• Tidak ada hasil yang ditemukan

BAB III RANCANG BANGUN WMN

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III RANCANG BANGUN WMN"

Copied!
19
0
0

Teks penuh

(1)

39 BAB III

RANCANG BANGUN WMN

3.1 Perancangan Testbed WMN

Langkah pertama untuk merancang Testbed WMN adalah menentukan langkah-langkah yang akan di gunakan dalam membangun testbed yang dibutuhkan. Berikut langkah-langkah yang digunakan dalam melakukan membangun Testbed WMN dalam skripsi ini:

• Menentukan topologi

Pada langkah ini akan dilakukan pemilihan kerangka bentuk topologi global yang cocok dan digunakan untuk jaringan Testbed WMN serta menentukan skenario pengujian sehingga dapat memenuhi tujuan dan harapan dari penulisan skripsi ini.

• Menentukan lokasi

Menentukan lokasi dengan di sesuaikan bentuk topologi jaringan testbed. • Menentukan perangkat keras

Pada langkah ini akan di tentukan spesifikasi dari perangkat keras dan perangkat lunak yang akan dipakai pada testbed.

• Melakukan Konfigurasi dan Instalasi

Melakukan instalasi perangkat dan konfigurasi jaringan seperti WDS, IP Address, HWMP+, DHCP-Server dan network monitoring tools untuk melakukan monitoring jaringan Testbed WMN.

3.2 Membangun Jaringan Testbed Wireless Mesh

Seperti yang sudah di uraikan di tahap perancangan jaringan testbed WMN, di tahap ini adalah merealisasikan langkah-langkah tersebut.

(2)

40 3.2.1. Menentukan Topolagi

Sesuai dengan tujuan dalam skripsi ini, yaitu melakukan pengujian performa protokol HWMP+ dengan mode reaktif dan proaktif yang digunakan pada jaringan backbone, maka topologi yang akan di bangun pada jaringan testbed akan menggunakan topologi partial mesh karena tipe topologi ini memang sangat cocok jika di diimplementasikan untuk jaringan backbone karena merupakan jaringan vital yang sangat bergantung pada redundansi untuk menjaga layanan bisa berjalan secara nonstop dan topologi ini sering digunakan oleh ISP.

Pada jaringan tesbed ini memiliki topologi physical dan logic. Topologi Physical terdiri 5 buah Mesh Acces Point (MAP) dan 2 buah Mesh Client (MC). Tiap MAP mempunyai dua link yang terhubung dengan dua MAP lain, Mesh Client A terhubung menggunakan media nirkabel ke MAP2 dan Mesh Client B terhubung dengan media nirkabel ke MAP 5. Adapun bentuk topologi Physical

testbed ada pada gambar 3.1.

(3)

41

Selain topologi Physical MWN yang akan di bangun juga mempunyai topologi Logical lihat Gambar 3.2 yaitu: Router GW dan PRTG terhubung langsung dengan MAP1 menggunakan media kabel, tiap-tiap MAP mempunyai dua link yang terhubung dengan dua MAP lain, Mesh Client A dan B mendapatkan IP-DHPC dari Router GW. Mesh Client A terhubung dengan media nirkabel ke MAP2 dan Mesh Client B juga terhubung dengan media nirkabel ke MAP 5.

Gambar 3. 2 Topologi Logical Testbed WMN

Dengan bentuk topologi seperti gambar 3.1 dan 3.2 di nilai sudah sesuai dengan harapan dan tujuan pembangunan testbed yaitu: untuk melakukan testing unjuk kerja perbandingan jaringan WMN dengan arsitektur HWMP+ menggunakan mode Proactive dan Reactive serta menganalisa proses hand-off dari MAP ketika mesh client bergerak dan berpindah MAP.

