• Tidak ada hasil yang ditemukan

BAB II DASAR TEORI. (transmitting antenna) adalah sebuah transduser (pengubah) elektromagnetis,

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II DASAR TEORI. (transmitting antenna) adalah sebuah transduser (pengubah) elektromagnetis,"

Copied!
16
0
0

Teks penuh

(1)

BAB II

DASAR TEORI

2.1 Umum

Antena adalah elemen penting yang ada pada sistem telekomunikasi tanpa kabel (nirkabel/wireless), tidak ada sistem telekomunikasi wireless yang tidak memiliki antena. Pemilihan antena yang tepat, perancangan yang baik dan pemasangan yang benar akan menjamin kinerja (performansi) sistem tersebut.

2.2 Pengertian Antena

Pada sistem komunikasi radio diperlukan adanya antena sebagai pelepas energi elektromagnetik ke udara atau ruang bebas, atau sebaliknya sebagai penerima energi itu dari ruang bebas. Antena merupakan bagian yang penting dalam sistem komunikasi sehari-hari. Antena kita jumpai pada pesawat televisi, telepon genggam, radio, dan lain-lain.

Antena adalah sebuah komponen yang dirancang untuk bisa memancarkan dan atau menerima gelombang elektromagnetika. Antena sebagai alat pemancar (transmitting antenna) adalah sebuah transduser (pengubah) elektromagnetis, yang digunakan untuk mengubah gelombang tertuntun di dalam saluran transmisi menjadi gelombang yang merambat di ruang bebas, dan sebagai alat penerima (receiving antenna) mengubah gelombang ruang bebas menjadi gelombang tertuntun.

Dengan definisi antena di atas, adalah suatu kepastian bahwa di setiap

sistem komunikasi tanpa kabel terdapat komponen yang bisa mengubah

(2)

gelombang tertuntun menjadi gelombang ruang bebas dan kebalikannya, komponen ini adalah antena.

Pada sistem komunikasi tanpa kabel yang modern, sebuah antena harus berfungsi sebagai antena yang bisa memancarkan dan menerima gelombang dengan baik untuk suatu arah tertentu [1].

2.3 Antena Mikrostrip

Ide atau konsep antena mikrostrip diusulkan pertama kalinya oleh Deschamps pada awal tahun 1950 dan baru dibuat pada sekitar tahun 1970 oleh Munson dan Howell, dan merupakan saalah satu antena gelombang mikro yang digunakan sebagai radiator pada sejumlah sistem telekomunikasi modern saat ini seperti : Personal Communication System (PCS), Mobile Satellite Communications, Direct Broadcast Television (DBS), Radio Detection And Ranging (Ra-dar) dan Global Positioning System (GPS) [2].

Antena mikrostrip merupakan sebuah antena yang tersusun atas 3 komponen yaitu: groundplane, substrate dan patch peradiasi. Patch berfungsi untuk meradiasikan gelombang elektromagnetik, sedangkan groundplane berfungsi sebagai reflektor seperti tembaga atau perak. Proses transformasinya gelombang ke udara terjadi ketika gelombang tersebut mencapai tepian dari patch yang kemudian sebagian gelombang dipantulkan dan sebagian lagi dipancarkan.

Sedangkan substrate yang merupakan bidang antara patch dan groundplane,

memiliki peranan yang signifikan dalam proses pemancaran gelombang. Faktor

disipasi, kekuatan, kelenturan bahan, permitivitas dan daya absorpsi air

merupakan hal yang harus diperhatikan dalam pemilihan substrate. Beberapa

(3)

material yang biasa digunakan sebagai substrate adalah polytetrafluorethylene (PTFE) dan epoxy. Untuk lebih jelas mengenai bentuk antena mikrostrip dapat dilihat pada Gambar 2.1[3].

