• Tidak ada hasil yang ditemukan

getdocf100. 553KB Jun 04 2011 12:05:10 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdocf100. 553KB Jun 04 2011 12:05:10 AM"

Copied!
36
0
0

Teks penuh

(1)

El e c t r o n i c

J o

u o

f P

r o b

a b i l i t y

Vol. 3 (1998) Paper no. 4, pages 1–36. Journal URL

http://www.math.washington.edu/˜ejpecp/ Paper URL

http://www.math.washington.edu/˜ejpecp/EjpVol3/paper4.abs.html GEOMETRIC EVOLUTION UNDER

ISOTROPIC STOCHASTIC FLOW

M. Cranston and Y. LeJan

University of Rochester Universit´e de Paris, Sud Rochester, New York, USA Orsay 91405, France cran@math.rochester.edu Yves.LeJan@math.u-psud.fr

Abstract. Consider an embedded hypersurfaceM inR3. For Φt a stochastic flow

of differomorphisms on R3 and x M, set xt = Φt(x) and Mt = Φt(M). In this

paper we will assume Φt is an isotropic (to be defined below) measure preserving

flow and give an explicit descripton by SDE’s of the evolution of the Gauss and mean curvatures, ofMt at xt. If λ1(t) and λ2(t) are the principal curvatures of Mt at xt

then the vector of mean curvature and Gauss curvature, (λ1(t) +λ2(t), λ1(t)λ2(t)),

is a recurrent diffusion. Neither curvature by itself is a diffusion. In a separate addendum we treat the case of M an embedded codimension one submanifold of Rn. In this case, there aren1 principal curvaturesλ1(t), . . . , λn−1(t). IfPk, k = 1, n1 are the elementary symmetric polynomials in λ1, . . . , λn−1, then the vector

(P1(λ1(t), . . . , λn−1(t)), . . . , Pn−1(λ1(t), . . . , λn−1(t)) is a diffusion and we compute

the generator explicitly. Again no projection of this diffusion onto lower dimensions is a diffusion. Our geometric study of isotropic stochastic flows is a natural offshoot of earlier works by Baxendale and Harris (1986), LeJan (1985, 1991) and Harris (1981).

1991Mathematics Subject Classification. 60H10, 60J60.

Key words and phrases. Stochastic flows, Lyapunov exponents, principal curvatures.

Research supported by NSA and Army Office of Research through MSI at Cornell. Submitted to EJP on February 19, 1996. Final version accepted on February 12, 1998.

(2)

§1 Isotropic Flows and Geometric Setting.

We begin with a nonnegative measureF(dρ) on [0,+) with finite moments of all orders. The pth moment ofF will be denoted by µp. ToF we can associate a

covariance

(1.1) Cij(z) =

Z ∞

0

Z

Sn−1

eiρhz,ti(δji titj)σn−1(dt)F(dρ),

where σn−1 is normalized Lebesgue measure on Sn−1. By a result of Kolmogorov,

toCij is associated a smooth (inx) vector-field valued Brownian motionUt(x) such

that

(1.2) EUti(x)Usj(y) = (ts)Cij(xy), 1i, j n.

A Brownian flow on Rn is constructed by solving the equation

(1.3) Φt(x) =x+

Z t

0

∂Us(Φs(x))

(∂ denotes Stratonovich differential.) Existence and uniqueness of such flows was proved in Baxendale (1984), LeJan and Watanabe (1984). Then ifTa is translation

by aRn, TaΦtT−a and Φt are identical in law so Φ is stationary. IfR is unitary, RΦtR−1 and Φt are identical in law. When these two properties hold we say Φ is

isotropic. These properties both follow from the nature ofCij so our Φ is isotropic.

The field Ut(x) is smooth so we differentiate it writing

(1.4) Wji = ∂

∂xjU i

(1.5) Bjki = ∂

2

∂xj∂xkU i.

Then we have as direct consequence of (1.1) and (1.2) (using h,i to denote both Euclidean inner product as well as quadratic variation for martingales,dwill denote the Itˆo differential.)

(1.6) hdWi

j(t, y), dWℓk(t, y)i = µ2

n(n+ 2)[(n+ 1)δ

i kδ

j

ℓ −δijδℓk−δiℓδjk]dt

(1.7) hdBjki (t, y), dWqp(t, y)i= 0 and for vectors u, v Rn,

(1.8)

hhdB(u, u), vi,hdB(u, u), vii = 3µ4

n(n+ 2)(n+ 4)[(n+ 3)||u||

(3)

By isotropy, (1.6), (1.7) and (1.8) remain valid under any unitary change of coor-dinates. We define,

Cjℓikdt=hdWji, dWℓki= µ2

n(n+ 2)[(n+ 1)δ

i kδ

j ℓ −δ

i

jδℓk−δiℓδjk]dt

where both dWi

j, dWℓk are evaluated at (t, y), and

Ckℓpqij dt=hdBi(ek, eℓ), dBj(ep, eq)i

again both dB terms are evaluated at (t, y). A quick calculation shows

E Pn

i=1dWii

2

= 0 so div U = 0 and therefore Φ is a measure-preserving flow. Also, it’s rather easy to check that Cnn

1111= 3C1122nn and C1122nn = n(n+2)(n+4)(n+3)µ4 .

The most general form of hdWi

j,(t, y), dWℓk(t, y)i = Cjℓikdt for isotropic flows is Cik

jℓ = aδi,kδj,ℓ+bδjiδkℓ +cδiℓδjk where a+c, a−c, a+c+db are nonnegative (see

LeJan (1985) and the references therein). We retrict our attention to the present covariance structure;a= (n+1) µ2

n(n+2),b=− µ2

n(n+2),c=− µ2

n(n+2), as computations

are massively simplified by the fact that certain Ito correction terms vanish. The works of Baxendale and Harris (1986) and LeJan (1985) focused on first order properties of the general isotropic flows in Euclidean space. That is, on properties of the derivative flow DΦt(x). Perhaps the most fundamental information about

the derivative flow is its Lyapunov spectrum. To describe the Lyapunov spectrum, first extend DΦt to p-forms α= v1∧ · · · ∧vp (we’re in Euclidean space so we can

identify forms and vectors) by defining DΦt(x)α = DΦt(x)v1 ∧ · · · ∧DΦt(x)vp.

Then if v1, . . . , vp are linearly independent, a.s.

lim

t→∞

1

t logkDΦt(x)αk=γ1+· · ·+γp

is the sum of the firstp Lyapunov exponents. In the case of the isotropic, measure-preserving flow on Rn, γ

1+· · ·+γp = np(n2(n+2)−p)µ2 (see LeJan 1985). The problem

dealt with in this work involves second order behavior of the flow. The evolving curvature of a submanifold moving under the flow would depend on the properties of the second order flow,

(x, u, v)(Φt(x), DΦt(x)u, D2Φt(x)(DΦt(x)u, DΦt(x)u) +DΦt(x)v).

In particular, our results rely on the properties given by (1.6), (1.7) and (1.8). Initially, we will considerM an embedded hypersurface inRn, later specializing to the case n = 3. Take Πt : TxtRn → TxtMt to be the orthogonal projection

and to be the canonical connection on Euclidean space. Then St, the second

fundamental form ofMt atxt, is defined foru, v ∈TxtMt bySt(u, v) = (I−Πt)∇uv

where v is extended in an arbitrary but smooth manner in a neighborhood of xt.

(4)

for k = 1,2, . . . , n 1. This arises as follows. First observe that since we are in Euclidean space we can identify vectors and forms. Next take νt ∈ Txt⊥Mt to

be a unit vector (there are two choices and we may select the process νt to be

continuous int.) Now in the casek = 1,u→ hSt(u,·), νtiis a map from Λ1(TxtMt)

to Λ1(TxtMt). When k >1 we need to introduce the index set

Ik ={ ⇀

m∈ {1, . . . , n1}k :m1 < m2 <· · ·< mk}

and for σ Sk, the set of permutations on k letters, define (−1)σ to be the sign of σ. Then for u1, . . . , uk, v1, . . . , vk ∈TxtMt, set

S(k)(u1∧ · · · ∧uk, v1∧ · · · ∧vk) =

X

σ∈Sk

(1)σ k

Y

j=1

hSt(uσ(j), vj), νti

This gives rise to the linear map

u1∧ · · · ∧uk →S(k)(u1∧ · · · ∧uk, ·)

from Λk(T

xtMt)→Λk(TxtMt).

The object of our study will be the trace ofS(k), T rS(k), for k= 1,2, . . . , n1. This is obtained via contraction on indices (see Bishop and Goldberg (1980)). Take {u1, . . . , un−1} to be any basis for TxtMt. For k ∈ {1, . . . , n−1}, ~ℓ ∈ Ik, set

|⇀ℓ|=ℓ1+· · ·+ℓk, α⇀

ℓ =uℓ1∧uℓ2∧ · · · ∧uℓk α

⇀ ℓ = (

−1)|

⇀ ℓ|+ku

1∧ · · · ∧uˆℓ1 ∧ · · · ∧uˆℓk ∧ · · · ∧un−1

( ˆ indicates the indicated vector is omitted from the wedge product)

α=u1∧ · · · ∧un−1.