(4)

42 3.2.2. Lokasi Testbed

Lokasi merupakan salah satu faktor yang menentukan dalam pembangunan testbed WMN. Dalam hal ini adalah penempatan MAP sebagai infrastruktur dari WMN. Lokasi penempatan MAP diambil dengan beberapa langkah sebagai berikut:

1. Setting semua MAP dengan maksimal TX Power:5dbi, setting SSID, Frekwensi yang berbeda di tiap-tiap MAP.

2. Kemudian pasang dan aktifkan MAP di tiap pojok ruang • MAP1 di ruang engineer

• MAP2 di ruang tunggu tamu • MAP3 di ruang inventory • MAP4 di ruang meeting besar • MAP5 di ruang meeting kecil

kemudian menghubungkan laptop ke MAP1 dan berjalan menjauh dari posisi MAP1 untuk memonitor kualitas link dan jangkauan terjauh dari MAP1. Hal serupa juga di lakukan pada MAP2, MAP3, MAP4 dan MAP5.

3. Setelah mendapatkan titik yang paling optimal dan titik terburuk langkah selanjutnya adalah menggeser MAP ke titik yang paling optimal di tiap-tiap sel pada MAP.

Catatan: pastikan proses test dilakukan dengan memasukkan faktor yang paling buruk yaitu dengan menutup semua pintu dari tiap-tiap ruangan.

Setelah melakukan ke-3 langkah di atas di peroleh beberapa overlap antar MAP sebagai berikut:

1. MAP1 overlap terhadap MAP2, MAP3 dan MAP5 2. MAP2 overlap terhadap MAP4, MAP1 dan MAP3 3. MAP3 overlap terhadap MAP1dan MAP5

4. MAP4 overlap terhadap MAP2 dan MAP5

(5)

43

Gambar 3. 3 Denah lokasi dan Posisi penempatan MAP

3.2.3. Skenario Pengujian testbed WMN

Dari jaringan testbed yang dibangun akan diberikan beberapa skenario pengujian. Skenario tersebut diharapkan dapat memberikan gambaran dari kinerja testbed WMN yang telah di bangun. Skenario pengujian tersebut antara lain: 1. Pengujian untuk melihat perbandingan kinerja mode reactive dan proactive

terhadap penentuan best path yang berpengaruh terhadap throughput dan latency pada tiap-tiap MAP dari jaringan WMN multi-hop.

2. Pengujian untuk mendapatkan nilai jitter pada proses hand-off ketika mesh client bergerak dan berpindah MAP.

3.2.3.1.Pengujian Mode REACTIVE

Skenario pengujian mode Reactive bertujuan untuk mendapatkan data waktu latency pada tiap-tiap MAP, throughput dan lama waktu yang dibutuhkan dalam pengiriman data. Skenario ini dilakukan dengan menggunakan topologi yang sudah di bangun tanpa mengaktifkan mesh portal pada MAP1. Skenario pengujian ini dilakukan dengan menggunakan beberapa alat bantu seperti aplikasi FileZilla, aplikasi monitoring PRTG, selain itu pengujian dilakukan dalam kondisi yang berbeda-beda untuk melihat performa jaringan dalam berbagai kondisi

(6)

44

tersebut. Adapun gambaran skenario pengujian mode reactive pada wireless mesh

network ini dapat dilihat pada gambar 3.4

Gambar 3. 4 Skenario Pengujian Mode Reactive

Pengujian dilakukan dengan durasi 2 jam dimana waktu tersebut dibagi-bagi lagi menjadi dua dibagi-bagian dimana satu jam pertama beban yang diberikan pada jaringan tidak terlalu besar seperti ping, bagian kedua selama satu jam berikutnya jaringan diberikan beban dengan cara melakukan upload data dari A ke MC-B sebesar 3GMC-B. Hasil lengkap pengujian latency berdasarkan pembacaan PRTG yang dapat dilihat pada lampiran 1a dan 1b, sedangkan pembacaan trafik pada masing-masing MAP oleh PRTG dapat dilihat pada lampiran 1c. dan pembacaan lamanya waktu yang dibutuhkan untuk pengiriman data sebesar 3GB dihasilkan oleh FileZilla yang dapat dilihat pada lampiran 1d. Skenario input data pada pengujian mode reactive dapat dilihat pada tabel 3.1.

Untuk melakukan pengujian mode reactive dilakukan langkah-langkah sebagai berikut:

1) Mesh Client A dan B mendapatkan IP DHCP dari Router

2) Aplikasi PRTG melakukan ping dan menangkap SNMP Trafik pada semua MAP.

