• Tidak ada hasil yang ditemukan

SOAL BIOSTAT

N/A
N/A
Protected

Academic year: 2021

Membagikan "SOAL BIOSTAT"

Copied!
18
0
0

Teks penuh

(1)

1. Suatu variabel random X mempunyai fungsi probabilitas f(x) = 1/3

pada interval 1

x

4

a. Tunjukkan bahwa luas daerah dibawah kurva f sama dengan 1.

f ( x )=

1

3

1 4

1

3

dx=

[

1

3

x

]

4

1

=

4

3

1

3

=1

b. Hitunglah P(1,5 < x < 3)

1.5 3

1

3

dx=

[

1

3

x

]

3

1.5

=

3

3

1,5

3

=0.5

c. Hitunglah P( x < 2,5)

1 2,5

1

3

dx=

[

1

3

x

]

2.5

1

=

2.5

3

1

3

=0.5

d. Hitunglah P(x

3,0)

3 4

1

3

dx=

[

1

3

x

]

4

3

=

4

3

3

3

=

1

3

e. Hitung F(x), kemudian gunakan menghitung P( x < 2,5)

f

(

x

)

dx=¿

¿

1 4

1

3

dx = 1≤ x≤4

=

1

a

x |

4

1

=

1

3

4−

1

3

1

=

4

3

1

3

= 1

Maka P( x < 2,5)

f ( x ) dx=

¿

¿

1 2.5

1 dx

= X |

2.5

1

(2)

= 2.5 – 1

= 1.5

f. Hitung nilai E(X)

E(x )=

1 4

1

3

x dx =

1

6

x

2

|

4

1

=

8

3

1

6

=

15

16

2. Probabilitas bahwa seorang pasien sembuh dari penyakit darah

yang langka adalah 0,4. Bila 15 orang diketahui telah terkena

penyakit ini, berapakah probabilitas :

a. Paling sedikit 10 orang yang selamat

P (x ≥10 )=1−P ( x<10)

0,0005+0,0047+0,0219+0,1859+0,2066+0,1771+0,1181+0,0612

¿

1−

¿

¿

1−0,9662=0,0338

b. Dari 3 sampai 8 orang yang selamat

P (3 ≤ x ≤ 8)=P ( x ≤8 )−P (x ≤2 )

¿

(

0,0005+0,0047+0,0219+0,1859+0,2066+0,1771+0,1181)−(0,0005+0,0047+ 0,0219)

¿0,9050−0,0271=0,8779

c. Tepat 5 orang yang selamat

P (x=5)=0,1859

d. Hitung rata-rata dan variansinya

M=n × P=15 ×0,4=6

σ

2

=

n× P× q=15 ×0,4 × 0,6=3,6

3. Di suatu simpang jalan rata-rata terjadi 6 kecelakaan sebulan, maka

hitunglah probabilitas :

a. Pada suatu bulan tertentu di simpang jalan itu terjadi 7

kecelakaan

M = 6 , X = 7

P (x=7)=

μ

m

e

m

x !

=1,377

(3)

b. Pada suatu bulan tertentu di simpang jalan terjadi minimal 4

kecelakaan

P( X > 4 ) = 1 – [P(0) + P(1) + P(2) + P(3)]

= 1 – (0.0025 + 0.0149 + 0.0446 + 0.0892)

= 1 – 0.1512

= 0.8488

c. Pada suatu minggu tertentu di simpang jalan itu terjadi 4

kecelakaan

Sebulan m = 6

Seminggu m = 1.5

m = 1.5 , X = 4

P (x=4 )=

μ

m

e

m

x !

=

0.0471

4. Dalam suatu proses produksi yang menghasilkan barang dari gelas,

terjadi gelembung atau cacat yang menyebabkan barang tersebut

sukar dipasarkan. Rata-rata 1 dari 1000 barang yang dihasilkan

mempunyai satu atau lebih gelembung. Hitung probablitas dalam

sampel random sebesar 8000 barang akan berisi kurang dari 7 yang

bergelembung.