Define an inner product

hα⇀ ℓ, α

mi =dethuℓi, umji.

Then we may express T rS(k) as

(1.9) T rS(k) =S(k)(α⇀ ℓ, α

⇀ m)hα

⇀ ℓ, αm⇀

i.||α||−2,

where the sum (Einstein’s convention) is over⇀ℓ ,m⇀ Ik. Now this is invariant under

change of basis so we may select {u1, . . . , un−1} to be the unit principal directions

(5)

Λ1(T

xtMt). Let λ1, . . . , λn−1 be the corresponding eigenvalues, otherwise known

as the principal curvatures. Now the ui are orthonormal so

hα ⇀

, αm⇀

i||α||−2 =δ ⇀

ℓ ,⇀m

and as hSt(uj, v), νti=λjhuj, vi

X

σ∈Sk

(1)σ

k

Y

j=1

hSt(uℓσ(j), uℓj), νti=λℓ1. . . λℓk ≡λ⇀

Thus

(1.10) T rS(k) = X

⇀ ℓ∈Ik

λ⇀

ℓ ≡Pk(λ1, . . . , λn−1). Pk is the elementary symmetric polynomial of degree k.

The process ξt = (xt,Πt, νt, P1(λ1, . . . , λn−1),· · ·Pn−1(λ1, . . . , λn−1)) will, in

our case be a diffusion. By the translation invariance part of isotropy, it is clear that xt is not needed, i.e., (Πt, νt, P1(λ1, . . . , λn−1),· · · , Pn−1(λ1, . . . , λn−1)) has

the Markov property. By the invariance of the law of the flow under unitary actions, it follows that Πt and νt are also superfluous. Thus, for isotropic flows the vector

(P1(λ1, . . . , λn−1), . . . , Pn−1(λ1, . . . , λn−1)) is a diffusion. The point of the present

article is to describe this diffusion explicitly in the measure-preserving isotropic case. We can derive consequences about the behavior of this diffusion from the explicit description. These properties suggest what sort of behavior one might have with more general flows. What we expect for more general flows is that the process of curvatures for a k-dimensional submanifold evolving under a general flow will be recurrent (though not necessarily a diffusion) if γk >0. That is, generically the k

dimensional tangent space TxtMt will ‘see’ only stretching directions and this will

tend to smooth out the curvatures. This condition may even be too strong.

§2 Preliminary Results.

Recall the correlations ofdW given by (1.6). The flow Φt :Rn→Rn is aC∞

dif-feomorphism whose first derivative satisfies the Stratonovich stochastic differential equation, where xM,

(2.1) dDΦt(x) =∂W(xt)DΦt(x)

Given uTxM, DΦt(x)u =u(t)∈TxtMt satisfies

(2.2) du=∂W u

where we have suppressed the variable (xt) in∂W. In fact, due to the choice of C

in (1.1)

(6)

that is, the Itˆo corrections vanish. Furthermore, if we select a basis{u1, . . . , un−1}

for TxM, then {u1(t), . . . , un−1(t)}, where uj(t) = DΦt(x)uj, forms a basis for TxtMt. We will write uj for uj(t) for simplicity of notation.

We now proceed to derive a Stratonovich equation for the second fundamental form St of Mt at xt. Given vectors u, v ∈ TxM move them via the flow, u(t) = DΦt(x)u, v(t) =DΦt(x)v. Extend v to a smooth vector field V in a neighborhood

of x. Set Vt(y) =DΦt(Φ−t 1(y))V(Φ−t 1(y)) so that Vt is a vector field near xt such

that Vt(xt) =v(t). Then if Zt ≡ ∇u(t)Vt(xt) we claim

(2.4) dZ(u, v) =∂W Z(u, v) +∂B(u, v).

For proof of (2.4), take γ to be a curve on M with γ(0) = x, γ′(0) = u and define

γt = Φt(γ) so that γt′(0) =u(t) =DΦtu. Then,

∇utVt = lim s→0s

−1(V

t(γt(s))−Vt(γt(0))

= lim

s→0s

−1(DΦ

t(γ(s))V(γ(s))−DΦt(x)v(x))

= lim

s→0s

−1[(DΦ

t(γ(s))−DΦt(x))V(γ(s))

+DΦt(x)(V(γ(s))−v(x))]

=D2Φt(x)(u, v) +DΦt(x)∇uv

Since

Φt(x) =x+

Z t

0

∂U(Φs(x))

DΦt(x) =I +

Z t

0

∂W(Φs(x))DΦs(x)

D2Φt(x)(·,·) =

Z t

0

∂B(Φs(x))(DΦs(x)·, DΦs(x)·)

+

Z t

0

∂W(Φs(x))D2Φs(x)(·,·)

(2.4) follows. A word about notation: ∂WtZ is an abbreviation for∂Wji(Φt(x))(Ztj)

and ∂B(u, v) is short for (∂Bi

jk(Φt(x))uj(t)vk(t).

Next we need an equation for Πt : TxtRn → TxtMt. For any ξ ∈ TxtMt, let

{u1, . . . , un−1} be the moving frame mentioned above, setα=u1∧ · · · ∧un−1 and

defining

(2.5) αi = (1)i+1u1∧ · · · ∧uˆi∧ · · · ∧un−1

we have

(2.6) Πtξ =

n−1

X

i=1

αi, αi||α||−2ui.

(7)

Lemma 2.1. If ξt is a TxtMt-valued continuous semimartingale, then

(I Πt)·∂W ξt =∂Πtξt.

Proof. Suppose Πtξt =ξt is as in the statement of the lemma withξt =xitui. Then

(I Πt)∂W ξt −∂Πtξt =∂W ξt −Πt∂W ξt

+ 2h∂αt, αti ||αt||2

ξt −∂W ξt

−hξt ∧α

i t, ∂αti

||αt||2

ui− h

ξt∧∂αit, αti

||αt||2 ui

=Πt∂W ξt+ 2h

∂αt, αti

||αt||2 ξt

−xithαt, ∂αti

||αt||2

ui−xith

ui∧∂αi, αti

||αt||2 ui

Since

dαt =−ui∧∂αi+∂W ui∧αi

the last term becomes

−xithui∧∂α i, αi

||αt||2 ui

=h∂αt, αti ||αt||2

ξt + h

∂W ui∧αit, αti

||αt||2

xitui

=h∂αt, αti ||αt||2

ξt + Πt∂W ξt

From this we get the conclusion of the lemma.

Lemma 2.2. If ηt ∈TxtMt⊥ is a continuous semimartingale, then ∂Πtηt = Πt∂W η˜ t

where W˜ is the transpose of W.

Proof. Recalling that

∂Πt(v) =−2h

∂αt, αti

||αt||2

Πtv+∂WΠtv

+ hv∧α

i t, ∂αti

||αt||2

ui+ h

v∂αi t, αti

(8)

we see that since Πtηt = 0,

∂Π(ηt) = hηt∧α i t, ∂αti

||αt||2

ui.

But

∂αt =∂W uk∧αkt

so

∂Πt(ηt) = h

ηt∧αit, ∂W uk∧αkti

||αt||2

ui

= h∂W η˜ t, uk(t)ihα

k

t(t), αkt(t)iui(t)

||α(t)||2

= h∂W η˜ t∧α

i t, αti

||αt||2

uit

= Πt∂W η˜ t

and the lemma is proved.

UsingS = (IΠ)Z together with Lemmas 2.1 and 2.2 we obtain the following. Proposition 2.3. For u, v TxM, u(t) =DΦt(x)u, v(t) =DΦt(x)v,

(2.7) dS(u, v) = (I Π)dB(u, v) +∂W S(u, v)Π(∂W +∂W˜)S(u, v)

where W˜ denotes the transpose of W.

Proof. We shall abbreviate by suppressing the dependence onu andv. So,

dS = (IΠ)∂Z∂ΠZ

= (IΠ)dB+ (I Π)∂W Z ∂ΠZ, by (2.4),

= (IΠ)dB+ (I Π)∂W S

+ (IΠ)∂W R∂ΠR∂ΠS ,ΠZ R

= (IΠ)dB+ (I Π)∂W S ∂ΠS, by Lemma 2.1 = (IΠ)dB+∂W SΠ(∂W +∂W˜)S,by Lemma 2.2.

The equation (2.7) can be simplified. Set

dP = (IΠ)dW dQ= ΠdW˜

(2.8)

and define λ and µ so that

(I Π)∂W =dP +dλ

Π∂W˜ =dQ+dµ.

(9)

Lemma 2.4.

