PERBANDINGAN HASIL AKURASI PREDIKSI MODEL REGRESI
LOGISTIK SPASIAL UNTUK BERBAGAI MODEL VARIOGRAM
Vinda Pratama
G14104042
DEPARTEMEN STATISTIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2008
This thesis is especially dedicated to my beloved father, Agus Dadang S.
I hope with this thesis you would be proud to me as you’re daughter
I am really proud to be you’re daughter
ABSTRAK
Status kemiskinan desa dipengaruhi oleh faktor-faktor potensi desa yang bersangkutan dan diduga terdapat potensi spasial antar desa. Pengaruh spasial tersebut perlu diakomodir dalam model. Hubungan antara status kemiskinan desa dengan faktor-faktor potensi desa dapat dimodelkan dengan regresi logistik. Keragaman spasial status kemiskinan desa dimodelkan dengan empat model variogram (exponential, power, spherical, dan gaussian). Melalui model variogram maka informasi spasial dimasukkan ke dalam regresi logistik untuk memperbaiki keakuratan hasil prediksi.
Hasil penelitian menunjukkan bahwa dengan memasukkan informasi spasial dengan model variogram power dihasilkan c-statistic sebesar 80,50% dan correct classification rate sebesar 73,45%. Hasil ini lebih tinggi dibandingkan dengan regresi logistik tanpa memasukkan informasi spasial.
PERBANDINGAN HASIL AKURASI PREDIKSI MODEL REGRESI
LOGISTIK SPASIAL UNTUK BERBAGAI MODEL VARIOGRAM
Oleh :
Vinda Pratama
G14104042
Skripsi
Sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains
pada Fakultas Matematika dan Ilmu Pengetahuan Alam
Institut Pertanian Bogor
DEPARTEMEN STATISTIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2008
Judul Skripsi : Perbandingan Hasil Akurasi Prediksi Model Regresi Logistik
Spasial untuk Berbagai Model Variogram
Nama
: Vinda Pratama
NRP
: G14104042
Menyetujui :
Pembimbing I, Pembimbing II,
Utami Dyah Syafitri, M.Si Bagus Sartono, M.Si
NIP. 132311922 NIP. 132311923
Mengetahui :
Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam
Institut Pertanian Bogor
Dr. Drh. Hasim, DEA
NIP. 131578806
RIWAYAT HIDUP
Penulis dilahirkan di Bogor, pada tanggal 3 September 1987 dari pasangan Agus Dadang S. dan Yulfitrawasih. Penulis dikaruniai seorang adik laki-laki yang bernamakan Taufik Hidayat.
Pendidikan penulis berawal dari TK. Kemuning Bogor dan lulus pada tahun 1993, kemudian dilanjutkan pendidikan formal di SD. Bina Insani Tanah Sareal Bogor pada tahun 1993 sampai tahun 1999. Penulis menyelesaikan pendidikan di SLTP Negeri 6 Bogor pada tahun 2002 dan syukur Alhamdulillah pada tahun 2002 penulis diterima sebagai salah satu siswi di SMA Negeri 3 Bogor program akselerasi angkatan pertama di Kota Bogor yang lulus pada tahun 2004. Pada tahun yang sama penulis di terima sebagai mahasiswa di Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor melalui jalur Undangan Seleksi Masuk IPB (USMI).
Selama masa perkuliahan, penulis aktif dalam kepengurusan Himpunan Keprofesian Gamma Sigma Beta (GSB) sebagai staf divisi kajian stategis tahun 2004/2005 dan sebagai staf divisi kesekretariatan tahun 2005/2006. Untuk meningkatkan kinerjanya dalam berorganisasi, pada tahun 2006 penulis bergabung dalam kepengurusan Badan Eksekutif Mahasiswa (BEM) FMIPA 2006/2007 sebagai staf ahli departemen sosial. Suatu kehormatan bagi penulis karena pada 3 November 2007 penulis mengikuti Seminar Nasional Statistika di Surabaya dalam rangka program hibah PHK A2 Departemen Statistika FMIPA IPB tahun 2007. Pada tanggal 5-6 Agustus 2008, penulis mengikuti The Third International Conference on Mathematics Statistics (ICoMS-3).
