Bacaan Warga KSA
Pengantar Analisis Real
Introduction to real analysis
Dikumpulkan dari berbagai sumber oleh: Abu Abdillah
KOMUNITAS STUDI ALKWARIZMI
UNAAHA
PERSEMBAHAN
Untuk bahan bacaan warga KSA (Komunitas Studi Al Khwarizmi).
Pesan
Janganlah kesibukan duniamu melalaikan untuk menuntut ilmu Agama, ingatlah bahwa yang wajib ‘ain bagi kalian adalah menuntut ilmu Agama.
KATA PENGANTAR
uku ini ditulis dalam rangka pengadaan buku ajar mata kuliah Analisis Real I dan II, yang merupakan mata kuliah wajib. Buku ini berisi materi yang diperuntukan bagi mahasiswa yang telah mengambil mata Kalkulus I dan Kalkulus II. Topik-topik dalam buku ini sebenarnya sudah dikenal oleh mahasiswa yang telah mengambil kedua mata kuliah tersebut. Hanya saja, materi pada buku ini lebih abstrak, teoritis, dan mendalam. Materi pada buku ini merupakan materi dasar analisis real. Analisis real merupakan alat yang esensial, baik di dalam berbagai cabang dari matematika maupun bidang ilmu-ilmu lain, seperti fisika, kimia, dan ekonomi. Mata kuliah Analisis I adalah gerbang menuju mata kuliah yang lebih lanjut, baik di dalam maupun di luar jurusan Matematika. Jika mata kuliah ini dapat dipahami dengan baik maka mahasiswa mempunyai modal yang sangat berharga untuk memahami mata kuliah lain. Diharapkan, setelah mempelajari materi pada buku ini, mahasiswa mempunyai kedewasaan dalam bermatematika, yang meliputi antara lain kemampuan berpikir secara deduktif, logis, dan runtut, serta memiliki kemampuan menganalisis masalah dan mengomunikasikan penyelesaiannya secara akurat dan rigorous.
Buku ini terdiri dari lima bab. Bab I membahas tentang aljabar himpunan, fungsi, dan induksi matematika. Sebagaimana kita ketahui bahwa materi pada bab ini adalah materi penunjang pemahaman pada bab-bab selanjutnya, maka diharapkan para pembaca dan pengajar tidak mengabaikan penyampaian bab I ini. Bab II membahas tentang himpunan bilangan real. Di dalamnya, dibicarakan tentang sifat aljabar (lapangan), sifat terurut, dan sifat kelengkapan dari himpunan bilangan real. Kemudian,
dikonstruksi berdasarkan sifat terurutnya, yang disebut sebagai interval. Dijelaskan pula tentang representasi desimal dari bilangan real dan menggunakannya untuk membuktikan Teorema Cantor. Selanjutnya, bab III berisi tentang barisan bilangan real, yang meliputi definisi dan sifat-sifat barisan, Teorema Bolzano-Weierstrass, kriteria Cauchy, barisan divergen, dan sekilas tentang deret tak hingga. Kemudian, bab IV mendiskusikan tentang definisi limit fungsi (termasuk limit sepihak, limit di tak hingga, dan limit tak hingga) dan sifat-sifatnya. Lalu, bab V membahas kekontinuan fungsi, yang meliputi definisi fungsi kontinu dan sifat-sifatnya, fungsi kontinu pada interval, kekontinuan seragam, serta fungsi monoton dan fungsi invers.
Buku ini masih dalam proses pengembangan dan tentunya masih jauh dari sempurna. Untuk itu, penulis membuka diri terhadap saran dan kritik dari pembaca, demi semakin baiknya buku ini sebagai buku ajar mata kuliah wajib Analisis I.
Unaaha, April 2013 Penulis,
DAFTAR ISI
PERSEMBAHAN ... ii
KATA PENGANTAR ... iii
DAFTAR ISI ... v
BAB I PENDAHULUAN 1.1 Aljabar Himpunan ... 1
1.2 Fungsi ... 8
1.3. Induksi Matematika ... 17
BAB II HIMPUNAN BILANGAN REAL 2.1 Sifat Aljabar dari R ... 27
2.2 Sifat Terurut dari R ... 29
2.3. Sifat Kelengkapan dari R ... 38
2.4. Interval ... 48
2.5 Representasi Desimal dari Bilangan Real ... 51
BAB III BARISAN BILANGAN REAL 3.1 Definisi Barisan Bilangan real ... 54
3.2 Sifat-Sifat Barisan Bilangan Real ... 57
3.3 Teorema Bolzano-Weierstrass ... 64
3.4 Kriteria Cauchy ... 65
3.5 Barisan Divergen ... 68
3.6 Deret Tak Hingga ... 71
BAB IV LIMIT FUNGSI 4.1 Titik Timbun ... 80
BAB V KEKONTINUAN FUNGSI
5.1 Definisi Fungsi Kontinu ... 89
5.2 Sifat-Sifat Fungsi Kontinu ... 92
5.3 Fungsi Kontinu pada Interval ... 94
5.4 Kekontinuan Seragam ... 97
5.5 Fungsi Monoton dan Fungsi Invers ... 100
BAB I
HIMPUNAN BILANGAN REAL
ada bab ini, kita akan membahas beberapa prasyarat yang diperlukan untuk mempelajari analisis real. Bagian 1.1 dan 1.2 kita akan mengulang sekilas tentang aljabar himpunan dan fungsi, yang keduanya merupakan perkakas penting untuk semua cabang matematika.
