• Tidak ada hasil yang ditemukan

Paper Seminar Desain dan Implementasi Maksimum Power Point Tracker Sebagai Pengisi Baterai Berbasiskan Deteksi Daya dan Tegangan Pada Modul Surya

N/A
N/A
Protected

Academic year: 2019

Membagikan "Paper Seminar Desain dan Implementasi Maksimum Power Point Tracker Sebagai Pengisi Baterai Berbasiskan Deteksi Daya dan Tegangan Pada Modul Surya"

Copied!
11
0
0

Teks penuh

(1)

46

LAMPIRAN 1

Gambar 1. Realisasi alat

CATU DAYA

TRANSFORMATOR

RANGKAIAN

SENSOR DAYA

RANGKAIAN

(2)

47

LAMPIRAN 2

Laporan Tugas Akhir ini telah dipublikasikan di Universitas Negeri

Yogyakarta pada tanggal 19 Oktober 2013, dalam

proceeding

Seminar Nasional

Pendidikan Teknik Elektro (SNPTE) halaman 184 – 193.

Paper Seminar

Desain dan Implementasi Maksimum Power Point Tracker Sebagai Pengisi

Baterai Berbasiskan Deteksi Daya dan Tegangan Pada Modul Surya

Ludovicus Satya. H. B Leonardus. H. Pratomo

Prog.Di Teknik Elektro- Fakultas Teknik Universitas Katolik Soegijapranana Semarang Jl. Pawiyatan Luhur IV/1 Bendan Duwur Semarang

E-mail : satya.ludovicus@yahoo.com

Abstrak

Di Indonesia energi matahari tersedia cukup banyak dan bisa diperoleh dengan cuma-cuma. Namun Energi yang bisa kita peroleh setiap hari ini belum dimaanfatkan secara maksimal. Salah satu alat yang dapat memaanfaatkan energy matahari ini adalah modul surya. Modul surya dapat merubah energi sinar matahari ke energi listrik dalam besaran arus searah. Untuk mendapatkan daya yang maksimal modul surya harus didukung dengan sistem kendali yang sesuai dengan karakteristiknya. Pada makalah berikut ini akan dibahas mengenai suatu teknik kendali daya dan tegangan sumber untuk memaksimalkan daya modul surya yang akan digunakan sebagai sistem pengisian baterai. Konverter yang digunakan dalam penelitian ini adalah konverter jenis buck yang dianggap sebagai variable resistor untuk memaksimalkan daya modul surya.

Kata kunci : energi, modul surya, maksimum power point tracker, buck konverter

Pendahuluan

(3)

48

baterai untuk menyimpannya. Dari baterai tersebut akan dimanfaatkan untuk memenuhi kebutuhan listrik sehari-hari.

Di Indonesia kebutuhan listrik masih belum dapat mencukupi perkembangan sistem kelistrikan yang terus berkembang saat ini. Hal ini dapat dilihat dari semakin berkembangnya sistem kelistrikan pada bidang industri, perkantoran dan perumahan. Yang berdampak semakin besarnya pula kebutuhan listrik yang dibutuhkan. Salah satu energi alternatif yang mampu memenuhi kekurangan tersebut adalah dengan memanfaatkan energi matahari. Di Negara kita ini energi matahari belum dimanfaatkan secara maksimal yang sebenarnya pada saat sekarang ini memiliki efisiensi yang lebih baik. Pemanfaatan tersebut dengan menggunakan modul surya.

Modul surya merupakan suatu alat yang mengkonversi energi matahari menjadi energi listrik. Tetapi pada kenyataannya modul surya tidak dapat digunakan secara langsung karena kekarakteristikannya. Oleh karena itu untuk memaksimalkan daya yang diperoleh, harus menggunakan sistem yang mampu mengikuti karakteristik modul surya yaitu bisa berbasis lereng yang ada. Ada beberapa metode yang dapat digunakan untuk mendapatkan daya yang maksimal antara lain korelasi riak, fuzzy logic, kendali P dan I, fractional open voltage, fractional short circuit. Masing-masing metode tersebut memiliki kelebihan dan kekurangan masing-masing. Sebagai contoh fuzzy logic dan korelasi riak [3,4,7,8] di samping mampu menghasilkan konversi yang baik, namun metode ini memiliki algoritma yang sulit dan implementasi yang rumit dan mahal. Berbanding terbalik dengan metode fractional short circuit [9] dan fractional open voltage. Kedua metode ini memiliki struktur dan implementasi yang sederhana tetapi hasilnya kurang baik.