3) Mesh Client A dan B mengaktifkan aplikasi FileZilla

(7)

45

5) Lama pengiriman data ini akan di gunakan untuk menghitung throughput dan latency pada masing-masing MAP.

3.2.3.2.Pengujian Mode PROACTIVE

Skenario pengujian mode Proactive bertujuan untuk mendapatkan data waktu latency pada tiap-tiap MAP, throughput dan lama waktu yang dibutuhkan dalam pengiriman data. Skenario ini dilakukan dengan menggunakan topologi yang sudah di bangun dengan mengaktifkan mesh portal pada MAP1. Skenario pengujian ini dilakukan dengan menggunakan beberapa alat bantu seperti aplikasi FileZilla, aplikasi monitoring PRTG, selain itu pengujian dilakukan dalam kondisi yang berbeda-beda untuk melihat performa jaringan dalam berbagai kondisi tersebut. Adapun gambaran skenario pengujian mode Proactive pada wireless

mesh network iini dapat dilihat pada gambar 3.5

Gambar 3. 5 Skenario pengujian mode proactive

Pengujian dilakukan dengan durasi 2 jam dimana waktu tersebut dibagi-bagi lagi menjadi dua dibagi-bagian dimana satu jam pertama beban yang diberikan pada jaringan tidak terlalu besar seperti ping, bagian kedua selama satu jam berikutnya jaringan diberikan beban dengan cara melakukan upload data dari A ke MC-B sebesar 3GMC-B. Hasil lengkap pengujian latency berdasarkan pembacaan PRTG yang dapat dilihat pada lampiran 2a dan 2b, sedangkan pembacaan trafik pada masing-masing MAP oleh PRTG dapat dilihat pada lampiran 2c. dan pembacaan lamanya waktu yang dibutuhkan untuk pengiriman data sebesar 3GB dihasilkan

(8)

46

oleh FileZilla yang dapat dilihat pada lampiran 2d. Skenario input data pada pengujian mode reactive dapat dilihat pada tabel 3.1.

Untuk melakukan pengujian mode proactive dilakukan langkah-langkah sebagai berikut:

1) Mengaktifkan Mesh Portal pada MAP1

2) Mesh Client A dan B mendapatkan IP DHCP dari Router

3) Aplikasi PRTG melakukan ping dan menangkap SNMP Trafik pada semua MAP.

4) Mesh Client A dan B mengaktifkan aplikasi File Zilla

5) Mesh Client A mengirimkan data (upload) sebesar 3GB ke Mesh Client B 6) Lama pengiriman data ini akan di gunakan untuk menghitung throughput

dan latency, trafik pada masing-masing MAP.

Tabel 3. 1 Skenario input data mode reactive dan proactive

M AP1 M AP2 M AP3 M AP4 M AP5 Non aplikasi (Latency /ms)

Aplikasi (Latency /ms) Average Traffic Total (Mbps)

3.2.3.3.Pengujian Multi Hop

Skenario ini bertujuan untuk mendapatkan informasi tentang kinerja system multi-hop pada WMN. adapun parameter-parameter yang akan diamati adalah throughput dari system multi-hop. Pengujian tersebut terbagi menjadi beberapa tahapan antara lain pengujian dengan 1 hop, pengujian dengan 2 hop, pengujian dengan 3 hop, pengujian dengan 4 hop dan pengujian dengan 5 hop. Pada setiap pengujian multi-hop ini hanya MAP yang digunakan saja yang akan di aktifkan. Misal pada pengujian 1 hop maka hanya MAP 1 saja yang akan di aktifkan. Gambaran dari skenario ini dapat dilihat pada Gambar 3.6

(9)

47

Gambar 3. 6 Skenario Pengujian Multi-hop

Pengamatan throughput pada pengujian system multi-hop dilakukan dengan mengaktifkan aplikasi FileZilla untuk melakukan transfer data sebesar 500MB dari Mesh Client A ke Mesh Client B. Pengujian dilakukan secara berulang-berulang dari 1-Hop sampai 5-Hop. Pembacaan lamanya waktu yang dibutuhkan untuk pengiriman data sebesar 500MB dihasilkan oleh FileZilla yang dapat dilihat pada lampiran 3. Skenario input data pada pengujian system multi-hop dapat dilihat pada tabel 3.2.