Pada bagian selanjutnya yakni bagian 1.3 kita akan mengulas mengenai induksi matematika. Sebagaimana kita ketahui bahwa induksi matematika berhubungan dengan sifat dasar sistem bilangan asli yang akan sering kita gunakan pada pembuktian beberapa masalah khusus dalam bab selanjutnya.
1.1 ALJABAR HIMPUNAN
Bila Amenyatakan suatu himpunan, maka untuk suatu unsur
x
kita akan menuliskannya menjadiA
x , ■
untuk menyatakan
x
suatu unsur di A,x
anggota A, ataux
termuat di A, atau A memuatx
. Selanjutnya bila kita ingin menyatakan bahwax
suatu unsur yang bukan di A maka dapat kita tuliskan menjadi:A
x , ■
Selanjutnya bila A dan B keduanya adalah himpunan sehingga untuk setiap unsur x A mengakibatkan x B ( setiap unsur di A juga unsur di B), maka kita katakan A termuat di B, atau B memuat A, atau A suatu subhimpunan dari B, dan kita menuliskannya dengan:
B
A
atauB
A
, ■ BilaA
B
dan terdapat unsur di B yang bukan anggota A maka kita1.1.1. Definisi Kesamaan Dua Himpunan
Dua buah himpunan A dan B dikatakan sama bila keduanya memuat unsur yang sama. Dengan kata lain untuk setiap unsur
x
anggota himpunan Amaka
x
juga merupakan anggota himpunan B, dan juga sebaliknya untuk setiap unsur y anggota himpunan B maka y juga merupakan anggota himpunan A.Selanjutnya kedua buah himpunan A dan B dikatakan sama maka kita menuliskannya dengan:
B
A ■ Untuk menunjukkan bahwa A B , kita harus menunjukkan bahwa
B
A
danB
A
.Suatu himpunan dapat ditulis dengan mendaftar anggota-anggotanya, atau dengan menyatakan sifat keanggotaannya. Kata “sifat keanggotaan” memang menimbulkan keragu-raguan, akan tetapi bila P menyatakan sifat keanggotaan (yang tak bias maknanya) maka suatu himpunan
x
yang memenuhi P akan kita tuliskan dengan cara:
x P(x)
■ Notasi diatas kita baca: “himpunan semuax
yang memenuhi (sedemikian sehingga) P”. Bila perlu untuk menyatakan subhimpunan S yang memenuhiP, maka kita dapat menuliskannya dalam bentuk:
x S P(x)
■ Beberapa himpunan tertentu akan banyak digunakan dalam buku ini, dan akan kita tuliskan dengan penulisan standar yakni sebagai berikut: Himpunan bilangan asli,
N
1
,
2
,
3
,...
Himpunan bilangan bulat
Ζ
0
,
1
,
1
,
2
,
2
,...
Himpunan bilangan rasional
m
,
n
,
n
0
n
m
Q
Contoh-contoh:
1. Himpunan
xN x2 3x20
, menyatakan himpunan bilangan asli yang memenuhi persamaan kuadratx
2 x
3
2
0
. Karena yang memenuhi hanya x1 dan x2 , maka himpunan tersebut dapat juga dituliskan menjadi
1
,
2
.2. Terkadang formula dapat pula digunakan untuk menyingkat penulisan himpunan. Sebagai contoh himpunan bilangan genap positif sering dituliskan dengan cara
2x xN
, dari pada kita menuliskannya
yN y2x,xN
.Operasi Himpunan
Pada bagian ini kita akan mendefinisikan aturan untuk membangun (mengkonstruksi) himpunan baru dari himpunan yang sudah ada.
1.1.2. Definisi
a. Bila A dan B keduanya adalah himpunan, maka irisan (interseksi) dari A
dan Bdituliskan dengan A B , merupakan himpunan yang unsur-unsurnya adalah anggota himpunan A dan juga merupakan anggota himpunan B.
xx A x B
B
A dan ■
b. Gabungan dari himpunan A dan Badalah himpunan yang unsurnya paling tidak termuat di salah satu dari himpunan A atau B . Gabungan dari himpunan A dan Bdituliskan dengan A B.
xx A x B
B
A atau ■
1.1.3. Definisi
Himpunan yang tidak mempunyai anggota disebut dengan himpunan kosong, dituliskan dengan
atau . Bila himpunan A dan Bdua himpunan yang tidak1.1.4. Teorema
Misalkan
A,
B
dan C sebarang himpunan, maka:a)
A
A
A
,
A
A
A
Idempotenb)
A
B
B
A
,
A
B
B
A
Komutatifc)
A
B
C
A
B
C
,
A
B
C
A
B
C
Asosiatifd)
A
B
C
A
B
A
C
,
A
B
C
A
B
A
C
Distributif.
Bukti teorema diatas diserahkan kepada pembaca!
Dimungkinkan juga untuk menunjukkan bahwa bila
A
1,
A
2,...,
A
n
merupakan koleksi himpunan, maka terdapat sebuah himpunan, maka terdapat sebuah himpunan A yang memuat unsur yang merupakan unsur semua himpunan Aj, j1,2,...,n ; dan terdapat sebuah himpunan B yang unsurnya paling tidak unsur dari suatu Aj, j1,2,...,n. Dengan menanggalkan kurung,kita tuliskan dengan
n
A
A
A
A
1
2
...
nB
B
B
B
1
2
...