Pada makalah ini dikembangkan suatu metode konversi dengan sistem kendali daya dan tegangan untuk mendapatkan maximum power point tracker. Kedua besaran tersebut kemudian akan dibagi untuk mendapatkan nilai transkonduktannya. Nilai inilah yang kemudian akan digunakan untuk mendapatkan konversi daya maksimal dengan cara dikendalikan dan dimodulasi.

Sistem di atas menggunakan sistem DC-DC converter jenis buck, yang kemudian akan digunakan untuk pengisian pada baterai. Karena yang digunakan adalah teknik konversi daya maksimal, maka sistem pengisian pada baterai dapat berlangsung dengan cepat.

Metodologi penelitian

Metode yang digunakan untuk menyelesaikan makalah ini adalah dengan studi literature, analisis, simulasi komputasi dan implementasi skala laboratorium. Pada berikut ini akan di uraikan analisis tentang konverter DC-DC tipe buck dan modul surya.

A.konverter DC-DC

Jika kita memiliki suatu besaran DC maka kita dapat mengubahnya ke besaran DC yang lain. Hal ini disebut dengan konverter DC ke DC atau bisa dikenal dengan

(4)

49

Gambar 1. Buck konverter

Konverter DC-DC jenis buck dapat beroperasi dalam dua mode. Mode pertama saklar elektronik yang diimplementasi dengan transistor BJT menutup, sehinggan arus akan mengalir menuju baterai seperti pada gambar 2.

Gambar 2. Mode pertama

Sehingga memiliki persamaan :

V

s

V

o

t

on

Ldi

(1)

Mode kedua saat saklar elektronik yang diimplementasikan dengan transistor BJT membuka, sehingga membentuk rangkaian seperti pada gambar 3.

Gambar 3. Mode kedua

Sehingga memiliki persamaan :

off o

t

V

Ldi

(2)

(5)

50

listrik. Modul surya terdiri dari beberapa solar cell yang terhubung seri dan parallel dan membentuk suatu modul yang terintegrasi satu sama lain. Solar cell adalah suatu sambungan bahan semikonduktor jenis P (positif) dan N (negatif). Sambungan tersebut akan menghasilkan tegangan jika ada suatu energi foton yang mengenai sambungan tersebut. Array adalah modul surya yang saling terintegrasi antara satu dengan yang lain.

Gambar 4. Cell, module dan array

Modul surya memiliki karakteristik arus terhadap tegangan. Maka dibuat suatu rangkaian ekivalen untuk mempermudah. Suatu sell modul surya dapat digantikan dengan photodioda dan dengan akibat radiasi cahaya maka akan mengalirkan arus Iph (photo current). Kemudian arus bercabang menuju diode dan tahanan shunt dan akan keluar ke beban seperti pada gambar 5.

Gambar 5. Rangkaian ekivalen sell modul surya.

(6)

51

m = Idealizing fagtor

k = Konstanta Boltzman (1.381 x 10-23)

Modul surya memiliki kurva karakteristik daya dan arus terhadap tegangan serta sistem pembebanan seperti pada gambar 6

(7)

52

V P

V I

0  dV

P d

MPP

R G dV

I

d 1

 R1

Rn

Gambar 6. Kurva karakteristik modul surya

Modul surya terpengaruh oleh suhu disekitar artinya terpengaruh oleh kondisi lingkungan yang dipengaruhi oleh intensitas matahari, sesuai kurva karakteristik terhadap suhu seperti pada gambar 7.

Gambar 7. Kurva karakteristik modul surya terhadap suhu

(8)

53

Gambar 8. Hubungan fill factor pada kurva I-V modul surya

Hasil dan Perancangan

Suatu kendali yang berdasarkan kurva karakteristik daya akan maksimum jika memenuhi suatu persamaan seperti :

 

Sehingga proses kendali jika dibuat berdasarkan kurva adalah sebagai berikut :

(9)

54

Berikut ini merupakan gambar struktur kendali yang dibuat dan diimplementasikan.

Gambar 10. Diagram blok kendali daya maksimal

Berikut ini adalah pengujian karakteristik kurva dan pengujian kendali secara simulasi dengan menggunakan software powersim.

Gambar 11. Pengujian parameter modul surya 2 X 50 WP hubung seri

(10)

55

Berikut ini adalah tabel pengujian. Tabel pengujian di bawah merupakan hasil pengujian terbaik diantara pengujian-pengujian yang dilakukan. Pengujian dilakukan dengan menggunakan 2 modul surya 50WP hubung seri.