KATA PENGANTAR
Alhamdulillahirabbil’alamin, segala puji dan rasa syukur penulis panjatkan kehadirat Allah SWT atas segala karunia-Nya sehingga karya ilmiah ini dapat terselesaikan. Shalawat serta salam semoga senantiasa tercurahkan kepada suri tauladan manusia Rasulullah Muhammad SAW beserta keluarga, sahabat, dan umatnya. Karya ilmiah ini memiliki tema perbaikan terhadap model regresi logistik dan berjudulkan “Perbandingan Hasil Akurasi Prediksi Model Regresi Logistik Spasial untuk Berbagai Model Variogram”.
Pada kesempatan ini, penulis ingin menyampaikan ucapan terima kasih kepada semua pihak yang telah berperan serta dalam penyusunan karya ilmiah ini, terutama kepada :
1. Ibu Utami Dyah Syafitri, M.Si dan Bapak Bagus Sartono, M.Si selaku pembimbing yang senantiasa memberikan bimbingan dan saran yang sangat membangun.
2. Mama dan Papa yang sangat penulis idolakan, terima kasih atas doa, cinta, dan kasih sayang yang telah diberikan. My lovely brother Taufik Hidayat, makasih untuk kenakalan dan keceriaannya. Randy Ramadhan Jeanero, terima kasih untuk semangat, dukungan and for cheerful days.
3. Sahabat-sahabat, teman-teman statistika 41 dan adik-adik statistika 42 for the unforgettable moments we spent since first term.
4. Seluruh staf pengajar Departemen Statistika FMIPA IPB, Bu Markonah, Bu Sulis, Bu Dedeh, Bu Aat, Mang Dur, dan Mang Herman yang selalu setia mendampingi dan membantu segala keperluan yang menyangkut penyelesaian karya ilmiah ini. 5. Terima kasih kepada Departemen Statistika IPB yang telah membiayai karya ilmiah
ini dalam rangka program hibah PHK A2 Departemen Statistika FMIPA IPB tahun 2007.
Semoga semua amal baik dan bantuan yang diberikan kepada penulis mendapatkan balasan dari Allah SWT, dan semoga karya ilmiah ini dapat bermanfaat bagi semua pihak yang membutuhkan.
Bogor, Agustus 2008
DAFTAR ISI
Halaman
DAFTAR TABEL... i
DAFTAR GAMBAR ... ii
DAFTAR LAMPIRAN ... iii
PENDAHULUAN Latar Belakang ... 1
Tujuan... 1
Kerangka Pikir... 1
TINJAUAN PUSTAKA Regresi Logistik Spasial ... 2
Variogram... 2
Generalized Inverse Matrices...4
BAHAN DAN METODE Bahan... 4
Metode... 5
PEMBAHASAN Deskripsi Data ... 5
Pemodelan Regresi Logistik Klasik ... 6
Model Variogram Status Kemiskinan Desa ... 7
Pembuatan Matriks Pembobot Spasial ... 7
Dugaan Model Regresi Logistik Spasial ... 8
KESIMPULAN... 10
DAFTAR PUSTAKA ... 10
DAFTAR TABEL
1.
Daftar nama kota dan kabupaten yang digunakan... 42.
Peubah penjelas yang digunakan ... 43.
Distribusi jumlah keluarga miskin berdasarkan kabupaten / kota ... 54.
Distribusi jumlah desa berdasarkan kabupaten / kota ... 65.
Nilai dugaan koefisien untuk model regresi logistik klasik ... 66.
Karakteristik desa miskin dan desa tidak miskin ... 67.
