• Tidak ada hasil yang ditemukan

Kompresor Dan Sistim Udara Tekan

N/A
N/A
Protected

Academic year: 2021

Membagikan "Kompresor Dan Sistim Udara Tekan"

Copied!
21
0
0

Teks penuh

(1)

KOMPRESOR DAN SISTIM UDARA TEKAN

KOMPRESOR DAN SISTIM UDARA TEKAN

I.

I. TUJUAN TUJUAN PERCOBAANPERCOBAAN

Setelah melakukan percobaan mahasiswa diharapkan dapat: Setelah melakukan percobaan mahasiswa diharapkan dapat: 1.

1. Mengenal bagian-bagian Mengenal bagian-bagian kompresor dan kompresor dan sistem udara tekansistem udara tekan 2.

2. Dapat mengoDapat mengoperasikan kompresi perasikan kompresi di Labdi Laboratorium Utilitasoratorium Utilitas 3.

3. Dapat menghitung Dapat menghitung secara langsung efisiensi isotermal secara langsung efisiensi isotermal kompresorkompresor II.

II. ALAT ALAT YANG YANG DIGUNAKANDIGUNAKAN Kompresor

Kompresor III.

III. DASAR DASAR TEORITEORI

Bila tekanan fluida mampu mampat dinaikkan secara adiabatik, suhu Bila tekanan fluida mampu mampat dinaikkan secara adiabatik, suhu fluida juga naik. Kenaikan suhu menimbulkan beberapa kerugian, karena volume fluida juga naik. Kenaikan suhu menimbulkan beberapa kerugian, karena volume spesifik fluida naik bersama suhu, kerja yang diperlukan untuk memampatkan spesifik fluida naik bersama suhu, kerja yang diperlukan untuk memampatkan satu pon fluida akan menjadi lebih besar jika kompresi dilakukan secara isotermal. satu pon fluida akan menjadi lebih besar jika kompresi dilakukan secara isotermal. 3.1 Prinsip Kerja

3.1 Prinsip Kerja

Kompresor adalah peralatan mekanik yang digunakan untuk memberikan Kompresor adalah peralatan mekanik yang digunakan untuk memberikan energi kepada fluida gas/udara, sehingga gas/udara dapat mengalir dari suatu energi kepada fluida gas/udara, sehingga gas/udara dapat mengalir dari suatu tempat ke tempat lain secara kontinyu.

tempat ke tempat lain secara kontinyu.

Penambahan energi ini bisa terjadi karena adanya gerakan mekanik, Penambahan energi ini bisa terjadi karena adanya gerakan mekanik, dengan kata lain fungsi kompresor adalah mengubah energi mekanik (kerja) ke dengan kata lain fungsi kompresor adalah mengubah energi mekanik (kerja) ke dalam energi tekanan (potensial) dan energi panas yang tidak berguna.

dalam energi tekanan (potensial) dan energi panas yang tidak berguna.

Sedangkan kompresor sentrifugal, termasuk dalam kelompok kompresor Sedangkan kompresor sentrifugal, termasuk dalam kelompok kompresor dinamik adalah kompresor dengan prinsip kerja mengkonversikan energi dinamik adalah kompresor dengan prinsip kerja mengkonversikan energi kecepatan gas/udara yang dibangkitkan oleh aksi/gerakan impeller yang berputar kecepatan gas/udara yang dibangkitkan oleh aksi/gerakan impeller yang berputar dari energi mekanik unit penggerak menjadi energi potensial (tekanan) di dalam dari energi mekanik unit penggerak menjadi energi potensial (tekanan) di dalam diffuser.

(2)

3.2 Karakteristik 3.2 Karakteristik

Karakteristik kompresor sentrifugal secara umum sebagai berikut : Karakteristik kompresor sentrifugal secara umum sebagai berikut : - Aliran discharge uniform.

- Aliran discharge uniform.