Untuk mempersingkat penulisan, A dan B di atas sering dituliskan dengan
n j jA
A
1
n j jA
B
1
1.1.5. Definisi
Misalkan A dan B suatu himpunan, maka komplemen dari B relatif terhadap
A, dituliskan dengan A \B (baca “A minus B”) adalah himpunan yang unsur-unsurnya adalah semua unsur di A tetapi bukan anggota B. Dibeberapa buku ditulis menggunakan notasi A B atau AB.
xx A anx B
B
A\ d ■
Seringkali A tidak dinyatakan secara eksplisit, karena sudah dimengerti/disepakati. Dalam situasi begini A \B sering dituliskan dengan
C
A
.1.1.6. Teorema
Misalkan
A
,
B
,
C
sebarang himpunan, makaA
\
(
B
C
)
(
A
\
B
)
(
A
\
C
)
,)
\
(
)
\
(
)
(
\
B
C
A
B
A
C
A
. Bukti:Kita akan membuktikan kesamaan pertama dan meninggalkan bagian kedua pada pembaca sebagai bahan latihan.
Untuk menunjukkan
A
\
(
B
C
)
(
A
\
B
)
(
A
\
C
)
, berarti yang harus ditunjukkan adalah:A
\
(
B
C
)
(
A
\
B
)
(
A
\
C
)
dan)
\
(
)
\
(
)
(
\
B
C
A
B
A
C
A
Akan ditunjukkanA
\
(
B
C
)
(
A
\
B
)
(
A
\
C
)
Ambil sebarang
x
A
\
(
B
C
)
, maka x Adanx
B
C
, ini berarti bahwax
di A tetapix
bukan unsur B atau C, karenanyax
di A tetapix
tidak di B danx
di A tetapix
tidak di C, sehingga dapat dituliskan
A
B
x
\
danx
A
\
C
, hal ini berarti bahwax
A
\
B
A
\
C
, sehingga terbuktilah bahwaA
\
(
B
C
)
(
A
\
B
)
(
A
\
C
)
Ambil sebarang
y
(
A
\
B
)
(
A
\
C
)
, makay
A
\
B
dany
A
\
C
, makay
A
tetapiy
B
dany
A
tetapiy
C
. Jadiy
A
tetapi bukan anggota dari B atau C . Akibatnyay
A
dany
B
C
, ini berarti
A
\
(
B
C
)
y
, sehingga terbukti bahwaA
\
(
B
C
)
(
A
\
B
)
(
A
\
C
)
.Dari dua bukti diatas dapat disimpulkan bahwa
)
\
(
)
\
(
)
(
\
B
C
A
B
A
C
A
.Produk (hasil kali) kartesius
Berikut ini kita definisikan produk kartesius yang akan kita gunakan pada pembahasan tentang fungsi pada bagian selanjutnya.
1.1.7. Definisi
Bila A dan B keduanya adalah himpunan-himpunan tak kosong, maka produk kartesius dari A dan Byang selanjutnya akan kita tuliskan menggunakan notasi
B
A adalah himpunan pasangan berurut
a,
b
dengan a A dan b B
a b a A anb B
B
A , d ■
Sehingga bila
A
1
,
2
,
3
danB
4
,
5
, maka
1
,
4
,
1
,
5
,
2
,
4
,
2
,
5
,
3
,
4
,
3
,
5
B
A
Latihan 1.1.1. Gambarkan diagram yang menyatakan masing-masing himpunan pada Teorema 1.1.4
2. Buktikan teorema 1.1.4.
3. Buktikan bahwa
A
B
jika dan hanya jika AB A.4. Tunjukkan bahwa himpunan D yang unsur-unsurnya merupakan unsur dari tepat satu himpunan A atau B diberikan oleh
D
A
\
B
B
\
A
.Himpunan D ini sering disebut selisih simetris dari A dan B. Nyatakan dalam diagram.
5. Tunjukkan bahwa selisih simetris D pada soal nomor 4, juga diberikan oleh:
A
B
A
B
D
\
6. Jika
A
B
tunjukkanB
A
\
A
\
B
7. Diberikan himpunan A dan B , tunjukkan bahwa A B dan A \B saling asing dan bahwa
A
A
B
A
\
B
.8. Diberikan sebarang himpunan A dan B, tunjukkan
A
B
A
\
A
\
B
. 9. Bila
A
1,
A
2,...,
A
n
suatu koleksi himpunan, dan E sebarang himpunan,tunjukkan bahwa
n j j n j jE
A
A
E
1 1
, dan
n j j n j jE
A
A
E
1 1
.10. Mengacu pada soal nomor 9 tunjukkan bahwa
n j j n j j
E
A
A
E
1 1
, dan
n j j n j jE
A
A
E
1 1
.11. Mengacu pada soal nomor 9 buktikan hukum de morgan
n
j n j j jE
A
A
E
1 1\
\
,
n j j n j jE
A
A
E
1 1\
\
Catatan bila E \Aj dituliskan dengan C
Aj , maka kesamaan diatas mempunyai bentuk
n j j n j jA
A
1 1
C
C
,
n j j n j jA
A
1 1
C
C
12. Misalkan J suatu himpunan dan untuk setiap
j
J
, Aj termuat di E . Tunjukkan bahwa13. Bila
B
1 danB
2 subhimpunan dari B danB
B
1
B
2 tunjukkan bahwa
A
B
1
A
B
2
B
A
1.2 FUNGSI
Pada bagian ini kita akan membahas gagasan fundamental suatu fungsi atau pemetaan. Selanjutnya akan kita ketahui bahwa fungsi merupakan suatu jenis khusus dari himpunan, walaupun terdapat visualisasi lain yang sering lebih bersifat sugesti. Pada bagian terakhir ini kita akan banyak membahas mengenai jenis-jenis fungsi, tetapi sedikit lebih abstrak dibandingkan bagian ini.