P =

1000

1

=

0,001 μ=n × P=8000× 0,001=8

P (x=0)=

μ

m

e

m

x !

=

0,003

P(x=1)=

μ

m

e

m

x !

=

0,0027

P(x=2)=

μ

m

e

m

x !

=

0,0107

P(x=3)=

μ

m

e

m

x !

=

0,0286

P(x=4)=

μ

m

e

m

x !

=

0,0573

P(x=5)=

μ

m

e

m

x !

=

0,0916

P(x=6)=

μ

m

e

m

x !

=

0,1221

P (x <7 )=0,003+0,0027+0,0107+0,0286+0,0573+ 0,0916+0,1221=0,3134

(4)

5. Rata-rata berat 500 mahasiswa FKM adalah 55 kg dan deviasi standarnya 3.4 kg. Berapakah banyaknya mahasiswa yang mempunyai berat

n = 500 ,

μ=55 kg , σ = 3.4

a. Kurang dari 53 kg Z =

x−μ

σ

Z53 =

53−55

3.4

=

−2

3.4

= -

0.59 Area Z53 = 0,2224 = 0.5 – 0.2224 = 0.2776 x 500 = 139

b. Di antara 53 kg dan 57 kg Z57 =

57−55

3.4

=

2

3.4

=

0.59

Area Z57 = 0.2224 = 0.5 – 0.2224 = 0.2776 x 500 = 139 Total : = 139 + 139 = 278

6. Bila nilai ujian statistika mempunyai mean 74 dan deviasi standar 7.9, hitunglah

M = 74

σ =7,9

a. Nilai lulus terendah, bila mahasiswa dengan nilai 10% terendah mendapat E.

Z =0,1→ area Z=0,26

Z =

x−m

σ

0,26=

x−74

7,9

2,054=x−74

x=76,054 ≅ 76→ nilailulus terendah

b. Nilai B tertinggi, bila probabilitas mahasiswa dengan nilai 5% tertinggi men-dapat A .

(5)

Z =

x−m

σ

0,13=

x−74

7,9

1,027=x −74

x=75,027 ≅75

7. Sebuah pengiriman 7 set televisi berisi 2 set cacat. Sebuah hotel

melakukan pembelian secara acak 3 set dari semua set televisi yang ada. Bila x adalah jumlah set televisi yang cacat yang dibeli oleh hotel tersebut, tv cacat = 2

tv betul = 5 n = 3

a. Carilah distribusi probabilitas X

f (0 )=

(

2

0

)(

5

3

)

(

7

3

)

=

1×10

35

=

10

35

=

2

7

f (1)=

(

2

1

)(

5

2

)

(

7

3

)

=

2× 10

35

=

20

35

=

4

7

f (2)=

(

2

2

)(

5

1

)

(

7

3

)

=

1× 5

35

=

5

35

=

1

7

b. Carilah distribusi kumulatif F(x)

F (0)=

2

7

F (1)=f (0)+f (1)=

2

7

+

4

7

=

6

7

F(0) F(1) F(2)

2

7

4

7

1

7

(6)

F (2)=f (0)+f (1)+f (2)=

6

7

+

1

7

=1

c. Dengan menggunakan F(x), hitunglah P(X = 1) dan P(0 < x  2) o

P (x=1)=F (1)−F (0)=

6

7

2

7

=

4

7

o

P (0<x ≤ 2)→ P (x =2)+P ( x=1)

P (x=2)=F (2)−F (1)=

7

7

6

7

=

1

7

P (x=1)=

4

7

P (x=2)+P ( x=1)=

1

7

+

4

7

=

5

7

d. Hitung nilai E(X)

E ( x )=0 × f (0)+1× f (1)+2× f (2)+3 × f (3 )

¿

0+1 ×

20

35

+2 ×

5

35

+3 ×0

¿

30

35

=

0,857

8. Jumlah jam total, yang diukur dalam satuan 100 jam, bahwa suatu fungsi keluarga menggunakan pengisap debu pada periode satu tahun

merupakan suatu variabel random kontinu X yang mempunyai fungsi probabilitas :

f(x) = x , untuk 0 < x < 1, f(x) = 2 – x , untuk 1  x < 2, dan f(x) = 0, untuk x lainnya a. Tunjukkan bahwa P(0 < x < 2) = 1

f ( x )=

0

0 dx+

0 1

x dx +

1 2

2−x +

2

0 dx

¿

0+

(

1

2

x

2

)