- Kapasitas tersedia dari kecil sampai besar. - Kapasitas tersedia dari kecil sampai besar.

- Tekanan discharge dipengaruhi oleh density gas/udara. - Tekanan discharge dipengaruhi oleh density gas/udara.

- Mampu memberikan unjuk kerja pada efisiensi yang tinggi dengan - Mampu memberikan unjuk kerja pada efisiensi yang tinggi dengan

 beroperasi pada range tekanan dan kapasitas yang besar.  beroperasi pada range tekanan dan kapasitas yang besar. 3.3 Bagian Utama Dan Fungsinya

3.3 Bagian Utama Dan Fungsinya

Kompresor terdiri dari beberapa bagian yang fungsinya satu dengan yang Kompresor terdiri dari beberapa bagian yang fungsinya satu dengan yang lain saling berhubungan, diantaranya adalah :

lain saling berhubungan, diantaranya adalah : a. Bagian Statis

a. Bagian Statis

 Casing merupakan bagian paling luar kompresor yang berfungsi :Casing merupakan bagian paling luar kompresor yang berfungsi :

- Sebagai pelindung terhadap pengaruh mekanik dari luar. - Sebagai pelindung terhadap pengaruh mekanik dari luar.

- Sebagai pelindung dan penumpu/pendukung dari bagian-bagian yang - Sebagai pelindung dan penumpu/pendukung dari bagian-bagian yang

 bergerak.  bergerak.

- Sebagai tempat kedudukan nozel suction dan discharge serta bagian diam - Sebagai tempat kedudukan nozel suction dan discharge serta bagian diam

lainnya. lainnya. InleInle

 Inlet wall adalah diafram (dinding penyekat) yang dipasang pada sisiInlet wall adalah diafram (dinding penyekat) yang dipasang pada sisi

suction sebagai inlet channel dan berhubungan dengan inlet nozle. suction sebagai inlet channel dan berhubungan dengan inlet nozle. Karena berfungsi sebagai saluran gas masuk pada stage pertama, maka Karena berfungsi sebagai saluran gas masuk pada stage pertama, maka meterialnya harus tahan terhadap abrasive dan erosi.

meterialnya harus tahan terhadap abrasive dan erosi.

 Guide vane di tempatkan pada bagian depan eye impeller pertama padaGuide vane di tempatkan pada bagian depan eye impeller pertama pada

 bagian

 bagian suction suction (inlet (inlet channel). channel). Fungsi Fungsi utama utama guide guide vane vane adalahadalah mengarahkan aliran agar gas dapat masuk impeller dengan distribusi yang mengarahkan aliran agar gas dapat masuk impeller dengan distribusi yang merata.

merata.

Konstruksi vane ada yang fixed dan ada yang dapat di atur (movable) Konstruksi vane ada yang fixed dan ada yang dapat di atur (movable)  posisi sudutnya dengan tujuan agar operasi kompresor dapat bervariasi dan  posisi sudutnya dengan tujuan agar operasi kompresor dapat bervariasi dan

dicapai effisiensi dan stabilitas yang tinggi. dicapai effisiensi dan stabilitas yang tinggi.

 Eye seal ditempatkan di sekeliling bagian luar eye impeller dan di tumpuEye seal ditempatkan di sekeliling bagian luar eye impeller dan di tumpu

oleh inlet wall. Eye seal selalu berbentuk satu set ring logam yang oleh inlet wall. Eye seal selalu berbentuk satu set ring logam yang mengelilingi wearing ring impeller. Berfungsi untuk mencegah aliran balik mengelilingi wearing ring impeller. Berfungsi untuk mencegah aliran balik

(3)

dari gas yang keluar dari discharge impeller (tekanan tinggi) kembali masuk ke sisi suction (tekanan rendah).

 Diffuser berfungsi untuk merubah energi kecepatan yang keluar dari

discharge impeller menjadi energi potensial (dinamis). Untuk multi stage dipasang diantara inter stage impeller.abirinth Seal  Labirinth seal digunakan untuk menyekat pada daerah : - Shaft dan diafragma sebagai shaft seal.

