I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P PPSMIPPSMI
C
I
T
A
M
E
H
T
A
M
L
A
N
O
I
T
I
D
D
A
S
M
R
O
F
4
2
E
L
U
D
O
M
I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P I M S P P PPSMIPPSMIN
O
I
T
A
U
Q
E
C
I
T
A
R
D
A
U
Q
S
E
L
U
D
O
M
2 :
Q
U
A
D
R
A
T
I
C
E
Q
U
A
T
I
O
N
S
: n a h a r A . 1 Moduli n imengandung i itgapuluhsembliansoalan .Semuasoalanadalah . s ir e g g n I a s a h a b m a l a d . 2 Modu lmerangkum iilmakonsrtuk yangdiuij 3 K -Memahamii stliahmatemaitkdalambahasa I ngge irs 5 K -Menguasa ikonsrtukpengetahuan 6 K -Menguasa ikonsrtukkefahaman 7 K -Menguasa ikonsrtukkemahrian 8 K - Mengungkapkani deai/nformas idalambahasaI ngge irs . 3 Mu ird hendaklah menuils makluma t dri i dalam ke tras jawapan objekit f u lr e p a g u j d ir u M . n a k a i d e s i d memasitkanmakluma tkonsrtuk ,nombo rsoalandan m a l a d n a k a i d e s i d n a g n a u r m a l a d i d u r u g h e l o a c a b i d g n a y i tr e p e s n a l a o s h a l m u j . n a ij u m u l e b e s f it k e j b o n a p a w a j s a tr e k . 4 Bag isoalan objektfi ,anda pe lru menandakan j awapan dengan mengh tiamkan n a p a w a j n a h il i p pada piilhan j awapan A ,B ,C atau D pada ke tras j awapan .f it k e j b o : h o t n o C ? n a w i a h h a k a n a m g n a y , t u k ir e b a r a t n A . A Pokok B . Kambing C . Kereta D . P en . 5 Jawabsemuasoalan. i g n u d n a g n e m i n i l u d o M 13 halaman bercetak D A B C E. 1 Whichoft hef ollowingi st he quadraitcequaiton? A
x
24
x
7
B x2 3x2 C x3 2x2 0 D 2 1 0 x x . 2 Givent ha t(xa)(xb) 0 where x a or x b,t herefore aandbareknownas A va irables B factors C constants D roots . 3 Givent hat (x4)(x3) 0, then x 4 o rx 3 . . s t o o r f o t c u d o r p e h t d n i F A 43 B 4u3 C 4y3 D 43 . 4 Quadraitcequaitoncanbef ormed rfom tis r oots by x2 (sumofr oots)x+ 0 ) s t o o r f o t c u d o r p ( n o it a u q e e h t r o f s t o o r f o t c u d o r p e h t e n i m r e t e D x2 3x10 0. A - 01 B 1 0 C -3 D 3. 5 Whichoft hef ollowingi sw irtten i n generalf orm? A 3x24x9x2 0 B 2x27x24 0 C x25 4x D x2 2x10 . 6 Thequadraitcequa itonwtiht wogivenr ootscanbeobtainedby x ) s t o o r f o m u s ( x2 + (produc tofr oots) 0 n o it a u q e e h t r o f s t o o r f o m u s e h t e n i m r e t e D x23x10 0. A 1 0 B 1 0 C -3 D 3 . 7 Determinet het ypeofr ootso fquadra itc equaiton ,fi
b
24
a
c
!