(2.10) dΠ =dPΠ +dλΠ +dQ(I Π) +dµ(I Π).

dS(u, v) = (I Π)dB(u, v) + (dP dQ)S(u, v) + 1

2(dP −dQ)

2S(u, v)

+d(λµ)S(u, v) (2.11)

Proof. Let ζt be an Rn-valued semimartingale. Then

(2.12) dΠ = (IΠ)∂WΠ + Π∂W˜(I Π) holds since

∂Πtζt =∂Πt(Πtζt) +∂Πt((I −Πt)ζt)

= (IΠt)∂WtΠtζt+ Πt∂W˜t(I−Πt)ζt,

by Lemmas 2.1 and 2.2. Thus, we have the following quadratic variations,

dλ= 1

2(−(I−Π)dWΠdW −ΠdW˜(I −Π)dW) = 1

2(−dPΠdW −dQ(I−Π)dW),

dµ= 1

2((I−Π)dWΠdW˜ + ΠdW˜ (I−Π)dW˜) = 1

2(dPΠdW˜ +dQ(I −Π)dW˜). Consequently, performing Itˆo corrections on (2.12), we get

dΠ =dPΠ +dλΠ +dQ(IΠ) +dµ(IΠ) which proves (2.10). In order to derive (2.11), rewrite (2.7) as

dS(u, v) = (IΠ)dB(u, v) + (I Π)∂W S(u, v)Π∂W S˜ (u, v).

Then (2.11) follows from the definitions of dP, dQ, dλ and dµ in (2.9).

Lemma 2.5. If ζt is a TxtMt⊥-valued semi-martingale, then

(2.12) dλζ = (n−1)µ2

(10)

(2.13) dµζ = (n−1)(n+ 1)µ2 2n(n+ 2) ζdt

(2.14) 1

2(dP −dQ)

2ζ =

−(2nn(n1)+ 2)nµ2ζdt

Proof. Select an orthonormal basis{e1, . . . , en} for TxtMt such that en ∈TxtMt⊥.

Then,

2dλζ =dΠdW ζdPΠdW ζdQ(IΠ)dW ζ

=(I Π)dWΠdW ζ ΠdW˜(IΠ)dW ζ

=(

n−1

X

i=1 Cin

ni)ζdt, since hdWin, dWnni= 0,1≤i≤n−1,

= (n−1)µ2

n(n+ 2) ζdt, by (1.6) 2dµζ =dPΠdW ζ˜ +dQ(I Π)dW ζ˜

= (

n−1

X

i=1

Cnnii )ζdt

= (n−1)(n+ 1)µ2

n(n+ 2) ζdt, by (1.6). Thus,

1

2(dP −dQ)

2ζ = 1

2(dP −dQ)((I −Π)dW ζ−ΠdW ζ˜ ) = 1

2(dP −dQ)(dW

n nζ −

n−1

X

i=1

dW˜ineihζ, eni)

= 1 2(dW

n

ndWnnζ− n−1

X

i=1

dWnidW˜inζ)

= 1 2(C

nn nnζ−(

n−1

X

i=1

Cnnii )ζ)dt

= µ2

2n(n+ 2)((n−1)−(n−1)(n+ 1))ζdt , by (1.6), =(n−1)µ2

2(n+ 2) ζdt.

(11)

Theorem 2.6. If ν(t) denotes the unit vector ν = ||(I(I−Π)unΠ)un|| perpendicular to Mt

at xt, then

dν =dQν (n

21)µ 2

2n(n+ 2)νdt.

Proof. Setvn = (I −Π)un. Then by Lemmas 2.2 and 2.3, dvn =−Π∂W v˜ n+ (I −Π)∂W vn

= (dP dQ)vn+

1

2(dP −dQ)

2v

n+ (dλ−dµ)vn

= (dP dQ)vn−

(n1)µ2

(n+ 2) vndt, by Lemma 2.5 Then, applying

d||vn||2 = 2hvn, dvni+h(dP −dQ)vni

= 2hvn,(dP −dQ)vni − 2(n−1)µ2

(n+ 2) ||vn||

2dt+h(dP dQ)v ni

= 2||vn||2dWnn−

2(n1)µ2

(n+ 2) ||vn||

2dt+ (n−1)µ2 n ||vn||

2dt

= 2||vn||2dWnn−

(n1)(n2)µ2 n(n+ 2) ||vn||

2dt

and so

d||vn||−1 =−||vn||−1dWnn+

(n1)(n+ 1)µ2

2n(n+ 2) ||vn||

−1dt.

Consequently, as ν = ||vnvn||,

dν = (dP dQ)ν (n−1)µ2

(n+ 2) νdt−(I −Π)dW ν+

(n1)(n+ 1)µ2

2n(n+ 2) νdt − h(dP dQ)ν, dWnni

=dQν (n−1) 2µ

2

2n(n+ 2)νdt−

(n1)µ2 n(n+ 2) νdt =dQν (n+ 1)(n−1)µ2

2n(n+ 2) νdt , as desired.

(12)

Theorem 2.7. Suppose u(t) = DΦtu, v(t) = DΦtv and ν is as in Theorem 2.6.

Then

dhS(u, v), νi= hdB(u, v), νi+hS(u, v), νihdW ν, νi − (n−1) 2µ

2

2n(n+ 2) hS(u, v), νidt.

Moreover, if ui(t) =DΦtui, then

hdhS(ui, uj), νi, dhS(uk, uℓ), νii=C112233 [hui, ujihuk, uℓi

+hui, ukihuj, uℓi+hui, uℓihuj, uki]dt

+ µ2(n−1)

n(n+ 2) hS(ui, uj), νihS(uk, uℓi, νidt.

Proof. From Lemmas 2.4 and 2.5 we have

dS(u, v) = (I Π)dB(u, v) + (dP dQ)S(u, v) (n−1)µ2

(n+ 2) S(u, v)dt. Also

−h(dP dQ)S(u, v), dQνi=hdQS(u, v), dQνi

=hS(u, v), νi n−1

X

i=1

Cnnii dt

= (n

21)µ 2

n(n+ 2) hS(u, v), νidt. So,

dhS(u, v), νi=hdS(u, v), νi+hS(u, v), dνi+hdS(u, v), dνi

=hdB(u, v), νi+hS(u, v), νidWnn−

(n1)µ2

(n+ 2) hS(u, v), νidt − (n

2 1)µ 2

2n(n+ 2)hS(u, v), νidt− h(dP −dQ)S(u, v), dQνi =hdB(u, v), νi+hS(u, v), νidWnn (n−1)(n−1)

2µ 2

2n(n+ 2) hS(u, v), νidt For the quadratic variation term, since B and W are independent and Cnn

111 =

3Cnn 1122,

hdS(ui, uj), νihdS(uk, uℓ), νi=hhdB(ui, uj), νihdB(uk, uℓ), νii

+hS(ui, uj), νihS(uk, uℓ), νiCnnnndt

=C1122nn [hui, ujihuk, uℓi+hui, ukihuj, uℓi

+hui, uℓihuj, uki]dt

+ (n−1)µ2

(13)

We now split the exposition. The case of a hypersurface inR3 will be developed below. The case of a hypersurface in Rn, n > 3, will be treated in an addendum. The latter involves lengthy computations together with combinatorial arguments, whereas the former is more readable.

Theorem 2.8. Let u, v TxM with u and v linearly independent and define u(t) =DΦtu, v(t) = DΦtv, (however in our computations we shall suppress the t

dependence). The process (T r S(1), T r S(2)) satisfies the equations

d T r S(1)= [hdB(u, u), νikvk2+hdB(v, v), νikuk2−2hdB(u, v), νihu, vi]kαk−2

+T r S(1)(dW33−2(dW11+dW22))

+ 2[S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)]kαk−2

+ 4µ2 15 T r S

(1)dt

d T r S(2)= [S(v, v)hdB(u, u), νi+S(u, u)hdB(v, v), νi −2S(u, v)hdB(u, v), νi]kαk−2

+ 2T r S(2)(dW33−(dW11+dW22)) + 4µ2

15 T r S

(2)dt .

hd T r S(1)i=

16µ4

35 +

µ2

15[14(T r S

(1))2

−24T r S(2)]

dt

hd T r S(2)i=

2µ4

35 (3(T r S

(1))24T r S(2)) + 32µ2

15 (T r S

(2))2

dt

hd T r S(1), dT r S(2)i=

8µ4

35 T r S

(1)+ 16µ2

15 T r S

(1)T r S(2)

dt .

Proof. Recall we have selected an orthomal basis {e1, e2, e3} for TxtMt such that ν =e3. Then with α=u∧v, from LeJan (1986) we have

(2.15) dkαk

−2

k−2 =−2(dW 1

1 +dW22)−

2µ2

15 dt . Using (1.6), it follows that

(2.16) dhu, vi=hdW u, vi+hu, dW vi+ 10µ2

15 hu, vidt . Now by (1.9), the mean curvature is

(14)

so by Itˆo’s formula,

d T r S(1)= [kvk2dS(u, u) +kuk2dS(v, v)−2hu, vidS(u, v) +S(u, u)dkvk2+S(v, v)dkuk2−2S(u, v)dhu, vi

+hdS(u, u), dkvk2i+hdS(v, v), dkuk2i −2hdS(u, v), dh(u, v)i]kαk−2

+T r S(1)dkαk

−2

kαk−2 +hd(T r S

(1)kαk2), dkαk−2i

= [hdB(u, u), νikvk2+hdB(v, v), νikuk2−2hdB(u, v), νihu, vi]kαk−2

+T r S(1)dW33− 2µ2

15 T r S

(1)dt

+ [S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)]kαk−2

+ 10µ2 15 T r S

(1)dt 2µ2

15 T r S

(1)dt

−2T r S(1)(dW11+dW22)− 2µ2

15 T r S

(1)dt ,

using Theorem 2.7, (2.15), (2.16) and the fact that

hd(T r S(1)kαk2), dkαk−2i=−2kαk−2[hkαk2T r S(1)dW33, dW11+dW22i

+ 2hS(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi), dW11+dW22i] =−2

h2µ

2

15 + 2µ2

15

i

T r S(1)dt

= 0. Thus,

d T r S(1)= [hdB(u, u), νikvk2 +hdB(v, v), νikuk22hdB(u, v), νi hu, vi]kαk−2

(2.18)

+T r S(1)(dW332(dW11+dW22))

+ 2[S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi

+hu, dW vi)]kαk−2

+ 4µ2 15 T r S

(1)dt .

