digambarkan sebagai model resiko individual. Dari model inilah dapat diketahui distribusi klaim dari suatu kontrak asuransi yang terjadi selama periode tertentu. Penghitungan distribusi dilakukan dengan menggunakan metode direct calculation melalui n konvolusi distribusi klaim individual. Dibahas pula pengaruh dependensi resiko terhadap batas stop-loss premium dan dependensi resiko dengan tiga faktor resiko.

Kata-kata kunci : Dependensi resiko, asuransi jiwa kelompok, model resiko individual, klaim, batas stop-loss premium.

ABSTRACT

The risk dependence of an insurance portfolio in a group life insurance can be described as the individual risk model. It is used in modeling the claim distribution of insurance contracts over a fixed period of time. The distribution computation is conducted with direct calculation throught n convolution of individual claim distribution. We discuss the impact of the risk dependence on the net value of the stop±loss premium. A third risk factor in the dependence risk model is also introduced. Key words : The risk dependence, group life insurance, individual risk model, claim, the net value of the stop-loss premium.

PENDAHULUAN

Perusahaan asuransi sebagai penanggung resiko dituntut untuk dapat menganalisa resiko yang meliputi identifikasi dan kalkulasi faktor-faktor yang mempengaruhinya. Perilaku resiko yang dihasilkan oleh n polis digambarkan dengan distribusi klaim agregasi dalam suatu model resiko individual. Umumnya dalam

model diasumsikan resikonya saling

independen. Masalah yang kemudian muncul adalah apakah asumsi independensi resiko dalam model selalu sesuai dalam semua jenis asuransi. Dalam asuransi jiwa kelmpok misalnya, muncul masalah keterkaitan antar faktor resiko yang sangat mempengaruhi

distribusi klaim dan batas stop-loss

premiumnya.

Pada makalah ini dikaji dependensi dalam model resiko individual menggunakan metode direct calculation dan hubungannya dengan independensi resiko dalam asuransi jiwa kelompok serta pengaruhnya terhadap batas stop-loss premium.

DASAR TEORI

Dalam sistem asuransi ketidaktentuan yang melahirkan kerugian (loss) dari tertanggung (nasabah perusahaan asuransi) menimbulkan klaim yang diajukan dari tertanggung kepada penanggung (perusahaan asuransi). Namun sebelumnya tertanggung dikenakan biaya premi

(2)

20 agar mendapat santunan dari penanggung. Adapun jumlahan klaim dalam suatu kontrak asuransi disebut dengan klaim agregasi dan digambarkan dalam suatu model resiko individual. Distribusi klaim agregasi dapat dihitung melalui n konvolusi klaim individual, yaitu dengan menggunakan lemma 2.1.

Lemma 2.1

Jika X, Y variabel random independen dan Y

X

S maka konvolusi dari pasangan

fungsi distribusi FX dan FY adalah ) ( ) (s F F s FS X Y dengan

¦

ds y Y X S s F s y dF y F ( ) ( ) ( ). Bukti :

Diketahui S X Y maka ruang sampel S

dapat ditunjukkan dalam Gambar 1.

Gambar 1. Ruang sampel S, S X Y

Garis X Y s dan daerah yang diarsir

menyatakan kejadian

>

S d X Y ds

@

,

sedangkan fungsi distribusi kumulatif dari S adalah :

Untuk X dan Y variabel random diskrit berlaku :

¦

d d d s y S y Y P y Y s Y X P s S P s F ( ) ) ( ) ( ) ( s F F y dF y s F Y X s y Y X

¦

d

Untuk X dan Y variabel random kontinu, fungsi distribusi kumulatif S adalah:

) ( ) ( ) ( ) ( 0 0 s F F dy y f y s F dy y Y P s Y X P s F Y X s Y X s S d

³

³

Jadi untuk X dan Y variabel random independen diperoleh konvolusi pasangan

fungsi distribusi FX dan FY adalah

) ( )

(s F F s

FS X Y

Dalam asuransi dikenal istilah stop-loss asuransi yaitu pembayaran atau penggantian semua kerugian tertanggung apabila kerugian yang terjadi melebihi suatu batas moneter tertentu (disebut deductible) yang telah

disepakati oleh pihak tertanggung dan

penanggung (L. Xu dan D.L Bricker, 2000). Penetapan premi dari sistem asuransi ini disebut dengan stop-loss premium. Harga batas stop-loss premium dinotasikan dengan