- Casing dan shaft sebagai casing seal.

 Return bend sering juga disebut crossover yang berfungsi membelokan

arah aliran gas dari diffuser ke return channel untuk masuk pada stage/impeller berikutnya. Return bend di bentuk oleh susunan diafragma yang dipasang dalam casing.

 Return channel adalah saluran yang berfungsi memberi arah aliran gas dari

return bend masuk ke dalam impeller berikutnya. Return channel ada yang dilengkapi dengan fixed vane dengan tujuan memperkecil swirl (olakan aliran gas) pada saat masuk stage berikutnya sehingga dapat memperkecil vibrasi.

 Diafram adalah komponen bagian dalam kompresor yang berfungsi

sebagai penyekat antar stage dan tempat kedudukan eye seal maupun inter stage seal.

 Dengan pemasangan diafragma secara seri, akan terbentuk tiga bagian

 penting, yaitu diffuser, return bend, dan return channel. Diafragma ditempatkan didalam casing dengan hubungan tongue-groove sehingga mudah dibongkar pasang.

 b. Bagian Dinamis

 Shaft atau poros transmisi digunakan untuk mendukung impeller dan

meneruskan daya dari pengerak ke impeller. Untuk penempatan impeller  pada shaft di gunakan pasak (key) dan pada multi stage, posisi pasak di  buat selang-seling agar seimbang.

(4)

Sedangkan jarak antar stage dari impeller di gunakan shaft sleeve, yang  berfungsi sebagai pelindung shaft terhadap pengaruh korosi, erosi dan abrasi dari aliran dan sifat gas dan untuk penempatan shaft seal diantara stage impeller.

 Impeller berfungsi untuk menaikan kecepatan gas dengan cara berputar,

sehingga menimbulkan gaya. Hal ini menyebabkan gas masuk/mengalir dari inlet tip (eye impeller) ke discharge tip. Karena adanya perubahan  jari-jari dari sumbu putar antara tip sudu masuk dengan tip sudu keluar

maka terjadi kenaikan energi kecepatan.

 Bearing adalah bagian internal kompresor yang berfungsi untuk

mendukung beban radial dan aksial yang berputar dengan tujuan memperkecil gesekan dan mencegah kerusakan pada komponen lainnya. Pada kompresor sentrifugal terdapat dua jenis bearing, yaitu :

- digunakan untuk mendukung beban dengan arah radial (tegak lurus poros) -digunakan untuk mendukung beban kearah aksial (sejajar poros).

 Oil film seal merupakan salah satu jenis seal yang digunakan dalam

kompresor. Oil film seal terdiri dari satu atau dua seal ring. Pada seal jenis ini diinjeksikan minyak (oil) sebagai penyekat/perapat (seal oil) antara kedua seal ring yang memiliki clearence sangat kecil terhadap shaft. Tekanan masuk seal oil dikontrol secara proporsional berdasarkan  perbedaan tekanan sekitar 5 psi diatas tekanan internal gas dan perbedaan

tekanan oil-gas selalu dipertahankan.

Sehubungan dengan kondisi operasi tidak selalu konstan, maka untuk mempertahankan perbedaan tekanan antar seal oil dan gas dapat sesuai dengan kondisi operasi, digunakan overhead tank.

Sistem overhead tank adalah memasang tanki penampung seal oil dengan ketinggian tertentu diatas kompresor dan level seal oil dalam tanki dikontrol melalui level control operated valve, kemudian tekanan gas stream dimasukan kedalam tanki melalui bagian atas (top) sehingga memberikan tekanan pada  permukaan seal oil.

(5)

Dengan sistem overhead tank, maka head static seal oil secara otomatis dapat menyesuaikan dengan kondisi operasi kompresor, sehingga perbedaan tekanan oil-gas proses dapat dipertahankan konstan.