Bagi matematikawan abad terdahulu kata “fungsi” biasanya berarti formula tertentu, seperti
23
5
x
x
x
f
yang bersesuaian dengan masing-masing bilangan real
x
dan bilangan lain
x
f
. Mungkin juga seseorang memunculkan kontroversi, apakah nilai mutlak
x xh
dari suatu bilangan real merupakan “fungsi sejati” atau bukan. Selain itu definisi
x diberikan pula yakni:
0
,
0
,
x
x
x
x
x
bila bilaDengan berkembangnya matematika, semakin jelas bahwa diperlukan definisi fungsi yang lebih umum. Juga semakin penting untuk kita membedakan fungsi sendiri dengan nilai fungsi itu. Disini akan mendefinisikan suatu fungsi dan hal ini akan kita lakukan dalam dua tahap.
Definisi pertama:
suatu fungsi
f
dari himpunan A ke himpunan B adalah aturan korespodensi yang memasangkan masing-masing unsurx
di A secara tunggal dengan unsurf
x
di B.Definisi di atas mungkin saja tidak jelas, dikarenakan tidak jelasnya makna frase “aturan korespondensi”. Untuk mengatasi hal ini kita akan mendefinisikan fungsi dengan menggunakan himpunan seperti yang telah dibahas pada bagian sebelumnya.
Berikut ini adalah definisi yang mungkin saja dapat membuat kita kehilangan kandungan intuitif dari definisi terdahulu, tetapi kita dapatkan kejelasan.
Ide dasar pendefinisian berikut ini adalah memikirkan gambar dari suatu fungsi; yaitu, suatu korelasi dari pasangan berurut. Bila kita perhatikan tidak setiap koleksi pasangan berurut merupakan gambar suatu fungsi, karena sekali unsur pertama dalam pasangan berurut diambil, unsur keduanya ditentukan secara tunggal.
Gambar 1.1 Gambar grafik sebuah fungsi
masing a A terdapat b B yang tunggal dengan
a
,
b
,
a
,
b
'
f
, maka 'b
b . Himpunan A dari unsur-unsur pertama dari
f
disebut daerah asal“domain” dari
f
, dan dituliskanD
f
. Sedangkan unsur-unsur dari B yang menjadi unsur kedua dif
disebut “range” darif
dan dituliskan denganR
f
. NotasiB
A
f
:
Menunjukkan bahwa
f
suatu fungsi dari A ke B ; akan sering kita katakan bahwaf
suatu pemetaan dari A ke B atauf
memetakan dari A ke dalam B. Bila
a
,
b
f
, sering ditulis dengan:
a
f
b
Pembatasan dan Perluasan Fungsi
Bila
f
suatu fungsi dengan domainD
f
danD
1 suatu subhimpunan dariD
f
, sehing kali bermanfaat untuk mendefinisikan fungsi baruf
1 dengan domainD
1 danf
1
x
f
x
untuk setiapx
D
1 . Fungsif
1 ini disebut pembatasan fungsif
padaD
1 . Sehingga menurut definisi 1.2.1, kita mempunyai
1
1 a,b f a D
f
Terkadang kita tuliskan f 1 f D1 untuk menyatakan pembatasan fungsi
f
pada himpunanD
1.Konstruksi yang serupa untuk gagasan perluasan. Bila suatu fungsi g
dengan domain
D
g
danD
2D
g
, maka sebarang fungsig
2 dengan domainD
2 sedemikian sehinggag
2
x
g
x
untuk setiapx
D
g
disebut perluasan g pada himpunanD
2.Bayangan Langsung dan Bayangan Invers
1.2.2. Definisi
Misalkan
f
:
A
B
suatu fungsi dengan domain A dan range B . Bila Esubhimpunan A , maka bayangan langsung dari E terhadap
f
adalah subhimpunanf
E
dari A yang diberikan oleh
E
f
x
x
E
f
:
Bila H subhimpunan B, maka bayangan invers dari H terhadap
f
adalah subhimpunanf
1
H
dari A, yang diberikan oleh
H
x
A
f
x
H
f
:
1
Jadi bila diberikan himpunan
E
A
,
maka titiky
1B
di bayangan langsung
E
f
jika dan hanya jika terdapat paling tidak sebuah titikx
1E
sedemikian sehinggay
1f
x
1 . Secara sama bila diberikanH
B
, titikx
2A
di dalam bayangan inversf
1
H
jika dan hanya jikay
f
x
2 di H.1.2.3. Contoh
a. Misalkan
f
:
R
R
didefinisikan denganf
x
x
2 . Bayangan langsung himpunan E
x0x2
adalah himpunan f
E
y0 y4
. Bila
0 4
y y
G , maka bayangan invers G adalah himpunan
2 2
1 x x G f . Jadif
1f
E
E
.Disatu pihak kita mempunyai
f
f
1
G
G
. Tetapi bila H
y1 y1
, maka kita peroleh f
f 1
H
x0x1
HPada buku ini kita akan bahas
f
1
G
H
f
1
G
f
1
H
danmeninggalkan yang sebaliknya yakni
G
H
f
G
f
H
f
1 1 1
sebagai latihan bagi pembaca.i. Akan dibuktikan
f
1
G
H
f
1
G
f
1
H
Ambil sebarang
x
f
1
G
H
, ini berarti bahwaf
x
G
H
, hal ini mengakibatkanf
x
G
danf
x
H
, sehingga ini mengakibatkan
G
f
x
1 danx
f
1
H
, karena itux
f
1
G
f
1
H
bukti selesai.ii. Bukti sebaliknya diserahkan pada pembaca.