>

S d

@

E (Klugman et al, 1990) dengan S

adalah besar klaim agregasi dan d adalah deductible(d t0) yaitu:

>

@

>

@

>

@

° ° ¯ °° ®

³

t f diskrit. , ) ( 1 kontinu. , ) ( 1 x x F x dx x F d S E d x S d S
(3)

21 DEPENDENSI DALAM MODEL RESIKO INDIVIDUAL UNTUK ASURANSI JIWA KELOMPOK

Konsep Dasar Model Resiko Individual Apabila dalam suatu periode asuransi yang berlaku selama 1 tahun penanggung akan membayar santunan sebesar b jika tertanggung mengalami kerugian dalam periode tersebut dengan probabilitas terjadi q maka variabel

random klaim yang dinyatakan dengan X

dapat digambarkan baik dengan fX(x) maupun

) (x FX yaitu: ° ¯ ° ® -lain. , 0 . , . 0 , 1 ) ( x b x q x q x X P x fX dan, ° ¯ ° ® -t d d . , 1 . 0 , 1 . 0 , 0 ) ( b x b x q x x X P x FX

dengan rata-rata dan variansinya adalah

> @

X bq

E dan Var X b2qp

.

Apabila I adalah variabel random Bernoulli atau variabel random Binomial untuk kejadian tunggal yang bernilai 1 jika terjadi klaim dan 0 jika tidak terjadi klaim maka X dapat dinyatakan ¯ ® -. 0 , 0 . 1 , I I b X dengan P I 0 1 q,P I 1 q dan

memiliki harga rata-rata serta variansi :

> @

I q

E dan Var I qp.

Independensi dalam model resiko individual

Jika Xi menyatakan klaim yang

dihasilkan oleh polis ke- i(i 1, ,n), maka

klaim agregasi S yang merupakan jumlahan n i Xi 1, , didefinisikan : 1

¦

n i i X S (3.2.1)

dengan Xi i 1, ,n merupakan variabel random bernilai non negatif.

Apabila probabilitas variabel random Bernoulli n i Ii 1, , : i i q I P( 1) (3.2.2) i i i q p I P( 0) 1 (3.2.3)

Maka Xi i 1, ,n dapat didefinisikan

sebagai : . 0 , 0 . 1 , ¯ ® -i i i i I I B X (3.2.4)

Jika Xi i 1, ,n diasumsikan saling

independen maka distribusi dari klaim agregasi S dapat ditentukan dengan metode direct calculation yaitu:

>

@

^

`

>

@

> @

i i tB I i i tX i tX I X p q e E I P I e E I e E E t M i i i i i i

¦

) ( ) (t M q p (t) M i i i i B X (3.2.5) Dari hubungan : ) ( ) (t P M t M i i i I B X (3.2.6)

Diperoleh MS(t) yaitu sebagai berikut :

^

( )

`

) ( 1

n i B i i S t p q M t M i (3.2.7)

Dari (3.2.2), (3.2.3) dan (3.2.4) diketahui distribusi klaim Xi i 1,2, ,n yaitu

) ( ) ( ) (x p 0 x q F x F i i i i B X ' (3.2.8)

(4)

22 dengan ¯ ® - t ' 0. , 0 . 0 , 1 ) ( 0 x x x

Sedangkan fungsi distribusi dan fungsi densitas probabilitas klaim agregasi S :

) ( ) (x F 1 F 2 F x F n X X X S (3.2.9) ) ( ) ( 2 1 f f x f x f n X X X S (3.2.10)

Untuk dua variabel random diskrit non negatif, misalkan X1 dan X2 dengan fungsi distribusi kumulatif 1 X F dan 2 X F dapat

ditentukan distribusi kumulatif klaim

agregasinya dengan menggunakan lemma 2.3.1 yaitu sebagai berikut :