Tabel 3. 2 skenario input data system multi-hop

Hop1 Hop2 Hop3 Hop4 Hop5 Throughput (Mbps)

3.2.3.4.Pengujian Hand Off pada Mesh Client Bergerak

Skenario pengujian Handoff pada mesh client bergerak ini bertujuan untuk mencatat nilai jitter pada saat Mesh Client berpindah dari MAP satu ke MAP yang lain. Dengan skenario Mesh client A bersifat statis (tidak bergerak) dan terhubung ke MAP1 menggunakan media nirkabel. Sedangkan Mobile client B bersifat mobile (bergerak) dan berpindah pindah dari MAP1 ke MAP2 ke

(10)

48

MAP4 ke MAP5 ke MAP3 dan kembali ke MAP1. Pada percobaan ini dilakukan selama 24 menit pada rentang waktu pkl. 12:56:00 PM - 1:20:00 PM. Hasil lengkap waktu perpindahan pada pengujian hand-off berdasarkan pembacaan pada

Mikrotik SysLog yang dapat di lihat pada lampiran 4. Skenario pengujian handoff

dapat di lihat pada Gambar 3.7 dan Skenario input data pada pengujian system multi-hop dapat dilihat pada tabel 3.3

Gambar 3. 7 Skenario perpindahan mesh client

Untuk melakukan pengujian handoff pada Mesh Client dilakukan dengan langkah-langkah sebagai berikut:

1. Mesh Client A dan B mendapat IP DHCP dari router yang terhubung ke MAP1 dengan media kabel.

2. Mesh Client A bersifat statis (tidak bergerak) dan terhubung ke MAP1 menggunakan media nirkabel.

3. Mesh Client A mengaktifkan aplikasi Mikrotik SysLog untuk menangkap waktu perpindahan.

4. PRTG melakukan ping terus menerus ke Mesh Client B 5. Mesh Client B bersifat mobile (bergerak)

(11)

6. Percobaan dilakukan satu kali,

dari MAP1, MAP2, MAP4, MAP5 dan MAP3.

Menit Ke- Delay (/ms)

3.3 Spesifikasi Perangkat

3.3.1. Spesifikasi Hardware

Sesuai dengan rancangan topologi jaringan testbed dibutuhkan

3.3.1.1.Spesifikasi Hardware MAP

MAP yang akan digunakan untuk membangun jaringan

RouterBoard (RB) 751u

RB751U-2HnD adalah sebuah wireless AP SOHO dengan system operasi

Mikrotik RouterOS, mempunyai 5 buah Ether

dengan power besar mendukung 802.11b/g/n beserta antenna di dalamnya. Selain itu RB751U-2HnD juga menyediakan external konektor MMCX jika ingin

49

Percobaan dilakukan satu kali, Perpindahan dilakukan lima kali dimulai dari MAP1, MAP2, MAP4, MAP5 dan MAP3.

Tabel 3. 3 Skenario input data handoff

1 2 4 5 6

Perangkat

Spesifikasi Hardware

Sesuai dengan rancangan topologi di atas untuk membangun sebuah dibutuhkan 5 buat MAP, satu buah router dan 2 buah mesh

Spesifikasi Hardware MAP

yang akan digunakan untuk membangun jaringan testbed

RouterBoard (RB) 751u-2HnD seperti terlihat pada gambar 3.8a dan 3.8b

Gambar 3.8 RouterBoard 751u-2HnD

2HnD adalah sebuah wireless AP SOHO dengan system operasi , mempunyai 5 buah Ethernet, satu USB2.0 dan card wireless dengan power besar mendukung 802.11b/g/n beserta antenna di dalamnya. Selain 2HnD juga menyediakan external konektor MMCX jika ingin dilakukan lima kali dimulai

untuk membangun sebuah

mesh client.

testbed adalah

seperti terlihat pada gambar 3.8a dan 3.8b

2HnD adalah sebuah wireless AP SOHO dengan system operasi net, satu USB2.0 dan card wireless dengan power besar mendukung 802.11b/g/n beserta antenna di dalamnya. Selain 2HnD juga menyediakan external konektor MMCX jika ingin

(12)

50

mengganti antenna bawaan dengan antenna external. RB751U-2HnD didesain dengan bentuk yang kecil dan terlihat bagus baik di gunakan dalam rumah ataupun kantor.