Sifat-sifat Fungsi
1.2.4. Definisi
Suatu fungsi
f
:
A
B
dikatakan injektif atau satu-satu bila untuk setiapx
1,
x
2
A
demikian sehinggax
1x
2 mengakibatkanf
x
1
f
x
2 . Bilaf
satu-satu, kita katakanf
suatu injeksi.Secara ekivalen,
f
injektif jika dan hanya jikaf
x
1
f
x
2 mengakibatkanx
1x
2 untuk setiapx
1,
x
2
A
.1.2.5. Definisi
Suatu fungsi
f
:
A
B
dikatakan surjektif atau memetakan A pada Bbila
f
A
B
. Bilaf
surjektif, maka kita sebutf
suatu surjeksi.Secara ekivalen,
f
:
A
B
surjektif bilaR
f
B
, yaitu untuk setiapB
y
terdapat x A sedemikian sehinggaf
x
y
.Dalam pendefinisian fungsi, penting untuk menentukan domain dan himpunan dimana nilainya diambil. Sekali hal ini ditentukan, maka dapat
1.2.6. Definisi
Suatu fungsi
f
:
A
B
dikatakan bijektif bila bersifat injektif dansurjektif. Bila suatu fungsi
f
bijektif, kita sebutf
suatu bijeksi.Fungsi-Fungsi Invers
Bila
f
:
A
B
suatu fungsi dari A ke B , (karenanya, subhimpunan khusus dari A B ), maka pasangan berurut B A diperoleh dengan saling menukar unsur pertama dan kedua dif
. Secara umum hasil penukaran tersebut bukanlah fungsi. Tetapi bilaf
injektif, maka penukaran ini menghasilkan fungsi yang disebut invers darif
.1.2.7. Definisi
Misalkan
f
:
A
B
suatu fungsi injektif dengan domain A danR
f
diB . Bila g
b,a
BA
a,b
f
, maka g suatu fungsi injektif dengan
g
R
f
D
dan range A. Fungsi g disebut fungsi invers darif
dan dituliskan.
1
f
Dalam penulisan fungsi yang standar, fungsi
f
1 berelasi denganf
sebagai berikut:x
f
1
y
jika dan hanya jikay
f
x
.1.2.8. Contoh Suatu fungsi
1 x x xf dengan D
f
xRx1
bersifat injektif (buktikanf
suatu injeksi untuk latihan pembaca). Selanjutnya kita akan peroleh invers darif
adalah dirinya sendiri (bukti diserahkan pada pembaca)Fungsi Komposisi
Sering kita ingin mengkomposisikan dua buah fungsi dengan mencari
x
f
terlebih dahulu, kemudian menggunakan g untuk memperolehg
f
x
, akan tetapi hal ini bisa dilakukan bilaf
x
ada didalam domain g. Jadi kita harus mengasumsikan bahwaR
f
D
g
1.2.9. Definisi
Untuk fungsi
f
:
A
B
dang
:
B
C
, komposisig
f
adalah fungsi dari A ke C yang didefinisikan dengang
f
x
g
f
x
untuk setiap x A.1.2.10. Teorema
Bila
f
:
A
B
dang
:
B
C
fungsi dan H suatu subhimpunan dari C. Maka
f g
1 H
g1 f 1
H g1
f1
H
.1.2.11. Teorema
Bila
f
:
A
B
dang
:
B
C
keduanya bersifat injektif, maka komposisig
f
juga bersifat injektif.(Bukti teorema diberikan sebagai latihan bagi pembaca)
Barisan
Fungsi dengan Ν sebagai domain memainkan aturan yang sangat khusus dalam analisis, yang akan kita perkenalkan daalam konsep barisan berikut ini.
1.2.12. Definisi
Suatu barisan dalam himpunan S adalah suatu fungsi yang domannya himpunan bilangan asli Ν dan rangenya termuat di S.
Untuk barisan X :ΝS , nilai X di nΝ sering ditulis dengan
x
n daripada
x
n , dan nilainya sering kita sebut suku ke-n
barisan tersebut. BarisanSebagai contoh, barisan di R yang dituliskan dengan
n
n
Ν
sama artinya dengan fungsi X :ΝR dengan X
n n.Penting sekali untuk membedakan antara barisan
xn nΝ
dengan nilainya
xn nΝ
, yang merupakan subhimpunan dari S. Suku barisan harus dipandang mempunyai urutan yang diinduksi dari urutan bilangan asli, sedangkan range dari barisan hanya merupakan subhimpunan dari S. Sebagai contoh, suku-suku dari barisan
1
nn
Ν
berganti-ganti 1 dan 1, tetapi range dari barisan tersebut adalah
1
,
1
, memuat dua unsur dari RLatihan 1.2.