Gambar berikut menunjukan sistim overhead tank untuk seal oil pada oil film shaft seal with cylindrical bushing.

Unjuk kerja kompresor sentrifugal berkaitan dengan beberapa parameter utama, yaitu :

 Head  Efisiensi  Kapasitas  Daya

Untuk dapat mengetahui harga masing-masing parameter berdasarkan kondisi operasi, maka digunakan berbagai rumus perhitungan dan proses pendekatan. Kompresor sentrifugal didalam proses kerjanya dapat ditinjau dengan menggunakan dua pendekatan :

1. Proses adiabatic (isentropic), yaitu proses dengan menggunakan asumsi ideal, dimana proses berlangsung pada entropi konstan (tidak ada panas yang masuk dan keluar) meskipun pada kenyataannya energi panas tidak  bisa dirubah secara keseluruhan menjadi kerja, karena ada kerugian.

2. Proses Politropik adalah proses kerja aktual yang dihasilkan oleh kompresor itu sendiri.

1. Head

1.1 Head isentropik

Head isentropik adalah kerja per satuan massa yang diperlukan oleh kompresor pada proses isentropic.

(6)

1.2. Head Politropik

Head politropik adalah kerja per satuan massa yang diperlukan oleh kompresor pada proses polytropik reversible dengan kondisi gas masuk dan keluar kompresor yang sama.

2. Efisiensi

2.1. Efisiensi isentropik

Effisiensi isentropic adalah perbandingan antara head isentropic dengan head aktual.

2.2. Effisiensi Politropik

Efisiensi politropik dari sebuah kompresor merupakan perbandingan antara head politropik dengan head isentropik.

3. Kapasitas

Kapasitas kompresor sentrifugal dapat dinyatakan dalam berbagai bentuk seperti :

- Inlet volume flow (ICFM) atau actual inlet volume flow (ACFM).

- Standard inlet volume flow (SCFM) pada kondisi standard yaitu pada tekanan 14,7 psia dan suhu 60oF = 520o R.

- Mass flow rate : kapasitas yang dihitung dalam laju aliran massa dengan satuan lbm/minute.

3.4 Parameter Yang Mempengaruhi Unjuk Kerja

Unjuk kerja kompresor centrifugal dipengaruhi oleh beberapa  parameter, antara lain sebagai berikut :

1. Pengaruh Suhu Gas Masuk (T1)

 Bila suhu gas masuk naik menyebabkan :

 Kerapatan massa gas menurun pada kapasitas yang sama.  Laju aliran massa yang dihasilkan menurun.

 Daya yang dibutuhkan oleh kompresor naik.  Pressure ratio menurun.

(7)

2. Pengaruh Tekanan Gas Masuk (P1)

Pada kompresor yang beroperasi pada putaran konstan dan laju aliran volume yang sama, maka penurunan tekanan gas masuk menyebabkan :

 Laju aliran gas keluar kompresor turun.  Tekanan gas keluar kompresor turun.  Kebutuhan daya kompresor turun.

Untuk menjaga tekanan gas keluar kompresor yang konstan, maka kompresor diharuskan beroperasi dengan putaran tinggi, akibatnya daya yang dibutuhkan oleh kompresor bertambah.

3. Pengaruh Jenis Gas (S.G)

Bila jenis gas berubah komposisinya dan spesific gravity (S.G) gas turun menyebabkan :

 Laju aliran massa menurun.

 Daya yang dibutuhkan kompresor menurun.

4. Pengaruh Faktor Kompresibelitas (Z)

Faktor kompresibelitas gas sangat dipengaruhi oleh  jenis/komposisi gas dan tekanan dan temperatur.

 Bila Z naik dan kapasitas konstan menyebabkan :  Daya yang diperlukan kompresor naik.

 Pressure ratio menurun.  Dan begitu pula sebaliknya.

5. Pengaruh Putaran Kompresor (n)

Perubahan putaran kompresor akan berpengaruh banyak terhadap karakteristik kompresor.