0
A rea landdisitnctr oots B equalr oots C nor ealr oots D realr oots . 8 Whati st henex tstept o ifndt her ootso f(3x5)(x6) 0 ? A 3x=5 ro x=6 B 3x5=0 C x –6=0 D 3x2+13x+30=0. 9 Whicho fthef ollowingi sape frec tsquare? A x2p2 B x2(pq)xpq C x2(q p)xpq D
xp2 . 0 1 5xn3x8 0 i saquadraitcequaiton. e n i m r e t e D thevalueo fn. A -2 B 0 C 2 D 3 . 1 1 Givent hegeneralf ormo fquadraitcequaiton ,ax2 bxc 0. f o s e u l a v e h t e n i m r e t e D a ,band c rfom x23x5 0. A a=0,b=3,c=5 B a=0,b=5,c=3 C a=1,b=3,c= 5 D a=1,b= 5,c= 3 . 2 1 Thestepso fcompleitngt hesquaremethodf o rx26x 15 are 2 2 2 6x ( 3) 15 ( 3) x 2 24 ) (xp f o e u l a v e h t e n i m r e t e D p. A - 3 B 3 C 6 D 9. 3 1 Whichi st heco rrec tquadraitcf ormulat o ifndt he r ootsi nquadraitcequaiton? A a c a b b 2 4 2 r B a c a b b 2 4 2 r C a c a b b 2 4 2 r D a c a b b 2 4 r . 4 1 Whati st henex tstept osolveequa iton 2x2 x 15 byusingcompleitngt he . d o h t e m e r a u q s A Dividebothsideby 1 B Dividebothsideby 2 C Dividebothsideby 15 D Dividebothsideby 2 . 5 1 Findthesumofr oots fi 2and6 ea er t h roots fo et h quadraitcequaiton. A 3 B 4 C 8 D 1 2 . 6 1 Thequadraitcequa itondoesno thaver ealr oots. ? s t o o r f o s e p y t e h t e n i m r e t e d o t t c e rr o c s i g n i w o ll o f e h t f o h c i h W A b24ac!0 B b24ac0 C b24ac 0 D b24acd0
. 7 1 2 da -3 en a r ther ootso fquadraitc equaiton (xp)(x3) 0. f o e u l a v e h t d n i F p A 3 B 2 C -2 D -3 . 8 1 Express 3x22 2x i nt hegeneralf orm A 3x2 2x2 B 3x222x 0 C 3x22x 2 D 3x22x2 0 . 9 1 Basedont hegeneralf ormi n quadra itcequa iton ,determinet hevalueso fa ,b d n a cf o rx23x 5. A a=1, b=3, c -5 = B a=0, b=5, c=3 C a=1, b=3, c=5 D a=1, b - ,= 5 c=3
. 0 2 Whichoft hef ollowingi sco rrectt osolve 4x23x2 0 ,byusingquadraitc a l u m r o f 2 4 2 c a b b x a r A 3 (3)2 4(4)( 2) ) 4 ( 2 x r B 3 ( 3)2 4( 2)(4) ) 3 ( 2 x r C 3 (3)2 4(4)( 2) ) 4 ( 2 x r D 3 ( 3)2 4( 2)(4) ) 3 ( 2 x r . 1 2 Fromt hedisc irminan to faquadra itcequa iton b24ac ,determinet het ypeo f r o f s t o o r 4x220x25 0 A equalr oots B disitnctr oots C nor ealr oots . 2 2 Findt hevalueso fa ,bandc whent heequaiton 4x2px3x 3 i sw irtteni nt he . m r o f l a r e n e g A a=1,b=p, c=3 B a=1,b=p+3,c -3 = C a=1 ,b=p+3, c=3 D a=1 ,b ,=3 c 3 =
. 3 2 Whichi sco rrectt odeterminet het ypesofr ootsf or x22x2 0 byusingt he t n a n i m ir c s i d b24ac. A (2)2 - 4(1 ()2) B ( )1 2 -4(2 ()- )2 C (2)2 -4(1 ()- )2 D (1)2 - ( -4 2 ()2) . 4 2 Determinet heco rrec tstept osolve x28x2 0 bycompleitngt hesquare . d o h t e m A 2 0 2 8 2 8 8 2 2 2 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § x x B 2 0 2 8 2 8 8 2 2 2 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § x x C 0 2 2 8 2 2 ¸ ¹ · ¨ © § x x D 0 2 2 8 2 2 ¸ ¹ · ¨ © § x x . 5 2 Given D and E are et h roots fo et h quadraitcequaiton 2 ( )x 0 x D E DE . . 4 d n a 2 s t o o r e h t s a h h c i h w n o it a u q e c it a r d a u q a m r o F A x26x8 0 B x28x6 0 C x26x8 0 D x28x6 0 . 6 2 Thevalueo fx rfom (x3)(x2) 0 canbedeterminedby A x3 0 o rx2 0 B x3 x2
. 7 2 Formaquadraitcequaitonwtihr oots-3and 7. A x24x21 0 B x24x21 0 C x24x21 0 D x24x21 0 . 8 2 Thequadraitcequa iton x24mx2 0 hast wodifferentr oots . f o e g n a r e h t d n if o t t c e rr o c s i g n i w o ll o f e h t f o h c i h W m? A 16m28 0 B 4m280 C 16m28!0 D 4m28!0 . 9 2 Thef ollowingaret hestepst osolvet he quadra itcequaiton2x28x7 0 ,using . d o h t e m e r a u q s e h t g n it e l p m o c 2 7 4 2 x x 2 2 2 2 2 7 2 4 x x ) P ( .. … … … … … … … … … … Whati sstepP? A