) ( ) ( 2 1 2 2 2 2 2 2 1 s F F x X P x X s X X P s F X X x S

¦

d

Dari (3.2.2), (3.2.3) dan (3.2.4) diketahui bahwa : ¯ ® -. 0 , 1 . , ) ( x q p b x q x f i i i i Xi Dan Si Si 1 Xi, i 2, ,n 1 1 awal nilai

dengan S X . Sehingga diperoleh hasil ) ( ) (x f 1 f x f i i i S X S (3.2.11)

Dengan metode konvolusi persamaan (3.2.11) dapat ditentukan yaitu sebagai berikut :

(3.2.13) . ), ( ) ( (3.2.12) . ), ( ) ( 1 1 1 ° ° ¯ ° ° ® -t i i S i S i i S i S p f x q f x b x b b x x f p x f i i i i

Adapun rata-rata dan variansi dari klaim agregasi S yaitu

> @

1

¦

n i i i q b S E (3.2.14) 1 1 2

¦

n i i i i q q b S Var (3.2.15)

Dependensi dalam Model Resiko Individual Dependensi resiko digambarkan melalui kejadian variabel random Ii i 1, ,n yang menyatakan terjadinya klaim pada polis ke-i.

n i

Ii 1, , tergantung pada dua variabel random independen berdistribusi Bernoulli

n i

Jii 1, , dan J0. Jii i 1, ,n menyatakan klaim terjadi karena faktor resiko individual (individual risk factor) ke-i sedangkan J0 menyatakan terjadinya klaim karena faktor resiko serentak (common risk factor). Probabilitas Jii i 1, ,n dan J0 adalah P Jii 1 qii, P Jii 0 1 qii pii

dan P J0 0 1 q0 p0 P J0 1 q0 .

Dari pengertian di atas,Ii i 1, ,n

didefinisikan sebagai: 1 ,

min J J0

Ii ii (3.3.1)

Dari definisi (3.3.1) vektor random

n I I

I1, 2, , merupakan komponen yang

saling dependen, hal ini berakibat

n X X

X1, 2, , juga saling dependen.

Parameter qi pada persamaan (3.2.2) dapat dinyatakan sebagai fungsi qii dan q0, hal ini dapat ditunjukkan sebagai berikut :

>

@

^

`

0 0 0 ) ( 0 q t t q p p J t E E t P ii ii I j I i i Sehingga . 1 ) (t p0 p p0 p t PI ii ii i (3.3.2)

Jadi diperoleh hubungan .

0 ii i p p

(5)

23 .) 1 1 1 0 ii i q q q ) (3.3.4)

Dari (3.3.3) dan (3.3.4) dapat diketahui jika 0

0

q maka diperoleh model resiko individual

dengan resiko independen dimana qi qii.

Bila fungsi pembangkit momen

n X X X1, 2, , adalah

>

n n

@

n x t x t n X X t t Ee M 11 1, , 1, , dan fungsi

pembangkit probabilitas I1,I2, ,In adalah

> @

n i i n i J i n I I t t p E t q t P ii n 1 0 1 0 1 , , , , 1 maka : . ) ( ) ( , , 1 0 1 0 1 , , , 2 1

n i i B n i i B J n X X X t M q t M P p t t M i i ii n (3.3.5)

Selanjutnya, dengan menggunakan lemma 3.3.1. Lemma 3.3.1 Apabila , , (1, , ) 1 Y n Y t t M n adalah fungsi

pembangkit momen multivariat dari vektor n

Y

Y1, , maka fungsi pembangkit momen

dari Z Y1 Y2 Yn adalah ) , , ( ) (t M1, , t t M n Y Y Z (3.3.6)

dapat diperoleh fungsi pembangkit momen dari S yaitu : . ) ( ) ( ) ( 1 0 1 0

n i B B n i J S t p P M t q M t M i i ii (3.3.7) Jika dimisalkan V dan U adalah variabel random dengan fungsi pembangkit momen:

, ) ( ) ( 1 t M P t M i ii B n i J V

(3.3.8) . ) ( ) ( 1

n i B U t M t M i (3.3.9)

Diperoleh distribusi klaim agregasi S : 0 ), ( ) ( ) ( ) (x p0 F x q0 x F x xt FS V U (3.3.10) Bentuk (3.3.10) dapat dinyatakan sebagai:

0 , ) ( ) ( 1 ) ( 1 1 0 0 t x x F F q x F F q x F n n B B D D S (3.3.11) Dengan . , , 2 , 1 ), ( ) ( ) ( 0 n i x F q x p x F i i ii ii B D '

Fungsi distribusi FV dan FU pada (3.3.10) ditentukan menggunakan Lemma 2.3.1, persamaan (3.2.12) dan (3.2.13). Selanjutnya dari bentuk (3.3.10) distribusi

kumulatif klaim agregasi dibentuk dari

kombinasi antara distribusi kumulatif resiko individual dan resiko serentak.