Consequently, the quadratic variation ofT r S(1) is given by

hd T r S(1)i= [hdB(u, u), νikvk2+hdB(v, v), νikuk2−2hdB(u, v), νi hu, vi]kαk−4

(2.19)

+ (T r S(1))2hdW33−2(dW11+dW22)i

+ 4[S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)]kαk−4

+ 4T r S(1)hdW33−2(dW11+dW22), S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)ikαk−2

Setting

qn =

(n+ 3)µ4

n(n+ 2) (n+ 4) =C

(15)

and if ui, uj, uk, uℓ are all orthogonal to ν, then

hdB(ui, uj), νi hdB(uk, uℓ), νi=qn[hui, uji huk, uℓi+hui, uki huj, uℓi

(2.20)

+hui, uℓi huj, uki]dt .

Then

h hdB(u, u), νikvk2+hdB(v, v), νikuk22hdB(u, v), νi hu, viikαk−4

(2.21)

= q3[3kuk4kvk4+ 3kvk4kuk4+ 4(2hu, vi2+kuk2kvk2)hu, vi2

+ 2(kuk2kvk2+ 2hu, vi2)kuk2kvk24(3kuk2hu, vi)kvk2hu, vi

−4(3kvk2hu, vi)kuk2hu, vk]kαk−4dt

= q3[8kuk4−16kuk2kvk2hu, vi2 + 8hu, vi4]kαk−4dt

= 8q3dt .

Next, observe

hdW332(dW11+dW22)i= hdW33i −4hW33, dW11+dW22i+ 4hdW11 +dW22i

= 18µ2 15 dt

and

hhdW v, vii = 2µ2 15 kvk

4dt

hhdW v, vi hdW u, uii = µ2

15(3hu, vi

2− kuk2kvk2)dt

hhdW u, vi,hu, dW vii = µ2

15(3hu, vi

2

− kvk2)dt

hhdW u, vi,hdW u, vii = µ2 15(4kuk

2kvk22hu, vi2)dt

hhdW u, vi,hdW v, vii = 2µ2

15 hu, vikvk

2dt

hhdW v, ui,hdW u, uii = 2µ2

15 hu, vikuk

2dt

hdW v, ui hv, vi = 2µ2

15 hu, vikvk

(16)

Thus,

[S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)] = µ2

15[2S(u, u)

2kvk4+ 2S(v, v)2kuk4

+ 2S(u, v)2(3kuk2kvk2+hu, vi2) + 2S(u, u)S(v, v)(3hu, vi2− kuk2kvk2)

−2S(u, u)S(u, v)(1hu, vikuk2+ 2hu, vikuk2)kvk2 −2S(v, v)S(u, v)(2hu, vikuk2+ 2hu, vikuk2)kuk2]dt

= µ2

15[2{S(u, u)

2kvk4+S(v, v)2kuk4+ 2S(u, u)S(v, v)kuk2kvk2 −4S(u, u)S(u, v)kuk2kvk2hu, vi

−4S(v, v)S(u, v)kuk2kvk2hu, vi

4S(u, v)2hu, vi2}

−6(S(u, u)S(v, v)−S(u, v)2)kαk2]dt

= µ2

15[2(T r S

(1))26T r S(2)]kαk4dt

It’s easy to verify that

hdW33,hdW v, vii=µ2 15kvk

2dt

hdW33,hdW u, vii=hdW33,hu, dW vii=µ2

15hu, vidt hdW11+dW22,hdW u, vii= µ2

15hu, vidt so

hdW33, S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)i =µ2

15[S(u, u)kvk

2+S(v, v)kuk22S(u, v)hu, vi]dt

=µ2 15T r S

(1)

k2dt ,

hdW11 +dW22, S(u, u)hdW v, vi+S(v, v)hdW u, ui −S(u, v)(hdW u, vi+hu, dW vi)i = µ2

15[S(u, u)kvk

2+S(v, v)

kuk22S(u, v)hu, vi]dt

= µ2 15T r S

(1)kαk2dt .

Therefore

4T r S(1)kαk−2hdW332(dW11+dW22), S(u, u)hdW v, vi+S(v, v)hdW u, ui

−S(u, v)(hdW u, vi+hu, dW vi)i (2.23)

= 4(T r S(1))2

−µ152 − 215µ2

dt

=12µ2 15 (T r S

(17)

Combining (2.20), (2.21) and (2.22) we arrive at

(2.24) hd T rS(1)i= 16µ4 35 dt+

µ2

15[14(T r S

(1))2

−24T r S(2)]dt .

Turning now to the Gauss curvature, by (1.9) we have,

(2.25) T r S(2)= [S(u, u)S(v, v)S(u, v)2]kαk−2 .

So, by Itˆo’s formula,

d T r S(2)= (S(v, v)dS(u, u) +S(u, u)dS(v, v)2S(u, v)dS(u, v) +hdS(u, u), dS(v, v)i − hdS(u, v), dS(u, v)i]kαk−2

+ [S(u, u)S(v, v)S(u, v)2]dkαk−2

+hS(v, v)dS(u, u) +S(u, u)dS(v, v)2S(u, v)dS(u, v), dkαk−2i

= [S(v, v)hdB(u, u), νi+S(u, u)hdB(v, v), νi

−2S(u, v)hdB(u, v), νi]kαk−2

+ 2T r S(2)dW33 4µ2

15 T r S

(2)dt

+ [hhdB(u, u), νi,hdB(v, v), νii − hdB(u, v), νi,hdB(u, v), νii]kαk−2dt

+ 2µ2 15 T r S

(2)dt

−2T r S(2)(dW11+dW22) 2µ2 15 T r S

(2)dt

+ 8µ2 15 T r S

(2)dt .

Thus,

dT r S(2)= [S(v, v)hdB(u, u), νi+S(u, u)hdB(v, v), νi

−2S(u, v)hdB(u, v), νi]kαk−2

(2.26)

+ 2T r S(2)(dW33(dW11+dW22)) + 4µ2 15 T r S

(2)dt ,

(18)

Using (2.20), (2.26) and our remarks above on W correlations, we get

hd T r S(2)i=hS(v, v)hdB(u, u), νi+S(u, u)hdB(v, v), νi

(2.27)

−2S(u, v)hdB(u, v), νiikαk−4+ 4(T r S(2))2hdW3 (dW11+dW22)i =q3[3S(v, v)2kuk4+ 3S(u, u)2kvk4+ 4S(u, v)2(kuk2kvk2+ 2hu, vi2)

+ 2S(u, u)S(v, v)(kuk2kvk2+ 2hu, vi2)

−12S(v, v)S(u, v)kuk2hu, vi −12S(u, u)S(u, v)kvk2hu, vi]kαk−2dt

+ 32µ2 15 (T r S

(2))2dt

= 3q3(T r S(1))2dt−4q3T r S(2)dt+

32µ2

15 (T r S

(2))2dt

= 2µ4

35 (3(T r S

(1))24T r S(2))dt+ 32µ2

15 (T r S

(2))2dt .

Finally we need

hdT r S(1), dT r S(2)i= 2T r S(1)T r S(2)hdW33−2(dW11+dW22), dW33

(2.28)

−(dW11+dW22)i+ 4T r S(2)hS(u, u)hdW v, v) +S(v, v)hW u, ui −S(u, v)(hdW u, vi

+hu, dW vi), dW33−(dW11+dW22)ikαk−2

+kαk−4hhdB(u, u), νikvk2+hdB(v, v), νikuk2 −2hdB(u, v), νihu, vi, S(v, v)hdB(u, u), νi

+S(u, u)hdB(v, v), νi −2S(u, v)hdB(u, v), νii

= 24µ2 15 T r S

(1)T r S(2)dt8µ2

15 T r S

(1)T r S(2)dt+ 4q

3T r S(1)dt

= 16µ2 15 T r S

(1)T r S(2)dt+8µ4

35 T r S

(1)dt .

This completes the proof.

Theorem 2.9. The process (T r St(1), T r St(2)) is a recurrent diffusion with genera-tor

Lf(κ, m) = 1 2

µ2

15(14κ

2

−24m) + 16µ4 35

∂2f

∂κ2(κ, m)

+

16µ2

15 κm+ 8µ4

35 κ

∂2f

∂κ ∂m(κ, m)

+ 1 2

32µ2

15 m

2+ 2µ4

35 (3κ

24m)

∂2f

∂m2(κ, m)

+ 4µ2 15 κ

∂f

∂κ(κ, m) +

4µ2

15 m

∂f

∂m(κ, m).