Gambar 2.1 Struktur Dasar Antena Mikrostrip

Gambar 2.1 memperlihatkan bentuk dari antena mikrostrip dimana W dan L adalah lebar dan panjang dari patch, h adalah tebal substrat dan ε

r

merupakan nilai konstanta dielektrik dari substrat.

2.4 Kelebihan dan Kekurangan Antena Mikrostrip

Teknologi antena mikrostrip ini sampai sekarang masih merupakan salah satu topik yang menarik di dalam berbagai aplikasi gelombang mikro, baik di bidang akademis, industri, maupun penelitian. Berikut ini Beberapa keuntungan dari antena mikrostrip yaitu [4] :

1. Mempunyai bobot yang ringan dan volume yang kecil.

2. Konfigurasi yang low profile sehingga bentuknya dapat disesuaikan dengan perangkat utamanya.

3. Biaya pabrikasi yang murah sehingga dapat dibuat dalam jumlah yang besar.

4. Mendukung polarisasi linear dan sirkular.

(4)

5. Dapat dengan mudah diintegrasikan dengan microwave integrated circuits (MICs)

6. Kemampuan dalam dual frequency dan triple frequency.

7. Tidak memerlukan catuan tambahan.

Namun, antena mikrostrip juga mempunyai beberapa kelemahan, yaitu : 1. Bandwidth yang sempit

2. Efisiensi yang rendah 3. Penguatan yang rendah

4. Memiliki rugi-rugi hambatan (ohmic loss) pada pencatuan antena array 5. Memiliki daya (power) yang rendah

6. Timbulnya gelombang permukaan (surface wave)

2.5 Parameter Umum Antena Mikrostrip

Unjuk kerja (performance) dari suatu antena mikrostrip dapat diamati dari parameternya. Beberapa parameter utama dari sebuah antena mikrostrip akan dijelaskan sebagai berikut :

2.5.1 Dimensi Antena

Untuk mencari dimensi antena mikrostrip (W dan L), harus diketahui

dahulu parameter bahan yang digunakan yaitu tebal dielektrik (h), konstanta

dielektrik ( ɛ

r

), tebal konduktor (t), dan rugi-rugi bahan. Panjang antena

mikrostrip harus disesuaikan, karena apabila terlalu pendek maka bandwith akan

sempit sedangkan apabila terlalu panjang bandwith akan menjadi lebih lebar

(5)

tetapi efisiensi radiasi akan menjadi kecil. Dengan mengatur lebar dari antena mikrostrip impedansi input akan juga berbeda. Pendekatan yang digunakan untuk mencari panjang dan lebar antena mikrostrip dapat menggunakan persamaan [5][6] :

W = (2.1)

Dimana : W = lebar konduktor

ɛ

r

= konstanta dielektrik

c = kecepatan cahaya di ruang bebas (3x10

8

m/s) fr = frekuensi kerja antena

Sedangkan untuk menentukan panjang patch (L) diperlukan parameter ΔL yang merupakan pertambahan panjang dari L akibat adanya fringing effect.

Pertambahan panjang dari L (ΔL) tersebut dirumuskan :

ΔL = 0.412h

( . ) .

( . ) .

(2.2)

Dimana h merupakan tinggi subsrat atau tebal substra, dan

reff

adalah konstanta dielektrik relative yang dirumuskan sebagai berikut :

reff

= + (2.3)

(6)

Dan panjang patch (L) dirumuskan oleh :

L = L

eff

- 2 ΔL (2.4)

Dimana L

eff

merupakan panjang patch efektif yang dapat dirumuskan dengan :

L

eff

=

(2.5)

2.5.2 Bandwidth

Bandwidth suatu antena didefinisikan sebagai rentang frekuensi kerja dari suatu antena. Nilai bandwidth dapat diketahui apabila nilai frekuensi bawah dan frekuensi atas dari suatu antena telah diketahui. Frekuensi bawah adalah nilai frekuensi awal dari frekuensi kerja antena, sedangkan frekuensi atas merupakan nilai nilai frekuensi akhir dari frekuensi kerja antena.