Berikut spesifikasi detail RB751U-2HnD yang akan digunakan untuk keperluan testbed WMN

Features: RB751U-2HnD (USB, 2GHz, 802.11n, dual chain)

CPU: Atheros AR7241 400MHz CPU

Memory: 32MB DDR SDRAM onboard memory

Data storage: 64MB onboard NAND storage chip

Ethernet: Five independent 10/100 Ethernet ports

LEDs: Power, NAND activity, 5 Ethernet LEDs, wireless activity LED

Power options: PoE: 8-30V DC on Ether1. Jack: 8-30V DC

Dimensions: 113x138x29mm. Weight without packaging and cables: 230g

Power consumption: Up to 10W

Operating Temp: -20C .. +50C

Operating System: MikroTikRouterOS, Level4 license

Package contains: RouterBOARD in a plastic case, power adapter

Antennas: 2x2 MIMO PIF antennas, max gain 2.5dBi; external MMCX

option

RX sensitivity : 802.11g :-96dBm @ 6Mbit/s to-81dBm @ 54Mbit/s

802.11n: –96 dBm @ MCS0 to –78 dBm @ MCS7

TX power: 802.11g: 30dBm @ 6Mbps to 27dBm @ 54 Mbps 802.11n:

30dBm @ MCS0 to 26dBm @ MCS7

Modulations: OFDM: BPSK, QPSK, 16QAM, 64QAM, DSSS: DBPSK,

DQPSK, CCK

3.3.1.2.Spesifikasi Hardware Router

Hardware router yang akan di gunakan untuk keperluan testbed kali ini adalah sebuah Mikrotik Router Virtual yang di jalankan pada sebuah software

Oracle VM VirtualBox yang di install pada sebuah laptop dengan spesifikasi

prosesor intel core 2 duo dengan memori 2GB.

Berikut spesifikasi detail Mikrotik router Virtual yang akan di fungsikan sebagai

router pada jaringan tesbed

Processor : Intel Core2 Duo

Memory : 64 MB

Data storage : 512 MB

(13)

Ethernet

3.3.1.3.Spesifikasi Hardware

Untuk spesifikasi hardware Mesh Client pada jaringan testbed ini tidak terlalu di tentukan sp

terintegrasi dengan perangkat apapun asalkan perangkat tersebut dilengkapi dengan wireless card yang mendukung 802.11b/g/n.

3.3.2. Spesifikasi Software

Sama seperti spesifikasi hardware, spesifikasi software yang digunakan pada jaringan testbed dibagi sesuai dengan kebutuhan pada MAP, Router dan Mesh client.

3.3.2.1 Spesifikasi Software MAP

Spesifikasi software yang digunakan pada MAP adalah menyangkut penggunaan Lisensi yang ada pada MAP tersebut. Untuk keperluan jaringan testbed wireless mesh dibutuhkan

Seperti terlihat pada Gambar 3.9

51

: Satu Buah 10/100 Ethernet ports Spesifikasi Hardware Mesh Client

Untuk spesifikasi hardware Mesh Client pada jaringan testbed ini tidak spesifikasi-nya, dikarenakan jaringan mesh ini dapat terintegrasi dengan perangkat apapun asalkan perangkat tersebut dilengkapi dengan wireless card yang mendukung 802.11b/g/n.

Spesifikasi Software

Sama seperti spesifikasi hardware, spesifikasi software yang digunakan dibagi sesuai dengan kebutuhan pada MAP, Router dan

Spesifikasi Software MAP

Gambar 3.9 LisensiRB751U-2HnD

software yang digunakan pada MAP adalah menyangkut yang ada pada MAP tersebut. Untuk keperluan jaringan testbed wireless mesh dibutuhkan Lisensi Mikrotik RouterOS minimal Level 4

pada Gambar 3.9 pada MAPRB751U-2HnD sudah menggunakan Untuk spesifikasi hardware Mesh Client pada jaringan testbed ini tidak , dikarenakan jaringan mesh ini dapat terintegrasi dengan perangkat apapun asalkan perangkat tersebut dilengkapi

Sama seperti spesifikasi hardware, spesifikasi software yang digunakan dibagi sesuai dengan kebutuhan pada MAP, Router dan

software yang digunakan pada MAP adalah menyangkut yang ada pada MAP tersebut. Untuk keperluan jaringan

Lisensi Mikrotik RouterOS minimal Level 4.