Adapun harga rata-rata dan variansi dari klaim agregasi S adalah :

> @

> @

, 1

¦

n i i X E S E (3.3.12)

> @ > @

(1 )(1 ) 1 2 ) ( 1 1 1 0 0 1 k i k n i n i k i n i i q q B E B E q q X Var S Var

¦ ¦

¦

(3.3.13) Dari (3.3.13), apabila kemungkinan terjadinya klaim karena faktor resiko serentak (common risk factor) membesar maka variansi klaim agregasi semakin besar.

Stop-loss Premium

Dari definisi (2.3.4.1),(2.3.4.2) dan persamaan (3.3.10) dapat diperoleh harga batas stop-loss premium dengan dua faktor

(6)

24

>

@

>

^

`

@

^

`

>

@

° ° ¯ °° ®

³

t f ) 2 . 4 . 3 ( diskrit , ) ( ) ( 1 1 ) 1 . 4 . 3 ( kontinu , ) ( ) ( 1 1 0 0 0 0 x x F q x F q x dx x F q x F q d S E d x U V d U V dengan d (deductible) t0.

Dari (3.4.1) dan (3.4.2) nampak bahwa jika nilai q0 semakin besar, yang juga mengakibatkan semakin kecilnya nilai p0 maka batas stop-loss premiumnya akan semakin besar. Selain itu untuk q0 0 diperoleh harga batas stop-loss premium untuk model resiko individual dengan resiko saling independen. Beberapa sifat yang berkaitan dengan batas stop-loss premium dijelaskan Teorema 3.4.1 dan 3.4.2.

Teorema 3.4.1

Jika P a S b 0 maka untuk suatu

b d ad d berlaku :

>

@

>

@

>

@

. E S b a b a d a S E a b d b d S E (3.4.3) Teorema 3.4.2 Jika P S kh fk t0, h!0,k 0,1, x x S P 0untuk setiap

dan maka untuk

suatu d jh berlaku :

>

@

^

1

>

@

`

. ) 0

¦

f m S m j h F h d S E (3.4.4)

Dependensi Resiko dalam m kelas Portofolio Asuransi

Apabila portofolio asuransi terbagi dalam m kategori kelas dengan j 1, ,m,

setiap kelas j terdiri dari nj resiko, Xjk menyatakan klaim dalam polis ke-k dalam kelas j dengan k 1,2, ,nj dan S dinyatakan dengan : . 1 1

¦¦

m j n k jk j X S (3.5.1)

Terjadinya klaim tiga dependensi faktor resiko

digambarkan oleh variabel random

) , , 2 , 1 ; , , 1 ( j jk j mk n I menyatakan

terjadinya klaim kelas j, polis ke-k. Apabila ) , , 2 , 1 ; , , 1 ( j jk j mk n I variabel random Bernoulli maka Ijk(j 1, ,m;k 1,2, ,nj) dinyatakan sebagai fungsi 3 faktor resiko saling independen yaitu Jjk(j 1, ,m;k 1, ,nj), faktor resiko kelas Jj(j 1, ,m) dan faktor

resiko serentak J0 dengan

) , , 2 , 1 ; , , 1 ( j jk j mk n I : , 1 jk jk q I P (3.5.2) . 1 0 jk jk jk p q I P (3.5.3)

Dari deskripsi di atas

) , , 2 , 1 ; , , 1 ( j jk j mk n I dapat didefinisikan : . 1 , min J J J0 Ijk jk j (3.5.4)

dimana Jjk,Jj,J0 adalah variabel random berdistribusi Bernoulli dengan probabilitas:

(7)

25 . 1 0 , 1 , 1 0 , 1 , 1 0 , 1 0 0 0 0 0 q P J p q J P q p J P q J P q p J P q J P j j j j j jk jk jk jk jk