Tabel 1. Pengujian sistem kendali

Waktu Vi Ai Pi Vo Ao Po

1 24.5 2.6 63.7 24.3 2.61 63.423

2 24.52 2.56 62.7712 24 2.56 61.44

3 24.52 2.4 58.848 24.2 2.4 58.08

4 25.1 2.34 58.734 24.8 2.33 57.784

5 26.11 2.36 61.6196 25 2.36 59

6 26.15 2.27 59.3605 25 2.25 56.25

7 25.24 2.07 52.2468 24.3 2.03 49.329

8 26.27 2.06 54.1162 24.5 2.02 49.49

9 25 2.08 52 24.3 2.04 49.572

10 24.5 2.02 49.49 24.1 2.02 48.682

Berdasarkan tabel di atas daya keluaran rata-rata setelah mengisi baterai sebesar 55.305W dan keluaran modul surya memiliki rata-rata sebesar 57,288W. Dilihat dari nilai rata-rata tersebut maka sistem kendali ini memiliki effisiensi daya modul surya ke energy listrik sebesar 55.305%, sedangkan effisiensi konverter sebesar 96.54%

Kesimpulan

Dari hasil percobaan yang dilakukan dengan simulasi komputasi menggunakan

software Power Simulator dan implementasi skala laboratorium sistem pengisian baterai yang dirancang dapat berjalan dengan baik dan memiliki effisiensi daya modul surya ke energy listrik sebesar 55.305%, sedangkan effisiensi konverter sebesar 96.54%

Daftar Pustaka

[1] Dedy. P, Pratomo H.L dan Tejo. Y, 2010 “ Pemanfaatan Mikrokontroler Tipe AT89S52 Sebagai Pengendalian Daya Maksimum Pada” CITEE, UGM Yogyakarta

[2] Eridanus dan Pratomo H.L, 2010,“ Metode Pengendali Daya Panel Surya dengan Kendali Adaptif”, CITEE, UGM Yogyakarta

[3] Felix. Y dan Pratomo, H. L, 2009 “Memaksimalkan Daya Photovoltaic dengan Korelasi Riak, IES-ITS Surabaya

(11)

56

[5] N. Femia, et. Al. Optimization of Perturb and observe Maximum Power Point tracking Method,” IEEE Trans. Power Electron., Vol. 20, pp. 963-973, July 2005

[6] Pratomo, H. L, 2005 , “Buck DC-DC Konverter Dengan Kendali One Cycle”, MILLENIUM, Vol 1. No 3

[7] Rinovi. A. D , Pratomo H.L dan Tejo. Y, 2010 “Maximum Power Point Tracker pada Photovoltaic Module dengan Menggunakan Fuzzy Logic Controller”, , CITEE, UGM Yogyakarta

[8] Trishan Esram, Jonathan W. Kimball, Philip T. Krein, Patrick L. Chapman, and Pallab Midya, Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control. IEEE Trans. on Power Elec., vol. 21, no. 5, pp.1282-1291, Sept. 2006.

[9] V. Salas, E. Olias, A. Barrado, and A. Lazaro, “Review of maximum power point tracking algorithms for stand alone photovoltaic systems” Solar

Gambar

Gambar 1. Realisasi alat
Gambar 2. Mode pertama
Gambar 4. Cell, module dan array
Gambar 6. Kurva karakteristik modul surya
+4

Referensi

Dokumen terkait

Mengoperasikan Komputer Personal K K P I 0 2 - 37 - Secara  fisik,  jaringan  komputer  merupakan  komputer  yang  dihubungkan  dengan  kabel  data.  Ada  beragam 

Pertama kali Windows Mobile muncul sebagai sistem operasi Pocket PC 2000, sebagian besar perangkat yang menggunakan Windows Mobile memiliki stylus pen yang digunakan

Sementara itu,pengaruh kepemimpinan terhadap kinerja karyawan, Sasongko (2008) dan Yukl (2007) menyatakan bahwa apabila pimpinan mampu menerapkan kepemimpinan yang

Ymmärryksen luominen perustuu ihmisten pyrkimykselle rakentaa ymmärrettävä käsitys siitä, mitä on tapahtumassa ja mikä on tapahtuneiden asioiden merkitys. Ihmiset

Untuk menghindari keseimbangan dan mengarahkan penelitian ini serta untuk mencapai tujuan, maka diberikan operasionalisasi variabel penelitian dengan mengunakan dua variabel

Adapun analisis instrument tes dalam penelitian ini digunakan analisis deskriptif, dengan mengambil data hasil belajar siswa melalui tes yang diberikan setelah

FORMULIR NOMOR : X.H.1-6 LAMPIRAN : 6 Peraturan Nomor : X.H.I LAPORAN BULANAN KEPEMILIKAN SAHAM EMITEN ATAU PERUSAHAAN PUBLIK DAN REKAPITULASI YANG TELAH DILAPORKAN. Nama Emiten

Hubungan yang erat antara konsentrasi racun yang terkandung dalam ekstrak biji mahoni de-ngan mortalitas ini diduga berkaitan dengan beban racun yang terdapat dalam larva