 Dengan kenaikan putaran kompresor mengakibatkan :

  Naiknya kapasitas/laju aliran massa sebanding dengan kenaikan

 putarannya.

(8)

  Naiknya kebutuhan daya yang diperlukan sesuai dengan

 perbandingan putaran pangkat 3.

 Dan begitu pula sebaliknya.

6. Pengaruh Perubahan Diameter Luar Impeler (D2)

Perubahan ukuran diameter luar impeler mempunyai pengaruh yang sama dengan perubahan putaran. Bila ukuran diameter luar impeler diperbesar dimana kompresor beroperasi pada putaran tetap, maka menyebabkan :

 Kenaikan kapasitas sebanding dengan perbandingan kenaikan

diameter.

 Kenaikan head sebanding dengan perbandingan kenaikan diameter

impeler pangkat 2.

 Kenaikan daya yang diperlukan kompresor sesuai dengan

 perbandingan kenaikan diameter impeller pangkat 3.

 Dan begitu pula sebaliknya.

7. Pengaruh Laju Aliran Massa (m)

Pada kondisi awal yang sama, maka kenaikan laju aliran massa mengakibatkan :

 Kenaikan tenaga yang diperlukan kompresor. Dan begitu pula

sebaliknya. IV. PROSEDUR KERJA

1. Membuka semua aliran keluar kompresor yang menuju ke sistem  pengguna

2. Menghidupkan kompresor

3. Mencatat tekanan masuk yang terdapat pada indikator tekanan bagian masuk

4. Mencatat tekanan keluar yang terdapat indikator tekanan bagian keluar 5. Mencatat laju alir udara pada flow meter

(9)

V. DATA PENGAMATAN Tabel 1. Pengamatan Perlakuan

1 lb/in2 = 6,895 kPa

Tabel 2. Spesifikasi alat kompresor.

Tipe House Power Displacement Max Pressure Tank size Kompresor Hp Kw Cs/m L/m Psig Kg/cm Liter galon

7 EIO3 10 7,5 43 1217 188 13 230 60

Tabel 3. Konversi

Pmasuk(P1)(lb/in ) Kpa Pkeluar(P2)(lb/in ) Kpa

24 165,48 10 68,95 40 275,8 20 137,9 54 372,33 50 344,75 110 758,45 100 689,5 Run Waktu ( menit )

Parameter yang dicatat Efisiensi (%) Pmasuk (P1)(lb/in ) Pkeluar (P2)(lb/in )

1 2 24 10 8,067

2 4 40 20 4,032

3 6 54 50 2,688

(10)

VI. PERHITUNGAN 1 kPa = 0,00986 atm 1 atm =

   

 

 

= 101,4199 kPa Tekanan awal ( Po ) = Tekanan udara yang masuk

= 1 atm

= 101,4199 kPa = 101,42 kPa

Volume tangki kompresor = 230 liter = 230 dm3 = 0,23 m3 Udara masuk kompresor ( T1 ) = 29oC

α

 =





→ Cp = Cv + R  =





=





a. Kapasitas Kompressor

 Pada Run 1, t = 2 menit

 [

]



 [

]



 

   [

]



0,41667

 



 





T2 = 0,779 x 29oC T2 = 22,5822oC Maka :

 







(



)

(11)

 

 

 

 





= 5,8467 x 0,115 x 0,9787 = 0,65 m3/menit

 Pada Run 2, t = 4 menit

 [

]



 [

]



 

   [

]



0,5

 



 





T2 = 0,8203 x 29oC T2 = 23,79oC Maka :

 







(



)

 

 

 

 





= 5,8467 x 0,0575 x 0,9827 = 0,3304 m3/menit

 Pada Run 3, t = 6 menit

 [

]



(12)

 [

]



 

   [

]



0,926

 



 





T2 = 0,9783 x 29oC T2 = 28,36oC Maka :