(19)

Remarks.

(1) Inn= 3, the three Lyapunov exponents are (see LeJan 1986)γ1 = 3,γ2 = 0, γ3 =−3. Thus there is always a stretching direction, a neutral direction and

a compressing direction. A curve will always “see” the stretching direction. This roughly explains the positive recurrence of the curvature of a curve proved in LeJan 1986. In the case of a surface, the tangent plane will “see” the stretching and the neutral direction. This also explains recurrence. The authors plan a complete account of the situation in higher dimensions in a forthcoming paper.

(2) SinceX =T r S(1)=λ1+λ2andY =T r S(2)=λ1λ2, it follows that (X, Y)

stays in the region κ2 4m. The boundary of this region corresponds to λ1 =λ2. That is κ2 = 4mwhen the surface in question has an umbilic (i.e.

a point where λ1 = λ2). Thus, x may be an umbilic for M but xt, t > 0,

will never be an umbilic for Mt.

One easily checks that the matrix a appearing in the generator for this diffusion (2nd order derivative coefficients) degenerates on the curve κ2

4m = 0. Moreover, the two eigenvectors of this matrix are, respectively, perpendicular to and tangent to the curve κ24m = 0. The eigenvector perpendicular to this curve has eigenvalue zero. Notice the drift vector

4µ2

15 κ , 4µ2

15 m

points away from the region κ2 4m < 0. Thus, when the pointx on the initial manifold M is an umbilic point, the diffusion (Xt, Yt)

has diffusion component only tangential the curveκ2 = 4m and drifts away from this curve never to return.

(3) Neither T r S(1) nor T r S(2) is a diffusion by itself.

(4) In the casen= 3 one can assert that (Xt, Yt) does not spend a lot of time in

the region λ = {(κ, m) :κ > M1, m > M2} with M1 and M2 large positive

constants. Recall the following results of LeJan (1986): draw a curve γ on the initial manifold M with γ(0) =x. Set γt = Φt(γ). Then the curvature τt ofγt atγt(0) is a positive recurrent diffusion. Thus, the average amount

of time that τt spends above a large positive constant is small. Since it

is impossible to draw a curve on Mt with zero curvature (or even small

curvature) when (Xt, Yt) ∈ Λ, (Xt, Yt) can not stay for long in Λ. More

precise statements can be made by referring to the article of LeJan where the exact form of the invariant measure for τt is given.

Proof (of Theorem 2.9). The claim that (Xt, Yt) is a diffusion follows immediately

from Theorem 2.8. Define h = √κ24m. Then with a= µ2

15, b = µ4

35, in (m, h

)-coordinates

Lf(κ, h) = (4aκ2+ 3ah2+ 8b)∂

2f

∂κ2 + 14aκh ∂2f ∂κ∂h

+ (3aκ2 + 4ah2+ 4b)∂

2f ∂h2

+ 4aκ∂f ∂κ +h

(20)

We prove the claim regarding lack of umbilics first as it eases a technical point which might arise in the proof of the recurrence. For this, it suffices to show that

Ht does not hit zero a.s. where (Xt, Ht) is diffusion given in (κ, h) coordinates.

First defineηt = 3aXt2+ 4aHt2+ 4b and then τt =

Rt

0 dx

ηs. Then

Hτt =h+bt+

Z τt

0

Hs−1(3aXs2+aHs2+ 4b)ds

=h+bt+

Z t

0

Hτs−1(3aXτs2 +aHτs2 + 4b)ητs−1ds

with bt a one-dimensional Brownian motion. Fix now anǫ ∈ (0,1/6) and suppose

0< h <1/6 as well. Set

ρǫt =h+bt+

1 2 +ǫ

Z t

0 ds ρǫ

s .

If σǫ = inf{t > 0 : Hτt > 2

q

(1 2−ǫ)b

(1+4ǫ)a}, then since for h ≤

q

(1 2−ǫ)b

(1+4ǫ)a, one has

(21+ǫ)< 3aκ3aκ22+4ah+ah22+4b+4b for allκ. By an elementary comparison theorem (see Ikeda-Watanabe, 1989), it follows that ρǫ

t ≤ Hτt for t < σǫ. Since ρǫt can not hit zero (it

is a Bessel process above the critical dimension),Ht can’t hit zero either.

For recurrence, we shall show (Xt, Ht) is recurrent which will suffice. Set f(κ, h) =ℓn(κ6+h6). Then

fκ =

6κ5

κ6+h6 , fh =

6h5 κ6+h6 fκκ =

30κ4h66κ10

(κ6 +h6)2 , fκh =−

36κ5h5

(κ6+h6)2 ; fhh =

30κ6h46h10

(κ6+h6)2

and

Lf = 6(κ6+h6)−2[(4aκ2+ 3ah2 + 8b)(5κ4h6κ10)84aκ6h6

+ (3aκ2+ 4ah2 + 4b)(5κ6h4h10) + 4aκ12+ 4aκ6h6

+h4(3aκ2+ah2+ 4b)(κ6+h6)]

= 6(κ6+h6)−2[a(3κ10h218κ8h4+ 39κ6h615κ4h8+ 3h12) −b(8κ1024κ6h440κ4h6)]

κ=uh

=6(κ6+h6)−2h10[3ah2(u106u8+ 13u65u4+ 1) + 8bu4(u63u25)]

(21)

Also, there is a u0 > 0 such that Q(u) = u6−3u2−5 ≥ 0 whenever |u| ≥ u0.

Thus,

Lf =6(κ6+h6)−2h10[3ah2P(u) + 8bu4Q(u)] has

{Lf 0} ⊇ {(κ, h) :|κ| ≥u0h}.

Also, denote M = supu Q(u)P(u), one sees

{Lf 0} ⊇

(

(κ, h) :h

r

86M

3a

)

Consequently, off of the compact triangle

T ={(κ, h) :|κ| ≤u0h} ∩

(

(κ, h) :h

r

86M

3a

)

we have Lf 0. Now, define

C(r) ={(κ, h) :h >0, κ6+h6 < r}

and select r0 large enough so that C(r0)⊃ T. Put for R > r0

uR(κ, h) =

ℓn(κ6+h6)ℓnR ℓnr0−ℓnR

.

Then on C(R)\C(r0), LuR ≥ 0 and uR

∂C(r0)∩{h>0} = 1, uR

∂C(R)∩{h>0} = 0.

Thus, if τr = inf{t >0 : (Xt, Ht)∈ ∂C(r)} (recall, Ht never hits 0), then as uR is L-subharmonic and has the same boundary values as P(κ,w)(τr0 < TR)

uR(κ, h)≤P(κ,h)(τr0 < τR).

But limR↑∞uR(κ, h) = 1 which implies the recurrence of (Xt, Ht) and therefore the

(22)

References

P. Baxendale, (1984), Brownian motions in the diffeomorphism Group. I,

Compositio Math. 53, 19–50.

P. Baxendale and T.Harris, (1986), Isotropic stochastic flows, Annals of Prob.,Vol 14, 1155–1179.

R. Bishop and S. Goldberg, (1980), Tensor Analysis on Manifolds, Dover, Toronto.

Hardy, Littlewood, Polya, (1973),Inequalities, Cambridge University Press, Cambridge.

T. Harris, (1981), Brownian motions on the homeomorphisms of the plane,

Annals of Prob. Vol. 9, 232–254.

N. Ikeda, S. Watanabe, (1989), Stochastic Differential Equations and Dif-fusion Processes, North-Holland, New York.

Y. LeJan, (1985), On isotropic Brownian motions, Zeit. f¨ur Wahr., 70, 609–620.

Y. LeJan, (1991), Asymototic properties of isotropic Brownian flows, in Spatial Stochastic Processes, ed. K. Alexander, J. Watkins, Birkh¨auser, Boston, 219–232.

Y. LeJan, S. Watanabe (1984), Stochastic flows of diffeomorphisms, Proc. of the Taniguchi Symposium, 307–332, North Holland, New York.

(23)

Addendum. Higher dimensional hypersurfaces.

Recall α~ =uℓ1 ∧ · · · ∧uℓk, αm~ =um1 ∧ · · · ∧umk, for ~ℓ, ~m∈Ik. Define α~

p = (−1)

p+1u

ℓ1∧ · · · ∧uˆℓp∧ · · · ∧uℓk, αm~i = (−1)

i+1u

m1∧ · · · ∧uˆmi∧ · · · ∧umk.

Thenα~ℓp = (−1)p+1u(p)ℓ1 ∧· · · ∧u

p

k1 α

(i) ~

mi = (−1)p+1u (i)

m1∧· · · ∧u

(i)

mk−1 definesu (p) ℓ

and u(i)m, and set S(0)(·,·)≡1.