Variabel random Xjk dalam (3.5.1) dapat dinyatakan: ) 5 . 5 . 3 ( . 0 , 0 . 1 , ¯ ® -jk jk jk jk I I B X

Jika Bjk merupakan variabel random yang menyatakan besar klaim jika polis ke-k

j n

k 1,2, , dalam kelas-j j 1, ,m

terjadi klaim dan fungsi distribusi kumulatif dari Bjk adalah

jk

B

F maka fungsi pembangkit

probabilitas dari Ijk(j 1, ,m;k 1,2, ,nj) adalah sebagai berikut :

. ) (t p p p0 q p0 q p p0 q0 t PIjk jk j j jk j (3.5.6) Dapat diketahui pula bahwa :

(3.5.7) , 0 p p p pjk jk j (3.5.8) 1 1 1 1 0 jk j jk q q q q

Dengan menggunakan (3.5.7) dan (3.5.8) diperoleh fungsi pembangkit momen dari Xjk adalah sebagai berikut:

>

@

^

`

^

1 1 0 1 1

`

0 ) ( ) ( p p p q q q t M I e E E t M j jk jk j B jk X t I X jk jk jk jk Jadi

^

1

`

( ) . ) (t p0p p p0p p M t M jk jk j jk j jk B X (3.5.9) Selanjutnya diturunkan fungsi pembangkit

momen multivariat dari

m mn m n X X X X X11, 22, , 1 , , 1, , 1 yang

didapat dari fungsi pembangkit momen multivariat m mn m n I I I I I11, 22, , 1 , , 1, , 1

yaitu sebagai berikut :

. , , , , , , , 1 1 0 1 1 1 0 1 1 22 11 , , , , , , , 1 1 1 1 2 2 1 1

––

°¿ ° ¾ ½ °¯ ° ® -¸ ¸ ¹ · ¨ ¨ © § m j n k jk m j n k jk j n k jk J j mn m n I I I I I j j j jk m m mn m n t q t q t P p p t t t t t P (3.5.10) Dari (3.5.10) diperoleh : ) ( ) ( ) ( ) ( 1 1 0 1 1 1 0

––

°¿ ° ¾ ½ °¯ ° ® -¸ ¸ ¹ · ¨ ¨ © § m j n k B m j n k B j n k B J j S j jk j jk j jk jk t M q t M q t M P p p t M (3.5.11)

Adapun rata-rata dan variansi S dengan tiga dependensi faktor resiko adalah seperti pada persamaan 3.5.12 dan 3.5.13.

> @

> @

. (3.5.12) 1 1

¦¦

m j n k jk j X E S E

> @

> @ > @

> @ > @

) 13 . 5 . 3 ( ) )( ( 1 '1, ' 1 ' 1 ' ' ' ' ' ' 0 0 ' ' 1 1 '1, ' ' ' 0 0 0 ' 1 1 '

¦ ¦ ¦¦

¦¦ ¦

¦¦

z z m j m j j j n k n k k j jk k j j j jk j j k j jk m j n k n k k k jk jk jk jk j j jk jk m j n k jk j j j j j q q q p q q p q p q B E B E q q q q p p q p q B E B E X Var S Var
(8)

26 Contoh Aplikasi

Suatu kontrak asuransi jiwa kelompok berlaku dengan jangka waktu 1 tahun untuk 3 orang pekerja. Misalkan variabel tejadinya klaim I1,I2,I3 berdistribusi Bernoulli dengan probabilitas qi 0.05 i 1,2,3 , sedangkan variabel random besar klaim B1,B2,B3 berdistribusi Cauchy dengan T 1 dan K 0. Diketahui probabilitas pekerja pertama, kedua dan ketiga akan mendapat santunan masing-masing 1, 2 dan 3 unit (unit dalam satuan Rp.

7

10 ,-) adalah 0.159155, 0.063662, 0.031831 dan data seperti Tabel 1.