4 2 7 22 x B 4 2 7 2 x C 4 2 7 42 x D 4 2 7 4 x. 0 3 Given
x
1
x
4
p
x
23
x
4
.Findt hevalueofp. A 1 B - 1 C 3 D – 4 . 1 3 fIt hequadraitcequa iton mx24x2 0 hast woequalr oots ,ifndt hevalueo fm. A 1 B 2 C 8 D 1 6 . 2 3 Given x 2 ist her oo toft hequadra itcequa iton x22xk 0. f o e u l a v e h t d n i F k. A 8 B -8 C 0 D -2 . 3 3 p and q aret her ootsf o rquadraitcequaiton 2x2 8x3 0 . ? e u rt s i g n i w o ll o f e h t f o h c i h W A pq 4 and 2 3 q p B pq 8 and pq 3 C pq 4 and 3 2 q p D pq 8 and pq 3. 4 3 Whichi st heco rrec tstept osolvet he quadraitcequaiton 3x2 7x6 0 byusing ? d o h t e m e r a u q s e h t g n it e l p m o c A 2 0 6 7 6 7 3 7 2 2 2 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § x x B 6 0 6 7 6 7 3 7 3 2 2 2 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § x x C 2 0 6 7 6 7 3 7 2 2 2 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § x x D 6 0 6 7 6 7 3 7 3 2 2 2 ¸ ¹ · ¨ © § ¸ ¹ · ¨ © § x x . 5 3 Solvethequadraitcequaiton x24x3 0. A 4and3 B 1and3 C -4and3 D -1and-3 . 6 3 Followingaret hestepst osolvet hequadra itcequa iton x24x 5 by . s p e t s e h t e g n a rr a e R . d o h t e m n o it a z ir o t c a f .i Facto irsedcompletely (x5)(x1) .i i Changet ogeneralf orm x24x5 0 .i ii Equailseeachf actort ozero . v i Solve x5 0 or x1 0 A i ,ii ,ii,i vi B i ,i ,i,i ii vi C ,i ,iii ,ii vi D i ,i,i ii ,i vi
. 7 3 Whyi st heequaiton x3x2x 0 tno aquadraitcequaiton? A Thehighes tpower fo xi s1 B Thehighes tpower fo xi s2 C Thehighes tpower fo xi s3 . 8 3 Whichoft hef ollowingi st hebes tanswert oi dentfiyt hequadraitcequaiton 2 x 5 0 x ? A Thehighes tpower fo xi s2. B Theequaitoni nvolvesonlyoneunknown. C Thehighes tpowe ro fxi s2and i nvolvesonlyoneunknown. D Thehighes tpowe ro fxi s2and i nvolvesmoret hanoneunknown. . 9 3 e v l o s o t d e s u s i d o h t e m h c i h w , e l b a t e h t m o r F 4x23x2 0 A Facto irsaiton B Compleitngt hesquare C Quadraitcformula N O I T S E U Q F O D N E PAPER 2 bx c 0 x a a b c b24ac 0 x 2 3 2 0 4x x 4 3 -2 4 1 0.425o r-1.175
16 7 1 8 1 9 1 0 2 A B C D E A B C D E A B C D E A B C D E A B C D E 21 2 2 3 2 4 2 5 2 A B C D E A B C D E A B C D E A B C D E A B C D E 26 7 2 8 2 A B C D E A B C D E A B C D E n a t a k g n i T / n u h a T : 4 MataPelajaran: MATEMATIKTAMBAHAN . A J A H A S B B U A T A B 2 L I S N E P N A K A N U G P A I T N A K U T N E T -TIAPTANDAI TUHITAMDANMEMENUH IKESELURUHANRUANG. D A P AMKANHINGGAHABISMANA-MANATANDAYANGANDAUBAH A W A J F U R U H T U K I G N E M H A W A B I D N A P A W A J N A K M A T I H A L I S PANYANGANDAPILIH A I S Y A L A M N A R A J A L E P N A I R E T N E M E K F I T K E J B O N A P A W A J S A T R E K k it s o n g a i D n a ij U 1 5 1 2 5 3 5 4 5 5 5 A B C D E A B C D E A B C D E A B C D E A B C D E 6 5 7 5 8 5 9 5 0 6 A B C D E A B C D E A B C D E A B C D E A B C D E 46 7 4 8 4 9 4 0 5 A B C D E A B C D E A B C D E A B C D E A B C D E 1 4 1 2 4 3 4 4 4 5 4 A B C D E A B C D E A B C D E A B C D E A B C D E 1 3 2 3 3 3 4 3 5 3 A B C D E A B C D E A B C D E A B C D E A B C D E 36 7 3 8 3 9 3 0 4 A B C D E A B C D E A B C D E A B C D E A B C D E 1 2 3 4 5 A B C D E A B C D E A B C D E A B C D E A B C D E 6 7 8 9 0 1 A B C D E A B C D E A B C D E A B C D E A B C D E 1 1 2 1 3 1 4 1 5 1 A B C D E A B C D E A B C D E A B C D E A B C D E k u r t s n o K No .Soalan Jumlah n a l a o S BGliaagnaga lDnjiSaowaalabn KegunaanGuru 3 K 5 K 6 K 7 K 8 K 1 - 7 8 - 6 1 7 1 - 5 2 6 2 - 5 3 6 3 - 9 3 7 9 9 10 4 1 2 3 4 5 6 7 8 : r a j a l e P a m a N e S a m a N kolah: Modul: 2