(14)

lisensi mikrotik routerOS Level 4 sehingga tidak dibutuhkan upgrade lisensi ataupun modifikasi lain guna memenuhi kebutuhan dalam membangun jaringan testbed wireless mesh.

3.3.2.2 Spesifikasi Software Router Sama seperti pada

adalah lisensi yang digunakan. Untuk kebutuhan router lisensi level 4 s/d 6, dimana level

Os. Lisensi router dapat dilihat di gambar 3.10

3.3.2.3 Spesifikasi Software

Untuk Mesh Client tidak ada spesifikasi khusus dalam pemilihan untuk digunakan. Semua system seperti windows,

dapat digunakan selama maupun wired.

52

lisensi mikrotik routerOS Level 4 sehingga tidak dibutuhkan upgrade lisensi ataupun modifikasi lain guna memenuhi kebutuhan dalam membangun jaringan

Spesifikasi Software Router

Sama seperti pada MAP spesifikasi software yang difokuskan disini adalah lisensi yang digunakan. Untuk kebutuhan router minimal dibutuhkan , dimana level 6 ini adalah level tertinggi pada Mikrotik router router dapat dilihat di gambar 3.10

Gambar 3. 10 Liseni Mesh Router

Spesifikasi Software Mesh client

Untuk Mesh Client tidak ada spesifikasi khusus dalam pemilihan

untuk digunakan. Semua system seperti windows, Linux, android dan sebagainya dapat digunakan selama kompatibel untuk penggunaan jaringan baik

lisensi mikrotik routerOS Level 4 sehingga tidak dibutuhkan upgrade lisensi ataupun modifikasi lain guna memenuhi kebutuhan dalam membangun jaringan

MAP spesifikasi software yang difokuskan disini dibutuhkan ini adalah level tertinggi pada Mikrotik router

Untuk Mesh Client tidak ada spesifikasi khusus dalam pemilihan software , android dan sebagainya untuk penggunaan jaringan baik nirkabel

(15)

53 3.4 Konfigurasi WMN

Setelah menentukan topologi, lokasi dan penentuan spesifikasi hardware dan software tahap berikutnya adalah mengkonfigurasi jaringan agar dapat beroperasi sesuai dengan ketentuan HWMP+ dengan mode proactive dan reactive adalah sebagai berikut ini:

a) Pengalamatkan IP Address

Memberikan pengalamatan pada setiap MAP, mesh client, router dan Monitoring sistem.

b) Konfigurasi interface Wireless

Konfigurasi interface wireless di setiap MAP disini adalah penentuan mode, band, channel, SSID dan WDS Mode sehingga dapat terhubung dengan baik antar satu sama lain.

c) Konfigurasi Mesh

Konfigurasi Mesh pada MAP yang dimaksud adalah menambahkan interface mesh, menambahkan mesh port.

3.4.1 IP Address

Seperti terlihat di tabel 3.4. Pada WMN konfigurasi IP Address pada MAP hanya berfungi sebagai monitoring dan mengelola node tersebut jika dibutuhkan perubahan konfigurasi. Berbeda dengan IP pada Mesh Client yang digunakan untuk menghubungkan dengan device lain dalam satu jaringan maupun di luar jaringan mesh

Tabel 3. 4 Pengalamatan IP address

NO NAMA IP ADD NETMASK GATEWAY INTERFACE TYPE

1 MAP1 10.0.0.1 255.255.255.240 MESH STATIK

2 MAP2 10.0.0.2 255.255.255.240 MESH STATIK

3 MAP3 10.0.0.3 255.255.255.240 MESH STATIK

4 MAP4 10.0.0.4 255.255.255.240 MESH STATIK

5 MAP5 10.0.0.5 255.255.255.240 MESH STATIK

6 PRTG 10.0.0.7 244.255.255.340 10.0.0.14 Eth0 STATIK

7 MESH

CLIENT A 10.0.0.10 255.255.255.240 10.0.0.14 Wireless LAN DHCP-CLIENT 8 MESH

CLIENT B 10.0.0.12 255.255.255.240 10.0.0.14 Wireless LAN DHCP-CLIENT 9

GATEWAY 10.0.0.14 255.255.255.240 Ether1

DHCP-SERVER

(16)

