DAFTAR PUSTAKA
Armand, M. and J.M. Tarascon. 2008. Building better batteries. Nature. 451: 652- 657.
Bach, S., Pereira - Ramos, J. P., Baffier, N. 1998. Electrochemical behavior of a lithium titanium spinel compound synthesized via a sol-gel process. J. MaterialsChemistry.8(1): 251-253.
Bach, S., Pereira-Ramos, J. P. and Baffier, N. 1999. Electrochemical Properties Of Sol-Gel Li4/3Ti5/3O4. Journal Of Power Sources. 81-82: 273-276.
Bard, J.A. and Faulkner R.L. 2001. Electrochemical Methods: Fundamentals and Applications. Second Edition. University of Texas at Austin. New York.
Belharouak, I., Koenig, G.M. and Amine, K. 2001. Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. Journal Of Power Sources. 196: 10344–10350.
Borodin, O. and Smith, G.D. 2009. Quantum Chemistry and Molecular Dynamics Simulation Study of Dimethyl Carbonate Electrolytes Doped with LiPF6. The Journal of Physical Chemistry B. 113: 1763.
Buchmann, Isidor. 2007. Lithium-ion Safety Concerns. Retrieved July 30, 2010, From http://www.batteryuniversity.com/partone-5B.htm.
Chen, Y., Miao, Q., Zheng, B., Wu, S. and Pecht, M. 2013. Quantitative analysis of lithium-ion battery capacity prediction via adaptive bathtub-shaped function. Energies. 6: 3082–3096.
Copper foil. MSDS. No. UL510. [online]. RoHS. 3M.
Day, Jr. R.A and Underwood, A.L. 1990. Quantitative Analysis. Terjemahan Drs. R. Soendoro, dkk. Edisi ke-4. Jakarta: Penerbit Erlangga, Jakarta.
Dell, R. 2000. Batteries: fifty years of material Development. Solid State Ionics. 134:139-158.
Deutsche Bank. 2009. Autos & auto parts Electric Cars: Plugged in 2. From http://www.db.com
Farley, R. and David U.S. 2010. Will Have 40 Percent of Global Market for Advanced Batteries by 2015. Retrieved July 19, 2010,
Fromhttp://www.politifact.com/truthometer/statements/2010/jul/15/da vidaxelrod/davidaxelrod-says-us-willhave 40-percent-global-/.
Han, X., et al. 2013. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal Of PowerSource. 251: 38–54.
Harrison, M. R., et al. 1985. Philosophical Magazine B. 52(3): 679 699.
Hu, X., Sun, F., and Zou, Y. 2010. Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive Luenberger observer. Energies. 3: 1586–1603.
Http://id.wikipedia.org/wiki/Spektrofotometer_FTIR. Diakses tanggal 15 Maret 2015.
Https://materialcerdas.wordpress.com/teori-dasar/scanning-electron-microscopy/
Diakses tanggal 20 Maret 2015.
Http://persembahanku.wordpress.com Diakses tanggal 27 Februari 2015.
Kavan, L., Prochazka, J., Spitler, T.M., Kalbac, M., Zukalova, M.T., Drezen, T., and Grätzel, M. 2003. Li insertion into Li4Ti5O12 (spinel), Charge capability vs. Particle Size in thin-film electrodes. Journal of The Electrochemical Society. 150(7): A1000-A1007.
Kawamura, T., Okada, S., and Yamaki, J. 2006. Decomposition reaction of LiPF6 -based electrolytes for litium ion cells. Journal of Power Sources. 156: 547-554.
Khopkar, S.M. 2003. Konsep Dasar Kimia Analitik. Terjemahan A. Saptorahardjo, Edisi pertama, UI Press: Jakarta.
K. M. Colbow, J. R. Dahn, and R. R. Haering. 1989. Structure And Electrochemistry Of The Spinel Oxides LiTi2O4 and Li4/3Ti5/3O4. Journal of Power Sources.26
(3-4): 397 - 402.
Lithium Titanium Oxide. MSDS. No. BE-15. [online]. NEI Corporation. USA.
Lu, L., Han, X., Li, J., Hua, J. and Ouyang, M. 2013. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources. 226: 272–288.
Meti. 2009b. Patent Trend Report, Lithium Ion Battery. Retrieved June 7, 2010, Fromhttp://www.jpo.go.jp/shiryou/pdf/gidouhoukoku/21lithium_ion_ba ttery.pdf.