Bandwidth dapat dicari dengan menggunakan rumus berikut ini [2]:

BW = x 100% (2.6)

dimana : f

2

= frekuensi atas (Hz) f

1

= frekuensi bawah (Hz)

f

c

= frekuensi tengah (Hz)

Ada beberapa jenis bandwith diantaranya [7] :

a. Impedance bandwidth, yaitu rentang frekuensi di mana patch antena berada

pada keadaan matching dengan saluran pencatu. hal ini terjadi karena

(7)

impedansi dari elemen antena bervariasi nilainya tergantung dari nilai frekuensi. Nilai matching ini dapat dilihat dari return loss dan VSWR. Nilai return loss dan VSWR yang masih dianggap baik adalah kurang dari -9,54 dB dan 2, secara berurutan.

b. Pattern bandwidth, yaitu rentang frekuensi dimana beamwidth, sidebole atau gain, yang bervariasi menurut frekuensi memenuhi nilai tertentu. Nilai tersebut harus ditentukan pada awal perancangan antena agar nilai bandwidth dapat dicari.

c. Polarization atau axial ratio adalah rentang frekuensi dimana polarisasi (linier atau melingkar) masih terjadi. Nilai axial ratio untuk polarisasi melingkar adalah kurang dari 3 dB.

2.5.3 VSWR (Voltage Standing Wave Ratio)

VSWR adalah perbandingan antara amplitudo gelombang berdiri (standing wave) maksimum (|V|max) dengan minimum (|V|min) . Pada saluran transmisi ada dua komponen gelombang tegangan, yaitu tegangan yang dikirimkan (V0+) dan tegangan yang direfleksikan (V0-). Perbandingan antara tegangan yang direfleksikan dengan tegangan yang dikirimkan disebut sebagai koefisien refleksi tegangan (Γ) [8]:

Γ = = (2.7)

Dimana ZL adalah impedansi beban (load) dan Z0 adalah impedansi saluran

lossless. Koefisien refleksi tegangan (Γ) memiliki nilai kompleks, yang

(8)

merepresentasikan besarnya magnitudo dan fasa dari refleksi. Untuk beberapa kasus yang sederhana, ketika bagian imajiner dari Γ adalah nol, maka :

• Γ = − 1 : refleksi negatif maksimum, ketika saluran terhubung singkat,

• Γ = 0 : tidak ada refleksi, ketika saluran dalam keadaan matched sempurna,

• Γ = + 1 : refleksi positif maksimum, ketika saluran dalam rangkaian terbuka.

Sedangkan rumus untuk mencari nilai VSWR adalah :

S =

| |

| |

=

| || |

(2.8)

Kondisi yang paling baik adalah ketika VSWR bernilai 1 (S=1) yang berarti tidak ada refleksi ketika saluran dalam keadaan matching sempurna. Namun kondisi ini pada praktiknya sulit untuk didapatkan. Pada umumnya nilai VSWR yang dianggap masih baik adalah VSWR ≤ 2.

2.5.4 Pola radiasi

Pola radiasi dapat diartikan sebagai fungsi matematis atau representasi

grafis karakteristik radiasi antena dalam bentuk fungsi koordinat ruang. Sifat

radiasi tersebut meliputi kerapatan flux, intensitas radiasi, kuat medan, atau

polarisasi. Biasanya sifat dari radiasi yang sangat penting adalah persebaran

secara tiga dimensi atau dua dimensi dari energi yang diradiasikan antena.

(9)

Gambar pola radiasi antena dapat dilihat pada Gambar 2.2.

Gambar 2.2 Pola Radiasi Antena

Ada dua jenis pola radiasi, yaitu :

a) Mutlak

Pola radiasi mutlak ditampilkan dalam satuan-satuan mutlak kekuatan atau daya medan.

b) Relatif

Pola radiasi relatif merujuk pada satuan-satuan relatif kekuatan atau daya medan. Kebanyakan ukuran pola radiasi relatif kepada antena isotropic dan metode transfer gain dipergunakan untuk menentukan gain mutlak antena.