Tabel 1. Data (x dalam satuan Rp.107,-)

Klaim (x) f1(x) f2(x) f3(x) 0 0.31831 0.31831 0.31831 1 0.159155 0.159155 0.159155 2 0.063662 0.063662 0.063662 3 0.031831 0.031831 0.031831 4 0.018724 0.018724 5 0.012243

Dipilih tiga alternatif probabilitas terjadinya klaim karena faktor resiko serentak

0

q adalah 0.00625, 0.003125 dan 0, aktuaris perusahaan asuransi tersebut ingin memprediksi distribusi kumulatif klaim agregasi dan harga minimum premi selama jangka waktu 1 tahun tersebut.

Nilai distribusi kumulatif klaim agregasi dan harga batas stop-loss premium untuk nilai klaim x 0,1, ,12 (x dalam satuan Rp 7

10 ,-) dapat dilihat pada Tabel 2.

Dari Tabel 2, distribusi klaim agregasi semakin besar apabila nilai q0 semakin kecil, jadi klaim terbesar kemungkinan muncul karena faktor resiko individunya. Sedangkan batas stop-loss premium akan semakin kecil apabila nilai q0 semakin kecil. Hal ini mengakibatkan harga premi dari asuransi jiwa kelompok akan lebih mahal dibanding dengan asuransi jiwa perseorangan.

Adapun plot dari distribusi kumulatif klaim agregasi dan harga batas stop-loss premium dapat di lihat pada Plot 1 dan 2.

Plot 1. Fungsi distribusi kumulatif klaim agregasi

Plot 2. Batas stop-loss premium

Dari plot 1 dan 2 nampak bahwa distribusi kumulatif klaim agregasi dan harga batas stop-loss premium dengan dua faktor resiko saling dependen dipengaruhi oleh faktor resiko serentak dan faktor resiko individual.

(9)

27 KESIMPULAN DAN SARAN

Kesimpulan

Dari pembahasan pada bab-bab

sebelumnya, dapat diambil beberapa

kesimpulan yaitu sebagai berikut :

1. Model resiko individual dengan dependensi

dua faktor resiko :

0 ), ( ) ( ) (x p0F x q0 F x xt FS V U . Dari

model tersebut dapat diketahui bahwa distribusi klaim agregasi tergantung dari distribusi klaim karena faktor resiko individual dan distribusi klaim karena faktor resiko serentak

2. Harga batas batas stop-loss premium sebagai berikut :

>

@

>

@

>

@

° ° ¯ °° ®

³

t f d x 0 0 0 0 ) ( ) ( p -1 ) ( ) ( 1 x F q x F dx x F q x F p d S E U V d U V

Jadi harga batas stop-loss premium dengan dua faktor resiko yang saling dependen dipengaruhi oleh faktor resiko individual dan faktor resiko serentak.

Saran

Penulisan tesis ini dapat dikembangkan lebih lanjut dengan menggunakan metode fast fourier transform (FFT) atau metode lain untuk kasus jumlah klaim n yang besar.

DAFTAR PUSTAKA

Bain, L. J., and Engelhard, M. (1992). Introduction to Probability and Mathematical Statistics. 2n ed. California : Duxbury Press.

Bauerle, N., and Muller. A. (1998). Modelling and comparing dependencies in Tabel 2. Distribusi klaim

x 0 q =0.00625 ) ( 1 x FS 0 q =0.003125 ) ( 2 x FS 0 q =0 ) ( 3 x FS 0 q =0.00625 1 SL 0 q =0.003125 2 SL 0 q =0 3 SL 0 0.757691 0.759973 0.762254 0.242309 0.240027 0.237746 1 0.901371 0.903952 0.906533 0.098629 0.096048 0.093467 2 0.949867 0.952463 0.95506 0.050133 0.047537 0.04494 3 0.983312 0.98591 0.988508 0.016688 0.01409 0.011492 4 0.991085 0.993638 0.99619 0.008915 0.006362 0.00381 5 0.993285 0.995802 0.99832 0.006715 0.004198 0.00168 6 0.994581 0.997081 0.999581 0.005419 0.002919 0.000419 7 0.994881 0.997372 0.999863 0.005119 0.002628 0.000137 8 0.994969 0.997456 0.999943 0.005031 0.002544 5.7E-05 9 0.995014 0.9975 0.999986 0.004986 0.0025 1.4E-05 10 0.995024 0.99751 0.999995 0.004976 0.00249 5E-06 11 0.995028 0.997513 0.999998 0.004972 0.002487 2E-06 12 0.99503 0.997515 1 0.00497 0.002485 0

(10)

28 multivariate risk portofolios. ASTIN Bulletin 28, 59-76.