Theorem A.1.

dS(k)(α~, αm~) = k

X

i,p=1

S(k−1)(α~ℓp, αmi~ )hdB(uℓp, umi), νi

+kS(k)(α~, αm~)dWnn−

k(nk)(n1)µ2

2n(n+ 2) S

(k)(α ~

ℓ, αm~)dt ,

or, in a more synthetic form

dS(α)(k) =S(k−1)dBν(α) +kS(k)(α)hdhW ν, νi −−k(n−k)(n−1)

2n(n+ 2) S

(k)(α),

with hu, vi=hB(u, v), νi.

Proof. By Theorem 2.7 and Itˆo’s formula,

dS(k)(α~, αm~) = X

σ∈Sk (−1)σ

k X i=1 [ k Y j=1 j6=i

hS(uσ(j), umj), νi]hdB(uℓσ(i), umi), νi

+kS(k)(α~, αm~)dWnn− k(n−1)(n−1)µ2

2n(n+ 2) S

(k)(α ~ ℓ, αm~)dt

+1 2

X

σ∈Sk

(−1)σ X

1≤i6=p≤k

[

k

Y

j=1 j6={i,p}

hS(u

σ(j), umj), νi][dBn(uℓσ(i), umi), dBn(uℓσ(p), ump)i

+hdBn(uσ(i), ump),dB

n(u

ℓσ(p), umi)i+hdB

n(u

ℓσ(i), uℓσ(p)), dB n(u

mi, ump)i] +k(k−1)(n−1)µ2

2n(n+ 2) S

(k)(α ~

ℓ, αm~)dt. The first term may be written

k

X

i,p=1

X

σ∈Sk

σ(i)=p

(−1)σ[

k

Y

j=1 j6=i

hS(u

σ(j), umj), νi]hdB(uℓp, umi), νi

=

k

X

i,p=1

[ X

σ=Sk−1

(−1)p+i(−1)σ[

k

Y

j=1 j6=i

hS(u(p)

σ(j), u (i)

mj), νi]]hdB(uℓp, umi), νi

=

k

X

i,p=1

S(k−1)(α~

(24)

The third term combines with the fifth term to give

−k(n−2nk(n)(n+ 2)−1)µ2S(k)(α~, αm~)dt.

Finally, in the fourth term, notice that givenσ Skandi, p ∈ {1, . . . , k}there is

exactly one otherη Sksuch that both {σ(i), σ(p)}={η(i), η(p)}and σ(j) =η(j)

for j /∈ {i, p}. Furthermore, (1)σ =(1)η, and [

k

Y

j=1 j /∈{i,p}

hS(u

σ(j), umj), νi][hBn(uℓσ(i), umi), dBn(uℓσ(p), ump)i

+hdBn(uℓσ(i), ump), dBn(uℓσ(p), umi)i+hdB

n(u

ℓσ(i), uℓσ(p)), dB n(u

mi, ump)i]

=[

k

Y

j=1 j /∈{i,p}

hS(u

η(j), umj), νi][hdBn(uℓη(i), umi), dBn(uℓη(p), ump)i

+hdBn(uℓη(i), ump), dBn(uℓη(p), umi)i +hdBn(u

η(i), uℓη(p)), dB n(u

mi, ump)i]

Thus exchanging the sums in the fourth term reveals the cancellation of terms from these ση pairs and so the whole term vanishes. This finishes the proof.

From LeJan (1985) we recall the notation

τjβ =ej i(eℓ)β

where i(eℓ)β = Σ(1)k+1hβ

k, eℓiβ1∧ · · · ∧βˆk∧ · · · ∧βm. The situation for general n is given by the following Theorem which we prove in the Addendum.

Theorem A.2. For 1kn1,

dT rS(k) = [

k

X

i,p=1

S(k−1)(α~

p, αm~i)hdB(uℓp, umi), νi]hα

~

, αm~i||α||−2

+T rS(k)[kdWnn−2

n−1

X

i=1 dWii]

+S(k)(α~, αm~)(hτijα~ℓ, αm~i+hα~ℓ, τijαm~i)dWji||α||−2 −(n+ 1)k(n−k)µ2

2n(n+ 2) T rS

(k)dt , or

d T rS(k) =dhS(k)α, αi

k2

=hS(k−1)dBν(α) +

hdW ν, νi −2hdW α, αi kαk2

S(k)(α)

+S(k)dW(α), αi

k2 (n+ 1)k(n−k)µ2

2n(n+ 2) hS

(k)(α), αi

(25)

Proof. For~ℓIk,

dhα~ℓ, αm~i= (hτijα~ℓ, αm~i+hα~ℓ, τijαm~i)dWji

(A.1)

+ (k+ 1)(n−1−k)µ2

n hα

~ ℓ, αm~

idt

(A.2) d||α||

−2

||α||−2 =−2 n−1

X

i=1

dWii (n−2)(n−1)µ2 n(n+ 2) dt

(A.3) d||α||−2 =2||α||−2dWii+At, At has bounded variation

Since

TrS(k)=S(k)(α~, αm~)hα ~ ℓ, αm~

i||α||−2

by Itˆo’s formula,

dT rS(k)= (dS(k)(α~, αm~))hα ~ ℓ, αm~

i||α||−2

+S(k)(α~, αm~)(dhα ~ ℓ, αm~

i)||α||−2

+T rS(k)d||α||

−2

||α||−2

+hdS(k)(α~, αm~), dhα ~ ℓ, αm~

ii||α||−2

+hdS(k)(α~, αm~), d||α||−2ihα ~ ℓ, αm~

i +S(k)(α~, αm~)hdhα

~ ℓ, αm~

i, d||α||−2i

Proceeding in order through the terms, we have using Theorem A.1

dS(k)(α~, αm~)hα ~ ℓ, αm~

i||α||−2

(A.4)

= [

k

X

i,p=1

S(k−1)(α~ℓp, αmi~ )hdB(uℓp, umi), νi]hα ~ ℓ, αm~

i||α||−2

+kT rS(k)dWnn k(2n−k)(n−1)µ2

2n(n+ 2) T rS

(k)dt.

From (A.1) follows,

S(k)(α~, αm~)dhα ~ ℓ

, αm~i||α||−2

(A.5)

= S(k)(α~, αm~)(hτijα ~

, αm~i+hα~ℓ, τj

iαm~i)dWji||α||−2

+ (k+ 1)(n−k−1)µ2

n T rS

(26)

By (A.2)

(A.6) T rS(k)d||α||

−2

||α||−2 =−2T rS (k)

n−1

X

i=1

dWii (n−2)(n−1)µ2 n(n+ 2) T rS

(k)dt.

Combining Theorem A.1 and (A.1),

hdS(k)(α~, αm~), dhα~ℓ, αm~ii||α||−2

=kS(k)(α~, αm~)(hτijα~ℓ, αm~i+hα~ℓ, τijαm~i)hdWji, dWnni

= kµ2

n(n+ 2)S

(k)(α ~

ℓ, αm~)(hτ j iα

~

, αm~i+~ℓ, τj

iαm~i)[(n+ 1)δinδjn−δijδnn−δinδnj]dt

=− kµ2 n(n+ 2)S

(k)(α ~

ℓ, αm~)(hτiiα ~

, αm~i+~ℓ, τi iαm~i)dt

=−2k(n−k−1)µ2 n(n+ 2) T rS

(k)dt.

By Theorem A.1 and (A.3)

hdS(k)(α~, αm~), d||α||−2ihα~ℓ, αm~i

(A.7)

=−2kS(k)(α~, αm~)hdWnn, dWiiihα~ℓ, αm~i||α||−2

= 2k(n−1)µ2

n(n+ 2) T rS

(k)dt.

From (A.1) and (A.3) we get

S(k)(α~, αm~)hdhα~ℓ, αm~i, d||α||−2i

(A.8)

=−2S(k)(α~, αm~)(hτijα~ℓ, αm~i+hα~ℓ, τijαm~i)hdWpp, dWjii||α||−2

= 2µ2

n(n+ 2)S

(k)(α ~

ℓ, αm~)(hτ i iα

~

, αm~i+~ℓ, τi

iαm~i)||α||−2dt

=−4(n−k−1)µ2 n(n+ 2) T rS

(k)dt

Summing (A.4)–(A.8) shows

dTrS(k) = [ k

X

i,p=1

(−1)i+p+1S(k−1)(αℓ~p ℓ , α

mi

~

m )hdB(uℓp, umi), νi]hα

~

, αm~i||α||−2

+T rS(k)[kdWnn−2dWii]

+S(k)(α~, αm~)(hτijα~ℓ, αm~i+hα~ℓ, τijαm~i)dWji· kαk−2

+k(n−k)(n+ 1)µ2 2n(n+ 2) T rS

(k)dt

(27)

Theorem A.3. For n1k 1,

hdT rS(k), dT rS(ℓ)i= µ2

n(n+ 2)[(kℓ+ 2(k+ℓ) + 4)(n−1)

−2(k+ 2)(n−ℓ−1)−2(ℓ+ 2)(n−k−1)−4(n−ℓ−1)(n−k−1)]T rS(k)T rS(ℓ)dt

+ (1−δnk1) 4µ2 (n+ 2)

(n−k−1)∧ℓ

X

j=0

d(n,(k, ℓ);j)T rS(k+j)T rS(ℓ−j)dt

+C1122nn

(n−k)∧(ℓ−1)

X

j=0

a(n,(k, ℓ);j)T rS(k+j−1)T rS(ℓ−j−1)dt

where

d(n,(k, ℓ); 0) = (n−1−k)

d(n,(k, ℓ);j) = (n−1−k−j) k−ℓ+ 2j

j

− j−1

X

r=0

d(n,(k, ℓ);r) k−ℓ+ 2j

j−r

, j≥1

b(n,(k, ℓ); 0) = (n−k)(n−ℓ+ 2)

b(n,(k, ℓ);j) = 3(n−k−j) k−ℓ+ 2j

j

+ (k−ℓ+ 2j)(k−ℓ+ 2j−1) k−ℓ+ 2j−2

j−1

+ (k−ℓ+ 2j)(n−k−j)[ k−ℓ+ 2j−1

j

+ k−ℓ+ 2j−1

j−1

]

+ (n−k−j)(n−k−j−1) k−ℓ+ 2j

j

, j≥1

a(n,(k, ℓ); 0) =b(n,(k, ℓ); 0)

a(n,(k, ℓ);j) =b(n,(k, ℓ);j)− j−1

X

m=0

a(n,(k, ℓ);m) k−ℓ+ 2j

j−m

C1122nn (n2−1) = (n+ 3)µ4

n(n+ 2)(n+ 4).