 







(



)

 

 

 

 





= 5,8467 x 0,0383 x 0,998 = 0,2234 m3/menit

 Pada Run 4, t = 8 menit

 [

]



 [

]



 

   [

]



0,91

 



 





T2 = 0,9734 x 29oC

(13)

T2 = 28,23oC Maka :

 







(



)

 

 

 

 





= 5,8467 x 0,0288 x 0,9974 = 0,1678 m3/menit

Kapasitas Kompresor Rata-rata

 







 



= 0,342875 m3/menit  b. Daya Kompresor

Karena Ws tidak dipengaruhi oleh waktu, maka usaha yang digunakan untuk koefisien bernilai sama.

 α

α (









)





      



( 

 )





= 133,2114 x 0,545 = 72,59 KJ

Maka Daya Kompresor

 Pada Run 1, t = 2 menit = 120 detik

 

  

 

 

(14)

 Pada Run 2, t = 4 menit = 240 detik

 

  

 

 

= 0,3024 KW

 Pada Run 3, t = 6 menit = 360 detik

 

  

 

 

= 0,2016 KW

 Pada Run 4, t = 8 menit = 480 detik

 

  

 

 

= 0,1512 KW

Daya Kompresor Rata-Rata

 

  

c. Efisiensi Kompresor  Pada Run 1

 







  

  

  

(15)

 Pada Run 2

 







  

  

  

 Pada Run 3

 







  

  

  

 Pada Run 4

 







  

  

  

Efisiensi Kompresor Rata-Rata

 







  

  



(16)

VII. ANALISA PERCOBAAN

Untuk Percobaan kali ini, kami melakukan percobaan mengenai kompresor dan sistem udara tekan yang bertujuan agar kami dapat mengenal bagian-bagian kompresor dan sistem udara tekan, mengoperasikan kompresor. Kompresor merupakan peralatan mekanik yang digunakan untuk mengalirkan fluida gas/udara dari suatu tempat ke tempat lain berdasarkan perbedaan tekanan. Sedangkan sistem udara tekan merupakan sistem udara yang dihasilkan dari proses kompresi (pemampatan) gas oleh kompresor.

Komponen utama kompresor yaitu katup searah, peti gasket, piston dan cincin piston, mantel air pendingin dan roda daya. Sistem udara tekan  pada kompresor juga terdapat bagian filter yang berguna untuk mencegah

debu masuk kompresor, supaya alat tidak mudah mengalami kerusakan akibat debu yang menyelubungi komponen alat.

Berdasarkan data pengamatan dan perhitungan yang dilakukan, didapatkan kapasitas dan daya kompresor denngan cara mengamati nilai tekanan masuk dan tekanan keluar. Kemudian dengan rumus-rumus menghitung kapasitas kompresor, daya kompresor dan efisiensi kompresor dapat diketahui bahwa semakin lama waktu sistem pemampatan gas, maka akan semakin besar parameter tekanan yang didapat. Namun ini tidak  berlaku dengan efisiensi kompresor bahwa semakin lama waktu sistem  pemampatan gas, efisiensi kompresor akan semakin kecil, dimana efisiensi dapat dibandingkan dengan daya kompresor praktek-teori. Lalu didapatkan lah nilai kapasitas kompresor sebesar 0,342879 m3/menit. Kapasitas kompresor adalah nilai maksimal massa persatuan waktu suatu kompresor dapat menampung dan mengalirkan suatu fluida gas/udara. Sedangkan daya kompresor rata-rata diperoleh senilai 0,31505 KW yaitu usaha persatuan waktu yaitu usaha yanng dilakukan kompresor persatuan waktu. Dan efisiensi kompresor rata-rata sebesar 4,2 %.

(17)

VIII. KESIMPULAN

Setelah melakukan percobaan ini, dapat disimpulkan :

- Kompresor adalah peralatan mekanik yang digunakan untuk mengalirkan fluida gas/udara berdasarkan perbedaan tekanan dari suatu tempat ke tempat lain.