1. Misalkan AB
xR1 x1
dan subhimpunan R dari R , apakah himpunan ini fungsi?2. Misalkan
f
fungsi fungsi pada Ryang didefinisikan denganf
x
x
2, dan
1 0
x R x
E dan F
xR0 x1
tunjukkan bahwa
0
F
E
danf
E
F
0
. Sementara f
E f
F
yR0 x1
.Disini
f
E
F
adalah subhimpunan sejati darif
E
f
F
. Apa yang terjadi bila 0 dibuang dari E dan F?3. Bila E dan F seperti soal nomor 2. Tentukan E \F dan
f
E
\
f
F
dan tunjukkan bahwaf
E
\
F
f
E
\
f
F
salah!4. Tunjukkan bahwa bila
f
:
A
B
dan E ,F subhimpunan dari A, maka
E
F
f
E
f
F
f
danf
E
F
f
E
f
F
.5. Tunjukkan bila
f
:
A
B
, dan G , H subhimpunan dari B , maka
G
H
f
G
f
H
6. Misalkan
f
didefinisikan dengan
x
R
x
x
x
f
,
1
2 . Tunjukkan bahwaf
bijektif dari R pada
y
:
1
y
1
.7. Untuk
a
,
b
R
dengan a b, tentukan bijeksi dari A
xa xb
pada
0 1
y y
B .
8. Tunjukkan bahwa bila
f
:
A
B
bersifat injektif dariE
A
, maka
f
E
E
f
1
. Berikan suatu contoh untuk menunjukkan kesamaan tidak dipenuhi bilaf
tidak injektif.9. Tunjukkan bahwa bila
f
:
A
B
bersifat surjektif, danH
B
, maka
f
H
H
f
1
. Berikan satu contoh untuk menunjukkan kesamaan tidak dipenuhi bilaf
tidak surjektif.10. Buktikan bila
f
:
A
B
suatu injeksi, maka f 1
b,a
a,b
R
suatu fungsi dengan domainR
f
. Kemudian buktikan bahwaf
1 injektif danf
invers darif
1.11. Misalkan
f
:
A
B
injektif, tunjukkan bahwaf
1f
x
x
untuk setiap
f
D
x
danf
f
1
y
y
untuk setiapy
R
f
.12. Berikan contoh dua buah fungsi
f
:
A
B
,f
:
A
B
darif
:
A
B
padaB
A
f
:
sehinggaf
:
A
B
, tetapif
:
A
B
13. Buktikan teorema 1.2.10 dan 1.2.1114. Misalkan
f ,
g
fungsi dang
f
x
x
untuk semuax
diD
f
. Tunjukkan bahwaf
injektif danR
f
D
f
danR
g
D
g
.15. Misalkan
f ,
g
fungsi dan dang
f
x
x
untuk semuax
diD
f
dan
y
g
1.3 INDUKSI MATEMATIKA
Induksi matematika merupakan metode pembuktian penting yang akan sering digunakan dalam buku ini. Metode ini digunakan untuk menguji kebenaran suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Walaupun kegunaannya terbatas pada masalah tertentu, tetapi induksi matematika sangat dibutuhkan disemua cabang matematika. Karena banyak bukti induksi matematika sangat diperlukan disemua cabang matematika. Karena banyak bukti induksi mengikuti urutan formal argumen yang sama, kita akan sering menyebutkan “hasilnya mengikuti induksi matematika” dan meninggalkan bukti lengkapnya kepada pembaca. Dalam bagian ini kita akan membahas prinsip induksi matematika dan memberi beberapa contoh untuk mengilustrasikan bagaimana proses bukti induksi.
Kita akan mengasumsikan kebiasaan (pembaca) dengan himpunan bilangan asli
1
,
2
,
3
,...
Ν
Dengan operasi matematika penjumlahan dan perkalian seperti biasa dan dengan arti suatu bilangan kurang dari bilangan lain. Kita juga akan mengasumsikan sifat fundamental dari Ν berikut ini
1.3.1. Sifat urutan dengan baik di Ν
Setiap subhimpunan tak kosong dari Ν mempunyai unsur terkecil.
Pernyataan yang lebih detail dari sifat ini sebagai berikut: bila S sub himpunan dari Ν dan S , maka terdapat unsur m S sedemikian sehingga
k
m untuk setiap k S.
Dengan berdasar sifat urutan dengan baik, kita akan menurunkan suatu versi prinsip induksi matematika yang dinyatakan dalam suku-suku subhimpunan dari Ν . Sifat yang dideskripsikan dalam versi ini kadang-kadang mengikuti turunan sifat Ν.