Nedo. 2009. Outline of Li-EAD Project. Retrieved June 1, 2010, Fromhttp://app3.infoc.nedo.go.jp/gyouji/events/FA/nedoevent.2009051 2.5433825802/O-00%20H206210679c5831544a4f1a-NEDO5c0f6797 (67007d427248).pdf.
N,N-Dimethylacetamide. MSDS. No. 07932. [online]. Basf Corporation. Florham Park, NJ.
Nordh, Tim. 2013. Li4Ti5O12 as an anode material for Li ion batteries in situ XRD and XPS studies. Uppsala Universitet. Upteck k 13001.
Ohzuku, T., Ueda, A. and Yamamoto, N. 1995. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. Vol.142(5). pp.1431-1435.
Palacín, M.R. 2009. Recent advances in rechargeable battery materials: a
chemist’s perspective – chemical. Chemical Society Reviews. 38 (9): 2565.
Peramunage, D. and Abraham, K.M.1998. Preparation of Micro-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based litium cells.Journal of the Electrochemical. Society145(8), 2609-2622.
Priyono, S. 2014. Sintesis serbuk Li4Ti5O12 yang didoping atom Al dan Na untuk anoda baterai ion lithium. Tesis. Universitas Indonesia: Jakarta.
PRTM. 2010. Paving the Way for Electric Vehicles.
Fromhttp://www.prtm.com/uploadedFiles/Thought_Leadership/Perspect ives/PRTM_Paving_the_Way_for_Electric_Vehicles.pdf.
Roland Berger Strategy Consultants. 2010. Powertrain 2020 (Presentation). http://www.rolandberger.com/media/pdf/Roland_Berger_LiIon_batterie s_20100222.pdf.
R.M. Silverstein., dkk. 1986. Penyidikan Spektrometrik Senyawa Organik. Diterjemahkan oleh Drs. A.J. Hartono, dkk. Jakarta: Penerbit Erlangga.
Ronci, F., P. Reale, B. Scrosati, et al. 2002. High-Resolution In-Situ Structured Measurement of the Li4/3Ti5/3O4 “Zero Strain” Insertion Material. Departement of Chemistry. Sapienza University of Rome: Italy. The Journal of Physical Chemistry. 106: 3082.
Scrosati, B. and Garche, J. 2010. Lithium batteries: Status, prospects and future. J. Power Sources. 195: 2419–2430.
Shu, Jie. 2008. Syudy of interface between Li4Ti5O12 electrodes and standart electrolyte Solution in 0.0-5.0 V. Electrochemical and Solid-State Letters. 11(12): A238-A240.
Simon, D.R. 2007. Characterization of Li4Ti5O12 and LiMn2O4 spinel materials treated with aqueous acidic solutions. University of Cincinnati. Netherlands.
Subhan, A. 2011. Fabrikasi dan karakterisasi Li4Ti5O12 untuk bahan anoda baterai lithium keramik. Tesis. Universitas Indonesia: Jakarta.
Super-P. MSDS. No. G6H 2J1. [online]. Prolab Technolub Inc. Canada.
Tarascon, J. M. and Armand, M. 2001. Issues Ana challenges facing rechargeable litium batteries. Nature414. 6861: 359-367.
T. Ohzuku, A. Ueda, N. Yamamoto, and Y. Iwakoshi. 1995. Factor affecting the capacity retention of lithium-ion cells. Journal ofPower Sources. Vol. 54. No. 1. pp. 99–102.
Wang, G.X., Bradhurst, D.H., Dou, S.X. and Liu, H.K. 1999. Spinel Li[Li1/3Ti5/3] as an anode material for ion lithium batteries. Journal of Power Sources. 83(1-2): 156-161.
Whittingham, M.S. 1976. Electrical Energy Storage and Intercalation Chemistry. Science. Vol. 192. No. 4244. pp. 1126 –1127.
Winter, M. and Brodd R.J. 2004. What are batteries: status, prospect and future. Chemical Reviews. 104: 4245.
Wise, Ralph. 2010. Chief Technology Officer at Novolyte. Personal communication with CGGC research staff.
Xu, K. 2004. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews. 104: 4303.
Zaghib, K., Simoneau, M., Armand, M. and Gauthier, M. 1999. Electrochemical study of Li4Ti5O12 as negatif elektrode for Li-ion polymer rechargeable batteries. Journal of Power Sources. 82: 300-305.
Zaghib, K. and Dontigny, M. 2011. Safe and fast-charging Li-ion battery with long shelf life for power applications. Journal of Power Sources. 196: 3949–3954.