Pola radiasi di daerah dekat antena tidaklah sama seperti pola radiasi pada

jarak jauh. Istilah medan dekat merujuk pada pola medan yang berda dekat

antena, sedangkan istilah medan jauh merujuk pada pola medan yang berada di

(10)

jarak jauh. Medan jauh juga disebut sebagai medan radiasi, dan merupakan hal yang diinginkan. Biasanya, daya yang dipancarkan adalah yang kita inginkan, dan oleh karena itu pola antena biasanya diukur didaerah medan jauh. Untuk pengukuran pola sangatlah penting untuk memiliki jarak yang cukup besar untuk berada di medan jauhm jauh di luar medan dekat. Jarak dekat minimum yang diperbolehkan bergantung pada dimensi antena berkaitan dengan panjang gelombang.

2.5.5 Gain antena

Gain dari sebuah antena dapat didefinisikan sebagai perbandingan antara intensitas radiasi suatu antena pada suatu arah utama dengan intensitas radiasi dari antena isotropik yang mengunakan sumber daya masukan yang sama, dan dapat dirumuskan sebagai berikut [4]:

G = D. η (2.9)

dimana: D = directivity antena η = efisiensi antena

Ada dua jenis parameter penguatan (Gain) yaitu absolute gain dan relative

gain. Absolute gain pada sebuah antena didefinisikan sebagai perbandingan

antara intensitas pada arah tertentu dengan intensitas radiasi yang diperoleh jika

daya yang diterima oleh antena teradiasi secara isotropik. Intensitas radiasi yang

berhubungan dengan daya yang diradiasikan secara tropik sama dengan daya

yang diterima oleh antena (Pin) dibagi 4π. Absolute gain ini dapat dihitung

dengan rumus:

(11)

Gain = 4π

( ,∅)

(2.10)

Selain absoulute gain juga ada relative gain. Relative gain didifeinisikan sebagai perbandingan antara perolehan daya pada sebuah arah dengan perolehan daya pada antena referensi pada arah yang direferensikan juga. Daya masukan harus sama di antara kedua antena itu. Akan tetapi, antena referensi merupakan sumber isotropik yang lossles (Pin(lossles)). Secara rumus dapat dihubungkan sebagai berikut:

Gain = 4π

( ,∅)

( )

(2.11)

2.6 Antena Mikrostrip Dalam Array

Antena mikrostrip memiliki beberapa kelebihan seperti memiliki bentuk yang sederhana, efisien, ekonomis, dan mudah pembuatannya. Namun demikian antena mikrostrip ini juga memiliki kelemahan yang sangat mendasar, yaitu bandwidth yang sempit, keterbatasan gain, dan daya yang rendah. Hal ini dapat diatasi dengan menambah patch secara array.

Ada beberapa macam konfigurasi antena array, diantaranya linear, planar, dan circular. Masing masing konfigurasi memiliki keuntungan, misalnya linear array memiliki kelebihan dalam perhitungan yang tidak terlalu rumit, sedangkan planar array memiliki kelebihan dalam pengaturan dan pengendalian arah pola radiasi.

Antena array adalah susunan dari beberapa antena yang identik. Dalam

antena mikrostrip patch, yang disusun secara array adalah bagian patch. Medan

total dari antena array ditentukan oleh penjumlahan vektor dari medan yang

(12)

diradiasikan oleh elemen tunggal. Untuk membentuk pola yang memiliki keterarahan tertentu, diperlukan medan dari setiap elemen array berinterferensi secara konstruksi pada arah yang diinginkan dan berinterferensi secara destruktif pada arah yang lain.

Pada antena array terdapat Array Factor (AF) yang merupakan vektor pengali dari medan elektrik dari elemen tunggal. Array faktor inilah yang menentukan bagaimana pola radiasi dan seberapa besar tingkat daya yang diradiasikan oleh antena tersebut.