1.3.2. Prinsip Induksi Matematika
Misalkan S sub himpunan dari Ν yang mempunyai sifat: i. 1S
ii. Jika k S, maka k 1S. Maka S Ν
Bukti:
Andaikan S Ν. Maka Ν\S . Karenanya berdasar sifat urutan dengan baik, maka Ν\S mempunyai unsur terkecil, sebut
m
. Karena 1S , maka m1. Karena itu m1 dengan m1 juga bilangan asli. Karena m 1m danm
unsur terkecil di N \S, maka m1 haruslah di S.Sekarang kita gunakan hipotesis (2) terhadap unsur k m1 di S, yang berakibat
k
1
m
1
1
m
di S . Kesimpulan ini kontradiksi dengan pernyataan bahwam
tidak di S . Karenam
diperoleh dengan pengandaianS
\
Ν tidak kosong, kita dipaksa pada kesimpulan bahwa Ν\S kosong. Karena itu kita telah buktikan bahwa S Ν.
Prinsip induksi matematika sering dinyatakan dalam kerangka sifat atay pernyataan tentang bilangan asli. Bila
P
n
berarti pernyataan tentang nΝ, makaP
n
benar untuk beberapa nilain
, tetapi belum tentu benar untuk yang lain. Sebagai contoh, bilaP
n
pernyataan “n
2n
”, maka
P
1
benar, sementaraP
n
salah untuk semua n1, n N dalam konteks ini prinsip induksi matematika dapat dirumuskan sebagai berikut:Untuk setiap nΝ , misalkan
P
n
pernyataan tentangn
, misalkan bahwaa)
P
1
benarb) Jika
P
k
benar, makaP
k
1
benar. MakaP
n
benar untuk semua nΝ.Dalam kaitannya dengan versi induksi matematika terdahulu yang diberikan pada 1.3.2, dibuat misalkan S
nΝP
n benar
maka kondisi (1) dan (2) pada 1.3.2 berturut-turut tepat bersesuaian dengan (a) dan (b). KesimpulanDalam (b) asumsi “jika
P
k
benar” disebut hipotesis induksi. Disini, kita tidak memandang pada benar salahnyaP
k
, tetapi hanya pada validitas implikasi “ jikaP
k
benar, makaP
k
1
benar”.1.3.3. Contoh
a. Untuk setiap n N, jumlah
n
pertama bilangan asli diberikan oleh
1
2 1 ... 2 1 n n nUntuk membuktikan kesamaan ini, kita misalkan S himpunan nΝ , sehingga kesamaan tersebut benar. Kita harus membuktikan kondisi (1) dan (2) pada 1.3.2 dipenuhi.
i. Bila n1, maka kita mempunyai
.1.
1 1
2 1 1 : 1 P , jadiP
1
benar ii. BilaP
k
kita asumsikan benar yakni
1
. 2 1 ... 2 1 k k kBila kita tambahkan pada kedua ruas dengan
k
1
,maka menjadi:
.
1
1
2 1 1 ... 2 1 k k k k k
1
1
2
1
1
...
2
1
k
k
k
k
2
1
2 1 1 ... 2 1 k k k k
1
2
2 1 1 ... 2 1 k k k k
1
1
1
2 1 1 ... 2 1 k k k k Dari persamaan terakhir kita ketahui bahwa karena
P
k
berimplikasi pada akibatP
k
1
bernilai benar, sehingga terbukti bahwa:b. Untuk setiap nΝ, jumlah kuadrat dari
n
bilangan pertama asli adalah sebagai berikut:
6 1 2 1 ... 2 12 2 n2 nn nUntuk membuktikan formula diatas, maka pertama-tama kita buktikan kebenaran formula diatas untuk n1, selanjutnya jika benar untuk n k, maka akan dibuktikan benar pula untuk
n
k
1
i. Bila n1, maka kita mempunyai
1 6 6 6 1 1 . 2 1 1 1 1 : 1 P , jadi
1
P
benarii. Bila
P
k
kita asumsikan benar yakni
6 1 2 1 ... 2 12 2 k2 k k kBila kita tambahkan pada kedua ruas dengan
k1
2,maka menjadi:
2
2 2 2 2 1 6 1 2 1 1 ... 2 1 k k k k k k
1
6
1
2
1
1
...
2
1
2 2k
2k
2k
k
k
k
6
6
6
1
2
1
1
...
2
1
2 2k
2k
2k
k
k
k
6 6 6 2 1 1 ... 2 1 2 2 2 2 2 k k k k k k
6 6 7 2 1 1 ... 2 1 2 2 2 2 2 k k k k k
6 6 7 2 1 1 ... 2 1 2 2 2 2 2 k k k k k
6
3
2
2
1
1
...
2
1
2 2k
2k
2k
k
k
6
1
1
2
1
1
1
1
...
2
1
2 2k
2k
2k
k
k
Hasil terakhir memiliki arti bahwa
P
k
1
bernilai benar sebagai implikasi dariP
k
yang bernilai benar, mengikuti induksi matematika, maka validitas formula diatas berlaku untuk setiap nΝc. Diberikan
a,
b
, kita akan buktikan pernyataan
a
b
adalah faktor darin n
b
a
untuk setiap nΝ.Pertama-tama kita akan melihat untuk n1, maka kita ketahui bahwa pernyataan matematika bernilai benar karena
a
b
adalah faktor dari
a
1
b
1
a
b
.Selanjutnya asumsikan bahwa pernyataan juga bernilai benar untuk n k, sehingga
a
b
adalah faktor dari
a
kb
k
.Selanjutnya perhatikan bahwa:
1 1
1 1
k k k k k kb
ab
ab
a
b
a
a
kb
k
a
a
kb
k
b
k
a
b
1 1Berdasarkan hipotesis maka kita ketahui bahwa
a
b
faktor daria
a
k
b
k
, selain itu kita ketahui bahwa
a
b
adalah faktor darib
k
a
b
, sehingga dari sini kita simpulkan bahwa
a
b
adalah faktor dari
a
k1
b
k1
. Dengan induksi matematika dapat kita simpulkan bahwa
a
b
adalah faktor dari
n n
b
a
untuk setiap nΝd. Untuk setiap nΝ buktikanlah bahwa ketaksamaan berikut benar
1
!