0+

(

2 x−

1

1

2

x

2

)

1+0

2

¿

0+

(

1

2

−0

)

+

{

(

4−2)−

(

2−

1

2

)

}

+0

(7)

¿

1

2

+

1

2

=1

b. Carilah probabilitas bahwa pada periode satu tahun, sebuah keluarga menggunakan pengisap debu mereka kurang dari 120 jam

¿

P(0 < x<2)→ P (0< x<1)+P (1< x< 1,2)

¿

0 1

x dx +

1 1,2

2−x dx

¿

(

1 2x 2

)

0+

(

2 x−1 1 2x 2

)

1,21 = 17 25=0,68

c. Carilah probabilitas bahwa pada periode satu tahun, sebuah keluarga menggunakan pengisap debu mereka antara 50 sampai 100 jam.

¿

P(0,5< x<1)

x dx =

¿

(

x

2

2

)

0,5

1

=

3

8

=0,375

¿

0,5 1

¿

d. Carilah probabilitas bahwa pada periode satu tahun, sebuah keluarga menggunakan pengisap debu mereka lebih dari 150 jam.

¿

P(1,5<x <2)+P ( x> 2)

¿

1,5 2

2−x dx +

2

0 dx

¿

(

2 x−

1

2

x

2

)

2

1,5+0

¿2−1,875=0,125

e. Hitung nilai harapan X

E ( x)=

f (x ) dx

x ( x ) dx+

¿

1 2

x (2−x ) dx

¿

0 1

¿

(8)

f

(

x

2

)

dx+

¿

1 2

f

(2 x−x

2

)

dx

¿

0 1

¿

¿

[

1

3

x

3

]

+

[

x

2

1

3

x

3

]

0 1

¿

1 3

¿

[

1

3

]

+

[

4

3

2

3

]

=1

9. Sebuah industri yang menghasilkan sabun mandi telah mengambil sampel 3 buah sabun mandi dengan aroma melati dan 7 aroma mawar. Semua sabun mempunyai bentuk dan ukuran sama. Semua sampel dimasukkan dalam kotak dan kemudian diambil 4 sabun. Didefinisikan variabel random X adalah banyaknya sabun mandi beraroma melati yang terambil,

tentukan:

a. Nilai dari variabel random X

Rumus :

3

,

2

,

1

,

0

,

4

10

4

7

.

3

)

(

)

(













x

f

x

x

x

untuk

x

X

P

- f(0) =













4

10

4

7

.

0

3

= 35/210 = 5/30

- f(1) =













4

10

3

7

.

1

3

= 105/210 = 1/2

(9)

- f(2) =













4

10

2

7

.

2

3

= 63/210

- f(3) =













4

10

1

7

.

3

3

= 7/210=1/30

b. Distribusi probabilitas variabel random X Melati : 3 Mawar : 7 n : 4 o f(0)

¿

(

3

0

)(

7

3

)

(

10

4

)

f(2)

¿

(

3

2

)(

7

2

)

(

10

4

)

=

1 x 35

210

=

3 x 21

210

=

6

1

=

3

10

o f(1) =

(

3

1

)(

7

3

)

(

10

4

)

f(3) =

(

3

3

)(

7

1

)

(

10

4

)

=

3 x 35

210

=

1 x 7

210

=

1

2

=

1

30

(10)

a. F(0) =

6

1

b. F(1) =

6

1

+

1

2

=

2

3

c.

F(2)

=

35

210

+

105

210

+

63

210

=

203

210

d. F(3) =

203

210

+

210

7

=

210

210

=

1

e.

P (x=2)=f (2)=

(

3

2

)(

7

2

)

(

10

4

)

=

3

10

d. Hitung rata-rata dan variansinya

σ

2

=

n× p× q=10 ×3=210

M=n × P=10 ×7=70

10.