Proof. We compute the quadratic variation terms in hdT rS(k), dT rS(ℓ)i, k ℓ, which do not arise from dB. These are

hT rS(k)[kdWnn−2

n−1

X

i=1

dWii] +S(k)(α~, αm~)(hτhjα~ℓ, αm~i+hα~ℓ, τhjαm~i)||α||−2dWjh,

T rS(ℓ)[ℓdWnn−2

n−1

X

m=1

dWmm] +S(ℓ)(α~r, α~s)(hτqpα~r, α~si+hα~r, τqpα~si)||α||−2dWpqi

unless k = n1 or both ℓ = k = n1 in which case, the term S(k)(α ~ ℓ, αm~)

(hτijα~ℓ, αm~i+hα~ℓ, τj

iαm~i)||α||−2dWji = 0 or both this and the corresponding S(ℓ)

term vanishes. Thus we get

T rS(k)T rS(ℓ)hkdWnn−2

n−1

X

i=1

dWii, ℓdWnn−2

n−1

X

(28)

+T rS(k)S(ℓ)(α~r, αs~)(hτqpα~r, α~si+hα~r, τqpα~si)||α||−2(1−δℓn1)

hkdWnn−2

n−1

X

i=1

dWii, dWpqi

+T rS(ℓ)S(k)(α~, αm~)(hτhjα~ℓ, αm~i+hα~ℓ, τhjαm~i)||α||−2(1−δkn1)

hℓdWnn−2

n−1

X

i=1

dWii, dWjhi

+S(k)(α~, αm~)S(ℓ)(α~r, α~s)(hτhjαℓ~, αm~i+hα~ℓ, τhj, αm~i)(hτqpα~r, α~si

+hα~r, τqpα~si)(1−δℓn1)

·(1−δkn1)||α||−4hdWjh, dWpqi

= µ2

n(n+ 2)T rS

(k)T rS(ℓ)[k·(n1) + 2(k+)(n1) + 4(n1)]dt

+ µ2

n(n+ 2)T rS

(k)S(ℓ)(α ~

r, α~s)(hτppαr~, α~si+hα~r, τppα~si)||α||−2(1−δℓn−1)[kCnpnp−2 n−1

X

i=1 Cipip]dt

+ µ2

n(n+ 2)T rS

(ℓ)S(k)(α ~

ℓ, αm~)(hτ j jα

~

, αm~i+~ℓ, τj

jαm~i)||α||−2(1−δkn−1)[ℓCnjnj−2 n−1

X

i=1 Cijij]dt

+ µ2

n(n+ 2)S

(k)(α ~

ℓ, αm~)S(k)(α~r, α~s)(hτ j hα

~

, αm~i+~ℓ, τj

hαm~i)(hτ p qα~r, α~si

+hα~r, τqpα~si)(1−δkn1)||α||−4[(n+ 1)δqhδjp−δhjδqp−δpjq]dt

We now proceed singly through the last three terms. Using the invariance of our expressions under a change of basis we may take the ui to be the unit principal

curvature directions. Then

S(k)(α~, αm~) =λ~δm~ℓ~

(A.9)

S(ℓ)(α~r, α~s) =λ~rδ~s~r hτqpα~r, α~siδ~r~s =δ

p

qδ~s~r if and only ifp∈~r ,= 0 otherwise, hτhjα~ℓ, αmiδm~ℓ~hjδ~ℓm~ if and only ifj ∈~ℓ ,= 0 otherwise.

Thus,

µ2

n(n+ 2)T rS

(k)S(ℓ)(α ~

r, α~s)(hτppαr~, α~si+hα~r, τppα~si)(1−δnℓ−1)||α||−2[kCnpnp−2 n−1

X

i=1 Cipip]dt

(A.10)

= µ2

n(n+ 2)T rS

(k)λ

~rhτppα~r, α~ri(1−δℓn−1)[k(nδnp −δnnδpp)−2]dt

=−2(k+ 2)(n−ℓ−1)µ2 n(n+ 2) T rS

(k)T rS(ℓ)dt.

Similarly,

µ2

n(n+ 2)T rS

(ℓ)S(k)(α ~

ℓ, αm~)(hτ j jα

~

, αm~i+~ℓ, τj

jαm~i)||α||−2(1−δkn−1)(ℓCnjnj−2 n−1

X

i=1 Cijij)dt

(A.11)

=−2(ℓ+ 2)(n−k−1)µ2

n(n+ 2) T rS

(29)

Finally, the last term is

(1−δnk1) 4µ2

n(n+ 2)λ~ℓλ~rhτ

j hα

~ ℓ, α~ℓihτp

qα~r, α~ri(1−δℓn−1)[(n+ 1)δqhδpj−δjhδpq−δhpδqj]dt

(A.12)

=(1−δnk1) 4µ2

n(n+ 2)λ~ℓλ~r[(n+ 1)hτ j hα

~ ℓ, α~ℓihτj

hα~r, α~ri − hτ j jα

~ ℓ, α~ℓihτp

pα~r, α~ri

−hτhjα~ℓ, α~ℓihτjhα~r, α~ri]dt

=(1−δnk1) 4µ2

n(n+ 2)λ~ℓλ~r[nhτ

j jα

~ ℓ, α~ℓihτj

jα~r, α~ri − hτ j jα

~ ℓ, α~ℓihτp

pα~r, α~ri]dt

=(1−δnk1) 4µ2

n(n+ 2)λ~ℓλ~r[nδj6∈~ℓδj6∈r~−δj6∈~ℓδp6∈~r]dt (δj6∈~ℓ=

1, whenj6∈~ℓ,

0, otherwise ) =(1−δnk1)( 4nµ2

n(n+ 2)λ~ℓλ~r·δj6∈~ℓδj6∈~rdt−

4(n−k−1)(n−ℓ−1µ2) n(n+ 2) T rS

(k)T rS(ℓ)dt). However, by summing on j we see that

(A.13) λ~λ~rδj6∈~δj6∈~r =

n−ℓ−1

X

m=0 |~ℓc∩~rc|=m

mλ~λ~r

which is a symmetric homogeneous polynomial in λ1, . . . , λn−1 of degree k+ℓ so

we seek an expansion for (A.13) of the form

(A.14)

(n−k−1)∧ℓ

X

j=0

d(n,(k, ℓ);j)T rS(k+j)T rS(ℓ−j).

The principal term inT rS(k+j)T rS(ℓ−j) (which doesn’t appear in T rS(k+m)T rS(ℓ−m) for m > j) is

λ21. . . λ2jλℓ−j+1. . . λk+j.

In Pn−ℓ−1

m=0 |~ℓ∩~r|=m

mλ~λ~r this term appears (n−1−k−j) k−ℓ+2jj

times.

In T rS(k+r)T rS(ℓ−r) for r < j this term appears k−ℓ+2j j−r

times. Thus in the expansion for Pn−ℓ−1

m=0 |~ℓc~rc|=m

mλ~λ~r

d(n,(k, ℓ); 0) = (n−1−k)

d(n,(k, ℓ);j) = (n−1−k−j) k−ℓ+ 2j

j

− j−1

X

r=0

d(n,(k, ℓ);r) k−ℓ+ 2j

j−r

, j≥1.