Antena mikrostrip bentuk array memiliki beberapa kelebihan dibanding dengan antena mikrostrip konvensional. Kelebihannya yaitu memiliki bandwidth dan gain yang lebih besar. Disamping memiliki kelebihan, antena jenis ini juga memiliki kelemahan, yaitu membutuhkan suatu jalur transmisi/pencatu antara elemen peradiasi dan input connector untuk mengurangi rugi-rugi sehingga mengurangi efisiensi antena.

2.7 Teknik Pencatuan

Pada dasarnya saluran pencatu untuk antena mikrostrip dapat dibagi menjadi 2, yaitu pencatuan secara langsung (direct coupling) dan pencatuan secara tidak langsung (electromagnetic coupling).

Pada awalnya pencatuan secara langsung banyak digunakan karena

mempunyai kelebihan, yaitu sangat sederhana dalam pencatuan. Tetapi

disamping kelebihan tersebut ada beberapa kekurangan yang terdapat pada

pencatuan ini, seperti sangat sulit jika antena mikrostrip akan disusun secara

array dan antena mikrostrip akan menghasilkan pita frekuensi atau bandwidth

yang sempit sekitar 2% - 5%.

(13)

Dengan keuntungan ini maka dalam perkembangannya selanjutnya diperkenalkan apa yang disebut dengan pencatuan tidak langsung. Keuntungan dari teknik pencatuan ini adalah dapat memperlebar bandwidth dan dapat mengurangi proses penyolderan.

2.7.1 Pencatuan Secara Langsung (Direct Coupling)

Pencatuan secara langsung merupakan pencatuan yang sangat sederhana dalam teknik pencatuannya, dimana patch antena dan konektor dihubungkan secara langsung dengan melakukan penyolderan pada bidang pertanahannya (ground). Akan tetapi, memiliki juga beberapa kelemahan, seperti sangat sulit jika akan dipabrikasi secara array dan bandwidth yang dihasilkan sangat sempit.

2.7.2 Pencatuan Secara Tidak Langsung (Electromagnetic Coupling)

Dengan teknik pencatuan secara tidak langsung (electromagnetic coupling) tidak ada kontak langsung antara saluran transmisi dengan elemen peradiasinya.

Ada dua teknik pengkopelan yang biasanya digunakan pada pencatuan ini, yaitu proximity coupling dan aperture coupling.

2.8 Aperture Coupling

Teknik pencatuan pada antena mikrostrip merupakan teknik untuk mentransmisikan energi elektromagnetik ke antena mikrostrip. Untuk kebutuhan mendapatkan bandwith yang lebar, salah satu teknik yang dapat dilakukan adalah dengan teknik pencatuan aperture coupled.

Ada beberapa keuntungan yang diperoleh bila menggunakan

penggandengan celah (aperture coupled), antara lain adalah bandwidth lebih

lebar dan mempunyai tingkat osilasi antara antena dan saluran transmisi yang

(14)

lebih baik. Dengan teknik pencatuan ini, memungkinkan antena mikrostrip dan saluran transmisi dioptimasi secara terpisah dengan menggunakan bahan substrat yang berbeda. Arsitektur teknik pencatuan ini ditunjukkan pada Gambar 2.4.[7] :

Gambar 2.3. Teknik Pencatuan Aperture Coupled

Pada konfigurasi teknik pencatuan aperture coupled, pengkopelan dari saluran pencatu (feed-line) ke patch melalui sebuah aperture kecil yang berupa slot pada bidang pertnahan (ground plane). Bentuk, ukuran, dan lokasi penenmpatan slot aperture dapat mempengaruhi pengkopelan saluran pencatu ke patch, bgitu juga dengan tinggi substrat yang digunakan dapat bervariasi dengan susunan yang berlapis-lapis (multilayer). Umumnya slot aperture tersebut berada di tengah bawah dari patch. Untuk menentukan dimensi slot aperture dari teknik pencatuan ini dapat digunakan persamaan berikut [7] :