54 3.4.2 Konfigurasi Interface Wireless

Untuk konfigurasi interface wireless pada tiap-tiap MAP menggunakan konfigurasi yang sama baik SSID, Mode, Chanel dan WDS Mode agar dapat saling berhubungan dengan baik. Pada jaringan tesbed ini akan menggunakan WDS Statik, hal ini disesuai dengan topologi yang digunakan yaitu topologi mesh parsial. Berikut konfigurasi interface wireless pada tiap-tiap MAP dapat dilihat pada tabel 3.5

Tabel 3. 5 Konfigurasi Interface Wireless MAP

NO NAMA

MAP MAC ADDRES MODE BAND

FREQU ENCY SSID RADIO NAME WDS 1 MAP1 00:0C:42:E3:C7:BD AP BRIDGE 2GHz-B/G/N 2437 MESH MAP1 STATIC MESH

2 MAP2 D4:CA:6D:4C:8D:D7 MAP2

3 MAP3 D4:CA:6D:27:A7:AF MAP3

4 MAP4 D4:CA:6D:7D:0D:CD MAP4

5 MAP5 D4:CA:6D:52:4D:69 MAP5

Tabel 3. 6 Interface WDS

NO NAMA

MAP

WDS

NAME MAC ADDRES

1 MAP1 MAP2 D4:CA:6D:4C:8D:D7

MAP3 D4:CA:6D:27:A7:AF 2 MAP2 MAP1 00:0C:42:E3:C7:BD

MAP4 D4:CA:6D:7D:0D:CD 3 MAP3 MAP1 00:0C:42:E3:C7:BD

MAP5 D4:CA:6D:52:4D:69

4 MAP4 MAP2 D4:CA:6D:4C:8D:D7

MAP5 D4:CA:6D:52:4D:69

5 MAP5 MAP3 D4:CA:6D:27:A7:AF

MAP4 D4:CA:6D:7D:0D:CD

Seperti terlihat pada tabel 3.6. Tahap selanjutnya membuat Interface WDS,. Tiap-tiap MAP mempunyai jumlah interface wds yang berbeda-beda sesuai topologi yang digunakan, interface wds menggambarkan banyaknya link yang dimiliki oleh setiap MAP. Pada jaringan testbed ini tiap MAP memiliki dua buah interface WDS static.

(17)

55 3.4.3 Konfigurasi Interface Mesh

Tahap selanjutnya adalah menambahkan interface mesh pada tiap-tiap MAP, kemudian menambahkan interface wds ke dalam mesh port. Konfigurasi Interface mesh dapat dilihat pada tabel 3.7

Tabel 3. 7 Konfigurasi Interface mesh dan Port Mesh NO NAMA INTERFACE

MESH

MESH PORT

ETH1 MAP1 MAP2 MAP3 MAP4 MAP5

1 MAP1 MESH ѵ ѵ ѵ ѵ

2 MAP2 MESH ѵ ѵ ѵ

3 MAP3 MESH ѵ ѵ ѵ

4 MAP4 MESH ѵ ѵ ѵ

5 MAP5 MESH ѵ ѵ ѵ

3.4.4 Scripting dan Scheduler RouterOs

Pada routerOS scrip dibagi menjadi beberapa baris perintah. Baris perintah di eksekusi satu persatu sampai akhir script atau sampai terjadi error. Scripting pada routerOS digunakan untuk mengotomatisasi beberapa tugas dalam pengelolaan routerboard, penggunaan script dibatasi pada beberapa peristiwa yang terjadi. Penggunaan Script dapat disimpan di repository scrip dan dijalankan dengan scheduler, netwatch atau dapat langsung dituliskan di konsol.