- Sistem udara tekan merupakan sistem udara yang dihasilkan dari  proses kompresi (pemampatan) gas oleh kompresor.

- Kapasitas kompresor rata-rata = 0,342879 m3/menit Daya kompresor rata-rata = 0,31505 KW

Efisiensi kompresor rata-rata = 4,2 %

- Semakin lama kompresor bekerja maka tekanan akan semakin meningkat dan daya yang diberikan akan semakin menurun.

(18)

DAFTAR PUSTAKA

Tim. 2013.  Penuntun Praktikum Utilitas. Palembang: Politeknik Negeri Sriwijaya.

http://rifkyanindika-fkm10.web.unair.ac.id/artikel_detail-50314-Catatan%20Kuliah-Kompresor%20Sentrifugal.html

(19)

GAMBAR ALAT

(20)

LAPORAN TETAP UTILITAS

KOMPRESOR DAN SISTIM UDARA TEKAN

Oleh : Kelompok 3

Dedek Okta Wijaya (061130400292) Dzaar Alghiffari (061130400293) Fitrie Cantate Simangunsong (061130400296) Mariani Sihombing (061130400302) M. Nur Arifin (061130400303) Putri Pratiwi (061130400306) Sherren Devykha Yandha (061130400310)

Yati (061130400312)

5 KA

Dosen Pembimbing: Ir. H. M. Yerizam, M.T.

POLITEKNIK NEGERI SRIWIJAYA

PALEMBANG

(21)

LAPORAN TETAP UTILITAS

WATER TREATMENT

Oleh : Kelompok 3

Dedek Okta Wijaya (061130400292) Dzaar Alghiffari (061130400293) Fitrie Cantate Simangunsong (061130400296) Mariani Sihombing (061130400302) M. Nur Arifin (061130400303) Putri Pratiwi (061130400306) Sherren Devykha Yandha (061130400310)

Yati (061130400312)

5 KA

Dosen Pembimbing: Ir. A. Husaini, M.T.

POLITEKNIK NEGERI SRIWIJAYA

PALEMBANG

Gambar

Tabel 2. Spesifikasi alat kompresor.
GAMBAR ALAT

Referensi

Dokumen terkait

Kompresor udara di kapal merupakan salah satu mesin bantu penting untuk berbagai keperluan dan aktivitas di kapal, seperti untuk menghidupkan mesin induk kapal, membantu

Kompresor adalah alat mekanik yang berfungsi untuk meningkatkan tekanan fluida mampu mampat, yaitu gas atau udara.tujuan meningkatkan tekanan dapat untuk

variasi kecepatan putaran kompresor pada sistem refrigerasi yang telah dimodifikasi dengan kecepatarn putaran kompresor 1800 rpm, 2100 rpm, 2400 rpm, 2700 rpm, dan 3000 rpm

Kompresor dalam pengoperasian sering mengalami gangguan yang menyebabkan kompresor tidak bekerja secara optimal. Sehingga dalam memproduksi udara yang dihasilkan

Untuk menggambarkan potensi besar pemulihan panas udara tekan yang belum dimanfaatkan, diperkirakan bahwa teknologi pemulihan panas kompresor dapat menghemat 1,99% dari total

Revitalisasi panel kompresor udara Instalasi Radiometalurgi merk INGERSOLL RAND model MH 110 /150 kW di gedung MES Instalasi Radiometalurgi sangat perlu

Kompresor adalah alat mekanik yang berfungsi untuk meningkatkan tekanan fluida mampu mampat, yaitu gas atau udara.tujuan meningkatkan tekanan dapat untuk mengalirkan

37 Tabel 4.24 Hasil Perhitungan Efisiensi Volumetrik Kompresor Saat Pengoperasian Safety Valve Terbuka Pada Kecepatan Kompresor 1000 Rpm 38 Tabel 4.25 Hasil