2
n n
Untuk membuktikan, pertama kita lihat untuk n1 yakni
2
1
1
1
!
2
bernilai benar.
Selanjutnya kita asumsikan bahwa
2
k k
1
!
. Dengan menggunakan fakta 2 2 k , diperoleh:
1
!
2
.
1
!
2
!
1
1
!
2
2
.
2
2
1
k
k
k
k
k
k kJadi, bila ketaksamaan tersebut berlaku untuk k, maka berlaku pula untuk 1
k . Karenanya dengan induksi matematika, kita simpulkan bahwa ketaksamaan tersebut benar untuk setiap nΝ.
e. Bila r R, r1 dan nΝ, maka
r
r
r
r
r
n n
1
1
...
1
1 2Ini merupakan jumlah
n
suku deret geometri. Untuk membuktikan kesamaan diatas, kita misalkan n1, maka kita mempunyair
r
r
1
1
1
2 , jadi formuladiatas benar untuk n1. Selanjutnya kita asumsikan benar untuk n k ,
sehingga
r
r
r
r
r
k k
1
1
...
1
1 2benar. Selanjutnya pada kedua ruas
kita tambahkan
r
k1, sehingga menjadi:1 1 1 2
1
1
...
1
k k k kr
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
k k k k k k k k
1
1
1
1
1
1
1
1
1
...
1
2 2 1 1 1 1 1 2 r
r
r
r
r
r
k k k
1
1
...
1
1 1 1 2Hasil terakhir memiliki arti formula tersebut juga berlaku untuk n k 1, sehingga mengikuti prinsip induksi matematika, maka formula tersebut benar untuk setiap nΝ.
Pada sekolah menengah kita sudah diajarkan membuktikan kesamaan diatas tanpa menggunakan induksi matematika yakni:
Misalkan Sn 1rr2 ...rn , maka 2 ... n n1 n r r r r rS ,
2
2 1
... ... 1 n n n n n rS r r r r r r r S
1 1 1r Sn rnr
r
S
n n
1
1
1f. Penggunaan prinsip induksi matematika secara ceroboh dapat menghasilkan kesimpulan yang salah. Pembaca diharapkan mencari kesalahan pada “Bukti Teorema” berikut.
Bila
n
sebarang bilangan asli dan bila maksimum dari dua bilangan asli p dan q adalahn
, maka p q. (akibatnya bila p dan q dua bilangan asli sebarang, maka p q).Bukti:
Misalkan S sub himpunan dari bilangan asli sehingga pernyataan tersebut benar. maka 1S, karena p,q di Ν dan maksimumnya 1. Maka maksimum
1
p
danq
1
adalah k, karenanyap
1
q
1
, karena k S , dari sini kita simpulkan p q. Jadi
k
1
S
dan kita simpulkan bahwa pernyataan tersebut benar untuk setiap nΝ.g. Terdapat juga beberapa pernyataan yang benar untuk beberapa bilangan asli, tetapi tidak untuk semua. Sebagai contoh formula
P
n
n
2
n
41
memberikan bilangan prima untuk
n
1
,
2
,
3
,...,
41
. Tetapi,P
1
bukan bilangan prima.Prinsip induksi matematika memiliki bentuk dalam versi lain yang kadang-kadang sangat berguna. Sering disebut prinsip induksi kuat, walaupun sebenarnya ekivalen dengan versi terdahulu.
1.3.4. Prinsip Induksi Kuat.
Misalkan S sub himpunan Ν sedemikian hingga 1S, dan bila
1
,
2
,...,
k
S
maka
k
1
S
. Maka S Ν.Bukti ekivalensi prinsip induksi kuat dengan prinsip induksi matematika diserahkan pada pembaca sebagai bahan latihan.
Latihan 1.3.
Buktikan bahwa yang berikut ini berlaku untuk semua nΝ
1.
1
1
1
...
3
.
2
1
2
.
1
1
n
n
n
n
2.
2 3 3 3 1 2 1 ... 2 1 n n n 3.
2 1 1 ... 3 2 12 2 n1 n n 4.n
3
5
n
dapat dibagi 6 5.5
2n
1
dapat dibagi 8 6.5
n n
4
1
dapat dibagi 16.7. Buktikan bahwa jumlah pangkat tiga dari bilangan asli berurutan,
2
,
1
,
n
n
n
habis dibagi 9.8. Buktikan bahwa
n
2
n untuk semua nΝ 9. Tentukan suatu formula untuk jumlah
2
1
2
1
1
...
5
.
3
1
3
.
1
1
n
n
Dan buktikan dugaan tersebut dengan menggunakan induksi matematika. (dugaan terhadap pernyataan matematika, sebelum dibuktikan sering disebut
“Conjecture”)
10. Tentukan suatu formula untuk jumlah
n
buah bilangan ganjil pertama
2
1
...
3
1
n
Kemudian buktikan dugaan tersebut dengan menggunakan induksi matematika