Putting (A.10), (A.11) and (A.12) together results in

[ µ2

n(n+ 2)T rS

(k)T rS(ℓ)[(kℓ+ 2(k+) + 4)(n1)2(k+ 2)(n1)

(A.15)

−2(ℓ+ 2)(n−k−1)−4(n−ℓ−1)(n−k−1)]

+ (1−δnk1) 4µ2

n(n+ 2)

(n−k−1)∧ℓ

X

j=0

(30)

The quadratic variation term in hdT rS(k), dT rS(ℓ)i, k , arising from dB is,

Q(n,(k, ℓ))dt

=h k

X

i,p=1

S(k−1)(α~

p, αm~i)hα

~

, αm~ihdB(u

ℓp, umi), νi,

X

j,q=1

S(ℓ−1)(α~rq, α~sj)hαr~, α~sihdB(urq, usj), νii||α||−4

=C1122nn k X i,p=1 ℓ X j,q=1

S(k−1)(α~p, αm~i)S

(ℓ−1)(α

~rq, α~sj)[huℓp, umiihurq, usji

+huℓp, urqihumi, usji+huℓp, usjihurq, umii]hα

~

, αm~ihα~r, α~si||α||−4dt

and taking advantage of the invariance of this expression under a change of basis, we take ui to be the ith unit principal direction of curvature. Then

S(k−1)(α~

p, αm~i)hα

~

, αm~i=λ ~ ℓpδ

~ ℓ ~ mδpi Sℓ−1(α~rq, α~sj)hα~r, α~si=λ~rqδ~r~sδjq

[huℓp, umiihurq, usji+huℓp, urqihumi, usji+huℓp, usjihurq, umii]δ

~ ℓ ~ mδ~s~r

= (δℓp

miδ

rq

sj +δ

ℓp

rqδ

mi

sj +δ

ℓp

sjδ

rq

mi)δ

~ ℓ ~ mδ~s~r.

Thus,

Q(n,(k, ℓ)) =C1122nn k X p=1 ℓ X q=1 λ~

pλ~rq(1 + 2δ

ℓp

rq)dt

=C1122nn (3

k X p=1 ℓ X q=1 ℓp=rq

λ~

pλ~rq +

k X p=1 ℓ X q=1 ℓp6=rq

λ~

pλ~rq).

SinceQ(n,(k, ℓ)) is a symmetric homogeneous polynomial of degreek+ℓ2 in

λ1, . . . , λn−1, it may be written

Q(n,(k, ℓ)) =C1122nn

(n−k)∧(ℓ−1)

X

j=1

a(n,(k, ℓ);j)T rS(k+j−1)T rS(ℓ−j−1).

We now employ some elementary counting arguments to compute the coefficients

a(n,(k, ℓ);j).

In T rS(k+j−1)T rS(ℓ−j−1) the term

(31)

but no such term (with ℓj 1 squares) appears in T rS(k+m−1)T rS(ℓ−m−1) for m > j. However, if r < j,

(A.17) λ21. . . λ2ℓ−j−1λℓ−j. . . λk+j−1 appears k−ℓ+2j

j−r

times in T rS(k+r−1)T rS(ℓ−r−1).

We now count the number of appearances of (A.16) in Q(n,(k, ℓ)). From 3

k

X

p=1 ℓ

X

q=1 ℓp=rq

λ~ℓpλ~rq we must fill in the empty spaces in λ~r and λ~

λ~r1. . . λj1− · · · −

(A.18)

λ~=λ1. . . λℓ−j−1− · · · −ℓ· · · −k

with the terms λℓ−j, . . . , λk+j−1, λx, λx, where x = ℓp = rq. Notice λt appears

before λu only if t < u. One λx must go in λ~r the other in λ~. If the order is not

to be violated, this forces x > k1 +j andλx must end each of the terms λ~r and λ~. There are (n−1)−(k−1 +j) =n−k−j such choices for x. This leaves

k1 +j (ℓj1)

j

=

kℓ+ 2j j

remaining possibilities for filling in the empty spaces in (A.18) in λ~r and λ~. Note

that if we interpret 00

= 1 this is still correct for k =ℓand j = 0. Thus

(A.19) 3

k

X

p=1 ℓ

X

q=1 ℓp=rq

λ~ℓpλ~rq has 3(n−k−j)

kℓ+ 2j j

terms of the form λ2

1. . . λ2ℓ−j−1λℓ−j. . . λk+j−1.

In

k

X

p=1 ℓ

X

q=1 ℓp6=rq

λ~ℓpλ~rq we must fill in the blanks of

λ~r=λ1. . . λℓ−j−1− · · · − λ~1. . . λj1− · · · −ℓ· · · −k

with λℓ−j, . . . , λk+j−1, λx, λy with x=6 y, λx going into λ~r, λy going intoλ~.

If ℓj x, y k+j 1, then λx and λy appear on the list λℓ−j, . . . , λk+j−1.

Since identical terms can’t appear twice in λ~r or λ~ the twin of λx must go in λ~,

the twin of λy must go inλ~r. There are thus k−ℓ+2jj1−2

(32)

j 1))(k+j 1(ℓj 1)1) choices for the ordered pair (x, y). Notice that when j = 0 there are no such terms. Thus

ℓ−j≤x, y≤k+j−1 accounts for (A.20)

(k−ℓ+ 2j)(k−ℓ+ 2j−1) k−ℓ+ 2j−2

j−1

terms of the form λ2

1. . . λ2ℓ−j−1λℓ−j. . . λk+j−1 in Q(n,(k, ℓ)) (interpreting z −1

= 0.)

If ℓj x k+j1 < y n1, then λy must terminate the sequence λ~

and the twin of λx must go into λ~. There are then

kℓ+ 2j 1

j

ways to fill in the spaces in (A.18) once such a pair (x, y) is given. We interpret this expression as 0 when k =ℓandj = 0. There are (kℓ+ 2j)(nkj) such pairs so we have

(A.21)

corresponding toℓj xk+j1< xn1 there are (kℓ+ 2j)(nkj)

kℓ+ 2j1

j

terms of the form λ21· · ·λ2j1λℓ−j· · ·λk+j−1 in Q(n,(k, ℓ)) .

If ℓj y k +j 1 < x n1, then the twin of λy must go in λ~r. When j = 0, this is impossible. There are thus

kℓ+ 2j 1

j 1

ways to fill the spaces in (A.18) once (x, y) is given and (kℓ+ 2j)(nkj) such pairs so

(A.22)

corresponding toℓj yk+j1< xn1, there are (kℓ+ 2j)(nkj)

kℓ+ 2j1

j1

terms of the form λ2

1· · ·λ2ℓ−j−1λℓ−j· · ·λk+j−1 in Q(n,(k, ℓ)), for j 0, (interpreting z1

= 0.)

Finally, when k+j 1< x, y n1, there are

kℓ+ 2j j

ways to fill in the spaces in (A.18) once (x, y) is given and (nkj)(nkj1) such pairs (x, y). Thus

(A.23)

corresponding tok+j1< x, y n1, there are (nkj)(nkj1)

kℓ+ 2j j

terms of the form λ2

1· · ·λ2ℓ−j−1λℓ−j· · ·λk+j−1 in Q(n,(k, ℓ)),

interpreting 00

(33)

Totalling (A.18)–(A.23), we see

Q(n, k) has (A.24)

b(n,(k, ℓ);j) = 3(nkj)

kℓ+ 2j j

+ (kℓ+ 2j)(kℓ+ 2j1)

kℓ+ 2j2

j1

+ (kℓ+ 2j)(nkj)

kℓ+ 2j1

j

+ (kℓ+ 2j)(nkj)

kℓ+ 2j1

j1

+ (nkj)(nkj1)

kℓ+ 2j j

terms with exactly ℓj1 squares. Notice that we interpret z1

= 0, −01

= 0,

0 0

= 1. Thus, b(n,(k, ℓ); 0) = (nk)(nk 2). Upon decomposingQ(n,(k, ℓ)) into sums of expressions with exactly ℓj1 squares summed overj, we are lead to, using (A.16) and (A.23),

Q(n, k) =Cnn 1122

(n−k)∧(ℓ−1)

X

j=0

a(n,(k, ℓ);j) TrS(k+j−1) Tr S(ℓ−j−1)

where

a(n,(k, ℓ);j) =b(n,(k, ℓ);j)

j−1

Referensi

Dokumen terkait

Selamat siang pak mengenai jaminan penawaran asli apakah cukup discand dan diupload bersamaan dengan berkas-berkas penawaran kami?jadi aslinya diberikan pada saat

Diajukan sebagai salah satu syarat kelulusan pada Program Studi Sistem Informasi Jenjang S1 (Strata 1). Fakultas Teknik dan

Dari tabel di atas dapat dilihat bahwa pada item pernyataan 7 yaitu ” Kemampuan pengolahan data dalam sistem baik ” dengan indikator kehandalan dapat ditarik

Polaa I UlP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pas€akualinkasi untuk paket pekerjaan konst.uksi sebagal

Hasil pengamatan terhadap salinitas bahan pembenah tanah dari tumbuhan akuatik menunjukkan bahwa terdapat variasi salinitas pembenah tanah yang cukup lebar antara

Maka panjang potangan bambu seluruhnya=.. Penyelesaian dari persamaan

Artikel yang dikirim untuk publikasi ke Jurnal Gizi Indonesia (JGI) wajid disertai form pernyataan keaslian naskah artikel, belum pernah dipublikasikan di jurnal

Pendaftaran dan pe.gambilan Dokumetr Pengadaan dapat diwakilkan densan membawa su€t tlgas asll (di stempel basah) dan direktur utama/pimpinan perusahaan/kepala cabanq