Proporsi orang yang menjawab suatu tawaran lewat pos

berbetuk varaibel random kontinu X yang mempunyai fungsi padat

probabilitas f (x) =

2( x+2)

5

untuk 0 < x < 1 dan f(x) = 0 untuk

nilai x lainnya.

a.

Buktikan bahwa f(X) merupakan fu

ngsi padat probabilitas.

F(x) merupakan fungsi padat maka P(0<x<1)

=

2

5

(

¿¿

x+

4

5

)

dx

f ( x ) dx=

0 1

¿

¿

¿

2 /5

2

x ²+

5

4

x

0 1

=

10

2

x ²+

4

5

x

0 1

(11)

= [

10

2

(1)²+

4

5

(

1) ] – [

10

2

(0)²+

4

5

(0)

= [

10

2

+

4

5

¿

– [0]

=

2+8

10

=

10

10 = 1 , terbukti P (0<x<1 =1)

b. Hitung P( ½ < x < ¼)

Tentukan distribusi kumulatif F(x) kemudian hitung P( ½ < x < ¼)

P( ½ < x < ¼) =

2

5

¿

¿

1 4 1 2

¿

) dx

=

10 x

2

2

+

4

5 x

1 4 1 2

= [(

10

2

(

1

2

)

2

+

4

5 (

1

2 ))] – [(

2

10

(

1

4

)

2

+

4

5 (

1

4 ))]

= [(

10

2

(

1

4

) +

10 )] – [(

4

10

2

(

16

1

) +

20 )]

4

= (

20

1

+

10

4

) - (

80

1

+

20

4

) = (

1+8

20

) - (

1+6

80

)

=

20 -

9

17

80 =

36−17

80

=

19

80

11.Probabilitas menghasilkan produk cacat dari PT Idaman, sebuah perusahaan yang menghasilkan lemari es, adalah 0,2. Dalam rangka untuk mengendalikan kualitas lemari es, maka bagian pengendali kualitas bermaksud melakukan penelitian tentang probilitas kerusakan lemari es.

(12)

Sebagai langkah awal diambillah sampel sebanyak 8 lemari es. Dari 8 lemari es tersebut berapakah probabilitas diperoleh :

n = 8 buah , p = 0.8 , q = 0.2 a. Dua lemari es rusak

P (x = 6) =

C 8

3

x P6 x q2 =

6 !2 !

8 !

x

3

8

¿

)

6

x (

2

8

)

2 =

8 x 7

2 x 1

x (0.75)6 x (0.25)2 = 28 x 0.178 x 0.095 = 0.3115 b. Tiga lemari es baik

P (x = 3) =

C

8

3

x P3 x q5

=

8 !

6 !2 !

X (

3

8

)

3 X

(

5

8

¿

5 =

8 x 7 x 6

3 x 2 x 1

X (0.375)3 X (0.625)5 = 56 X 0.053 X 0.095 = 0.282

c. Paling banyak 7 lemari es baik P (X ≤ 7 ) =

C

8

7

X P7 X Q1 =

8 !

7 !1 !

X

7

8

¿

) 7 X

1

8

¿

) 1 = 8 X (0.875)7 X (0.12)1 = 8 X 0.393 X 0.12 = 0.377

d. Antara 3 sampai 5 lemari es rusak P =

5

8

(baik) q =

3

8

(rusak) P (x = 5) =

C

5 8

P

5

Q

3 =

5 !3 !

8 !

(

5

8

)

5

(

3

8

)

3 = 8.7.6.

(0,625)

5

(0,375)

3 = 336. 0,095 . 0,053 = 1,69 (baik)

(13)

q = - 0,69 (buruk) e. P =

3

8

(baik) q =

5

8

(rusak) P (x = 3) =

C

38

P

3

Q

5 =

3 !5 !

8 !

(

3

8

)

3

(

5

8

)

5 = 8.7.