Dalam skripsi ini script digunakan terbatas untuk memeriksa tabel registrasi pada interface wireless pada tiap-tiap MAP dengan tujuan memeriksa semua mesh client yang terhubung ke MAP dan memutuskan koneksi antara MAP dengan mesh client jika memiliki tingkat CCQ kurang dari 40%. Dengan harapan bahwa mesh client akan mencoba terhubung kembali dengan MAP yang terbaik. scrip ini akan dijalankan secara terus menerus oleh MAP dimulai dari startup dan di ulang setiap 30detik.

Script:

/interface wireless registration-table

:foreach i in=[ /interface wireless registration-table find ap=no] do={ :if ([get $i tx-ccq] < "40") do={

:log warning ([get $i mac-address] . " was disconnected due to low CCQ - Tx: " . [get $i tx-ccq] . "% / Rx: " . [get $i rx-ccq] . "%")

(18)

56

:delay 5s }

}

Scheduler:

/sys scheduler add name="station-check-schedule" start-time=startup \ interval=30s on-event="/system script run statio-check;"

3.4.5 PRTG Network Monitoring

Pada skripsi ini PRTG (Paessler Router Traphic Grahper) yang digunakan adalah versi V13.1.2.1462. PRTG merupakan software monitoring yang digunakan untuk melakukan hal-hal sebagai berikut:

• Mengawasi terhadap koneksi resource-resource pada jaringan

• Mengawasi dan mengukur penggunaan bandwidth pada device-device jaringan

• Mengawasi dan mengukur delay pada device-device jaringan.

• Mencari dan menemukan serta mengakses device-device yang ada pada jaringan

• Mendeteksi aktifitas yang tidak seharusnya (suspicious and malicious) baik dari user ataupun device yang ada dalam jaringan

• Mengawasi penggunaan terhadap resource sistem, seperti konsumsi CPU, penggunaan memory, sisa kapasitas drive yang tersedia, dll.

• mengelompokkan paket-paket yang lewat pada traffic berdasarkan sumber (source) dan tujuan-nya (destination)

(19)

Gambar 3.

Seperti terlihat pada gambar 3.11 PRTG sebagai tool untuk monitoring

dibangun.

57

Gambar 3. 11 PRTG Network Monitoring

Seperti terlihat pada gambar 3.11 PRTG Networks monitoring digunakan monitoring SNMP traffic dan delay pada jaringan testbed yang monitoring digunakan SNMP traffic dan delay pada jaringan testbed yang

Gambar

Gambar 3. 1 Topologi Physical Testbed WMN
Gambar 3. 2 Topologi Logical Testbed WMN
Gambar 3. 3 Denah lokasi dan Posisi penempatan MAP
Gambar 3. 4 Skenario Pengujian Mode Reactive
+7

Referensi

Dokumen terkait

Teman-teman yang tidak dapat penulis sebutkan satu persatu, yang telah banyak memberikan dorongan dan bantuan dalam penyelesaian skripsi ini... Akhir kata dengan segala

disayangkan anak yang menjadi korban atas perceraian yang dialami oleh kedua orangtuanya.. Anak yang tidak tahu menahu apa yang terjadi di tengah keluarga mereka

Penelitian mengenai efisiensi pasar di pasar berjangka Indonesia pada komoditi pertanian sudah dilakukan pada komoditi Olein yang dilakukan oleh Dewi 2011 yang menunjukkan hasil

Berdasarkan penelitian ini diperoleh kesimpulan atas permasalahan hukum yaitu yang pertama nilai kekuatan pembuktian dalam perkara kekerasan seksual mengenai keterangan

(forward linkage) dalam suatu sistem agribisnis. Keterkaitan ke belakang berlangsung karena subsistem usahatani memerlukan input produksi yang dapat diperoleh dengan

Antara undang-undang asas yang perlu di ikuti dalam konteks ikhtiar hidup ialah membuat persediaan awal sebagai contoh menyediakan khemah atau khemah reka ganti

Berdasarkan uraian di atas, maka rumusan masalah dalam penelitian ini adalah “Apakah terdapat hubungan antara kecerdasan emosional dengan motivasi kerja problem solver

Pendidikan karakter adalah suatu hal yang saat ini ditekankan dalam pendidikan di Indonesia. Penguatan pendidikan karakter dalam konteks saat ini sangat relevan