Bowers, N., Gerber, H., Hickman, J., Jones, D., and Nesbitt, C. (1997). Actuarial Mathematics. Schaumburg, IL: Society of Actuaries.

Casella, G and Berger, R. L. (1990). Statistical Inference. California : Wadsworth.

De Pril, N. (1986). On the exact computation of the aggregate claims distribution in the individual life model. ASTIN Bulletin 16, 109-112.

Denuit, M., Genest, C., and Marceau, E. (1999). Stochastic bounds on dependent risks. Insurance : Mathematics and Economics, to appear.

Dhaene, J., and Goovaerts, M. J. (1996). Dependency of risks and stop-loss order. ASTIN Bulletin 26, 201-212. Djojosoedarso, S. (1999). Prinsip-prinsip

Manajemen risiko dan Asuransi.

Cetakan pertama. Jakarta : Salemba Empat.

Giordano, R., F., and Weir, D., M. (1991). Differential equation a modeling approach. Addison Wesley , Canada. Klugman, S. A., Panjer, H. H., Willmot, G., E.

(1990). Loss Models : from data to decisions. New York : John Wiley and Sons.

L. Xu, D.L. Bricker. (2000). Bound for stop-loss premium under restrictions on the

Chi-Square Statistic. Insurance:

Mathematics and Economics.

Morton, R., G. (1995). Dasar-Dasar Asuransi Jiwa dan Asuransi Kesehatan. Jakarta : Yayasan Dharma Bumiputera- AJB Bumiputera 1912.

Rolski, T., Schmidli, H., Scmidt, V., and

Teugels, J. (1999). Stochastic

Processes for Insurance and Finance. New York : John Wiley and Sons. Waldmann, K. H. (1994). On the exact

calculation of the aggregate claims distribution in the individual life model. ASTIN Bulletin 24, 89-96.

Gambar

Gambar 1. Ruang sampel S,  S X Y
Tabel 1. Data (x dalam satuan Rp. 10 7 ,-)  Klaim (x)  f 1 ( x ) f 2 ( x ) f 3 ( x ) 0  0.31831  0.31831  0.31831  1  0.159155  0.159155  0.159155  2  0.063662  0.063662  0.063662  3  0.031831  0.031831  0.031831  4  0.018724  0.018724  5  0.012243
Tabel 2. Distribusi klaim

Referensi

Dokumen terkait

Kemudian pada kotak ke 29 ditemui gambar anak yang sedang mencuci tangannya yang dihubungkan dengan tangga terhadap guru yang senang melihat perilaku anak

Obat Tradisional Paling Manjur Untuk Menyembuhkan Penyakit Kutil Kelamin ~ Pada umumnya untuk mengobati penyakit masyarakat indonesia lebih memilih

Orang sofis beranggapan bahwa semua pengetahuan adalah relatif kebenarannya,tidak ada pengetahuan yang bersifat umum.Dengan definisi itu Socrates dapat membuktikan kepada

Hasil analisis kualitatif mendukung hasil kuantitatif yang menunjukkan bahwa penyerapan anggaran terkait pengadaan barang/jasa dapat dipengaruhi pengetahuan peraturan dari

Pemerintahan daerah adalah penyelenggaraan urusan pemerintahan oleh pemerintah daerah kabupaten/kota dan DPRD menurut asas otonomi dan tugas pembantuan dengan prinsip Negara

Total Aset Gross, Total Pembiayaan, Dana Pihak Ketiga, FDR Bank Umum Syariah dan Unit Usaha Syariah berdasarkan Kota/Kabupaten - September 2017 ( Financing, Depositor Funds,

Rohman, Taufik Fathur, (2012) Upaya Meningkatkan Prestasi Belajar Matematika pada Materi Keliling dan Luas Persegi Panjang dengan Pembelajaran Aktif Inovatif

Merintis pendidikan, penelitian, dan pengabdian kepada masyarakat di bidang GIZI KESEHATAN yang tanggap terhadap permasalahan gizi di masyarakat dalam upaya