(0,375)

3

(0,625)

5 = 56. 0,053 . 0,095 = 0,282 q = 1- p = 1 - 0,282 = 0,718 Antara 3-5 rusak = P (x = 5) – P (x = 3) = 0,718 – (- 0,69) = 1,4

f. Paling sedikit 2 lemari es baik P =

2

8

q =

2

8

P (X = 2) =

C

2 8

P

2

Q

6 =

2 !6 !

8 !

(

2

8

)

2

(

6

8

)

6 =

8.7

2

(

0,25)

2

(

0,75)

6 = 28. 0,0625 . 0,178 = 0,3115

(14)

P =

6

8

q =

2

8

P (X = 6) =

C

6 8

P

6

Q

2 =

6 !2 !

8 !

(

6

8

)

6

(

2

8

)

2 = 8.7

(0,75)

6

(0,25)

2 = 56. 0,178 . 0,0625 = 0,623 q = 1 – 0,623 = 0,377

12.Disket yang diproduksi oleh PT Akbar ternyata sangat berkualitas. Hal ini terbukti dari 100 buah disket ternyata hanya ada 2 disket yang tidak berfungsi. Apabila diambil 150 buah disket, maka probabilitas:

n : 150 buah disket

a. Tiga diantaranya tidak berfungsi P (X = 147) =

147

150

=0,98

Rusak = 1 – 0.98 = 0.02 b. Maksimum 5 tidak berfungsi

P (X = 5 ) =

150

5

=

1

3

= 0.33 c. Antara 3 sampai 6 tidak berfungsi

3 ≤ rusak ≤ 6 Prusak 3 =

3

150

=

50

1

Prusak 6 =

6

150

=

50

2

=

50

2

50

1

=

50

1

= 0.02 d. Minimum 145 berfungsi P (x = 145) =

145

150

= 0,966

(15)

13.Rata-rata banyaknya makanan kaleng yang ada di gudang telah

kadaluarsa adalah 5. Diambil sampel random sebanyak 10 buah makanan kaleng di gudang, hitung probabilitas:

a. Lima diantaranya kadaluarsa n : 10 A. 1) 5kadaluarsa = 5/10 2) 5 baik = 5/10 P (x=5) =

C

510

. p

5

. q

5 =

5 !5 !

10 !

(

1

2

)

5 .

(

1

2

)

5 =

10.9 .8 .7 .6 !

5.4 .3 .2.

.

(0,03125) .(0,03125 )

= 252 . 0,00097 = 0,244 Q = 1-p = 1-0,244 = 0,756

b. Maksimum 4 telah kadaluarsa 6 baik = 6/10 P(x=6) =

C

610 .

p

6 .

q

4 =

6 !.4 !

10 !

.

(

10

6

)

6 .

(

10

4

)

4 =

10.9 .8 .7 .6 .5!

6.5 !

.

(

0,6)

6 .

(0,4 )

4 = 5040 . 0,0467 . 0,0256 = 5040. 0,00119 =5,9976

c. Antara 5 sampai 8 telah kadaluarsa

P1 (7,5)

=

2,718

−5

. 5

7

(16)

P2 (6,5)

=

2,718

−5

. 5

6

6 !

= 0,1462

P total = 0, 1044+0,1462= 0,2506

= 25,06%

d. Minimum 186 masih bisa dimakan

14.Tes IQ 600 calon mahasiswa FKM mempunyai mean 115 dan deviasi standarnya 12. Mahasiswa dikatakan lulus tes, bila mempunyai IQ paling rendah 95, berapakah mahasiswa yang dinyatakan tidak lulus ?

P (x ≥ 95)=

σ

n

=

12

600

=

12

10

6

=

12

6

60

=

6

5

=0,49

P (x <95 )=1−P ( x ≥ 95)=1−0,49=0,51

¿0,51× 600 siswa=306 siswa yang tidak lulus

15.Gaji pegawai suatu perusahaan rata-rata Rp.525,- per jam dengan deviasi standar Rp.60,-.

a. Berapa persen karyawan yang bergaji Rp.575,- dan Rp.600,- per jam ? M = 525 σ = 60 P(x=575) Z

Z =

575−525

60

=

50

60

=0,83

Z =0,83→ area Z 0,2967

¿0,2967 ×100 =29,67

b. Di atas berapa rupiahkah 5% gaji per jam tertinggi ?