Panjang slot aperture (L

a

) dapat diperoleh sekitar :

L

a

~ (0.2 – 0.3) λ

o

(2.12)

(15)

Lebar slot aperture (W

a

) :

W

a

= 0.1 L

a

(2.13)

2.9 Power Divider

Salah satu teknik yang dapat mendukung impedance matching pada saluran transmisi khususnya untuk antena mikrostrip array adalah power divider (combiner). Dalam hal ini metoda, Wilkinson merupakan teknik yang umum digunakan. Gambar 2.5. memperlihatkan power divider metoda Wilkinson [8].

Gambar 2.4. N-Way Wilkinson Combiner

Pada metoda Wilkinson, nilai impedansi Z diberikan dengan persamaan berikut :

Z = Z

o

√ (2.14)

Dimana: Z

0

= impedansi masukkan awal N = jumlah titik percabangan 2.10 T-junction 50 Ohm

T-junction merupakan sebuah teknik power divider yang umum digunakan

pada konfigurasi antena array. Terdapat 2 jenis T-junction 50 Ohm yang dapat

digunakan sebagai power divider seperti ditunjukkan pada Gambar 2.6 [9]:

(16)

Gambar 2.5. T-Junction 50 Ohm

2.11 Perhitungan Lebar Saluran Mikrostrip (Microstrip Line)

Lebar saluran mikrostrip (W) tergantung dari besarnya impedansi karakteristik (Z

0

) yang diinginkan. Adapun rumus untuk menghitung lebar saluran mikrostrip diberikan oleh persamaan 2.15 [10]:

W = − 1 − (2 − 1) + ( − 1) + 0.39 −

.

(2.15)

Dengan ɛ

r

adalah konstanta dielektrik relatif dan B :

B =

(2.16)

Dimana B adalah besarnya impedansi pada saluran.

Gambar

Gambar 2.1 Struktur Dasar Antena Mikrostrip
Gambar pola radiasi antena dapat dilihat pada Gambar 2.2.
Gambar 2.3. Teknik Pencatuan Aperture Coupled
Gambar 2.4. N-Way Wilkinson Combiner
+2

Referensi

Dokumen terkait

bukti terhadap kebenaran solusi. 4) Menarik kesimpulan dari pernyataan. 5) Memeriksa kesahihan suatu argumen. 6) Menemukan pola atau sifat dari gejala matematis untuk

Penguatan absolut pada sebuah antena didefenisikan sebagai perbandingan antara intensitas pada arah tertentu dengan intensitas radiasi yang diperoleh jika daya yang diterima oleh

Dari ketiga jenis serat tersebut memiliki sifat karakteristik dan kegunaan aplikasi yang berbeda-beda, diantaranya S glass memiliki sifat kekuatan tarik yang tinggi

Bandwidth suatu antena didefinisikan sebagai rentang frekuensi dimana kerja yang berhubungan dengan berapa karakteristik (seperti impedansi masukan, pola, beamwidth,

image plane pada gambar 2-2 terletak pada principal point.. Suatu titik pada ruang tiga dimensi dapat dinyatakan dalam dua sistem koordinat yang berbeda, yaitu sistem koordinat

Polarisasi antena merupakan orientasi perambatan radiasi gelombang elektromagnetik yang dipancarkan oleh suatu antena dimana arah elemen antena terhadap permukaan bumi

Sifat elektrik dari sel surya dalam menghasilkan energi listrik dapat diamati dari karakteristik listrik sel tersebut, yaitu berdasarkan arus dan tegangan yang dihasilkan

Dengan melihat bagian-bagian tersebut, dapat diartikan sifat orang yang sehat mentalnya yaitu dengan adanya keserasian fungsi-fungsi jiwa yang realtif sempurna, memiliki kemampuan