Z =

600−525

60

=

75

60

=1,25

Z =1,25→ area Z 0,394 4

¿0,3944 ×100 =39,44

16. Besarnya kadar Hb laki laki dewasa normal adalah 15gr/100ml dengan standar deviasi 2 gr. Dari penelitian tersebut pada kelompok pekerja tertentu didapat 25 orang. Pekerja tersebut memiliki kadar Hb sebesar 16gr/100ml

Dik : µ = 15 gr/dL , Sχ = 2 gr , n = 25 orang , n = 16 gr/dL , Cl = 95% a. Tentukan 95% confident interval

df (derajat kebebasan) = n-1 (dipakai karna hanya satu sampel) n-1 = 25-1 =24

(17)

b. Berapa kadar populasi T = Xn -  S/n = 16 – 15 2/25 =

2 /5

1

=

5

2

= 2.5

c. Bandingkan dengan kadar Hb Laki laki dewasa 2,5 > 2,064

Nilai T lebih besar dari 2,064 d. Apa interpretasinya

Ho ditolak jika  2,064 H1 diterima jika  2,064

17. Dari 25 sampel olahragawan secara acak, didapat tekanan darah sistole 115 mmHg dengan varian 225 mmHg.

Dik : n = 25 olahragawan Xn = 115 mmHg S = 225 mmHg

a. Kalau ingin menduga, berapa besar tekanan darah sistole olahragawan tersebut?

t =

S /√ n

Sn

= 115 . 225/25 = 115 = 2,56 45 = X – t (2,064) S <  < X + t (2,064) S n n = 115 – 2,56 (2.064) 225 <  < 115 + 2,56 (2,064) 225 25 25 = 115 – 2,56 (2,064) 45 <  < 115 + 2,56 (2,064) 45 = 115 – 237,77 <  < 115 + 237,77 = -122,77 <  < 357,77

b. Hitung besar tekanan darah sistol pada confident interval 90% dan 95% = X – t (2,064) S <  < X + t (2,064) S

n n

= 115 – 2,56 (1,711) 45 <  < 115 + 2,56 (1,711) 45 = 115 – 197,10 <  < 115 + 197,10

(18)

= -82,10 <  < 312,10

18. Rata rata tekanan darah diastolik 100 orang sehat didapat 73 mmHg dan simpangan baku 11,6.

Referensi

Dokumen terkait

Bunga kacapiring merupakan tanaman mirip bunga melati dengan nama lain Gardenia Jasminoides yang artinya bunga mirip dengan bunga melati mempunyai aroma khas sangat

4 benda untuk merawat tubuh kita yaitu : shampoo, sabun mandi, pasta gigi dan sikat gigi 3?. Mencuci tangan sebelum

Hasil sabun padat transparan dari minyak kelapa murni dengan menggunakan metode enzimatis menghasilkan warna sabun yang transparan, memiliki aroma nenas,

3.4.7 Pembuataii peta kendali awal proses washing diameter besar dilakukan dengan mengambil ukuran sampel sebesar 100 buah dan subgrup awal sebanyak 30 buah dengan

Menunjukkan skala hedonik dari panelis terhadap sampel berdasarkan aroma.Pada pengujian aroma yang dihasilkan diperoleh data tingkat kesukaan tertinggi pada sampel sabun

Istilah hiponim ialah bentuk yang maknanya terangkum dalam hiperonim, atau superordinatnya, yang mempunyai makna yang lebih luas. ata mawar, melati, cempaka, misalnya,

Menunjukkan skala hedonik dari panelis terhadap sampel berdasarkan aroma.Pada pengujian aroma yang dihasilkan diperoleh data tingkat kesukaan tertinggi pada sampel sabun

menjaga kebersihan tubuh dapat dilakukan dengan cara A mandi dengan cepat B mandi dengan air saja C mandi dengan sabun 18.. gambar diatas merupakan contoh gerak lokomotor yang