Nilai dugaan parameter model variogram ... 78.
Nilai dugaan koefisien regresi logistik dari model klasik dan model spasial menggunakan matriks pembobot spasial dari 1/Vij... 89.
Nilai dugaan koefisien regresi logistik dari model klasik dan model spasial menggunakan matriks pembobot spasial (V)-... 9DAFTAR GAMBAR
1.
Kurva model variogram exponensial dengan a = 1 dan c = 4... 32.
Kurva model variogram power dengan = 0.4 dan dan p=4... 33.
Kurva model variogram spherical dengan a = 1 dan c = 4 ... 34.
Kurva model variogram gaussian dengan a = 1 dan c= 4 ... 35.
Bagan Alur Penelitian ... 56.
Plot antar jarak (h) dengan nilai variogramnya ... 77.
Plot dugaan dari masing-masing model variogram... 78.
Perbandingan nilai c-statistic model regresi logistik klasik dengan model regresi logistik spasial untuk berbagai model variogram... 99.
Perbandingan hasil correct classification rate model regresi logistik klasik dengan model regresi logistik spasial untuk berbagai model variogram ... 10DAFTAR LAMPIRAN
1.
Plot pencaran antara bobot spasial data dengan jarak untuk berbagai model variogram ... 121
PENDAHULUAN Latar Belakang
Penggunaan model regresi logistik telah berkembang pesat seiring dengan kemajuan ilmu pengetahuan. Dalam beberapa kasus, nilai peubah respon yang digunakan tidak bebas terhadap nilai-nilai di sekitarnya. Menurut Frei (2005) pola seperti ini dinyatakan sebagai autokorelasi spasial. Adanya hubungan spasial dalam peubah respon model regresi logistik akan menyebabkan pendugaan menjadi tidak tepat karena asumsi kebebasan galat dilanggar.
Berdasarkan permasalahan di atas diperlukan modifikasi terhadap model regresi logistik yang telah ada, yaitu dengan memasukkan hubungan spasial ke dalam model. Terdapatnya hubungan spasial antar daerah maka perlu mengakomodir keragaman spasial tersebut yang mengarah kepada regresi logistik spasial.
Keragaman spasial salah satunya dapat dimodelkan dengan variogram. Cressie (1993) dan Bohling (2005) menyebutkan bahwa terdapat empat model variogram, yaitu:
exponential, power, spherical, dan gaussian. Sehingga dalam penelitian ini dicobakan beberapa model variogram tersebut untuk mengakomodir keragaman spasial yang kemudian akan digunakan untuk perbaikan pendugaan dalam regresi logistik.
Penelitian ini menggunakan studi kasus pendugaan status kemiskinan pada sebagian desa di Jawa Barat. Status kemiskinan di suatu desa tidak berdiri sendiri, tetapi dipengaruhi oleh kondisi desa lainnya (terdapat pengaruh spasial).
Tujuan
Tujuan dari penelitian ini adalah :
1. Mengetahui faktor-faktor yang berperan terhadap status kemiskinan sebagian desa di Jawa Barat dengan menggunakan regresi logistik.
2. Pemodelan regresi logistik spasial dengan menggunakan matriks pembobot yang berasal dari beberapa model variogram (studi kasus pendugaan status kemiskinan pada sebagian desa di Jawa Barat). Model variogram yang digunakan yaitu:
exponential, power, spherical, dan
gaussian.
3. Membandingkan tingkat akurasi hasil prediksi keempat model regresi logistik spasial.
Kerangka Pikir
Penelitian ini memfokuskan pada pengembangan analisis regresi logistik spasial yang kerangka berpikirnya akan disampaikan pada bagian ini. Andaikan sebuah bidang S
tersekat-sekat n buah sub bidang (lokasi) yang saling lepas, yaitu s1, s2, ..., sn dengan s1 s2 … sn = S dan si sj = . Setiap sub-bidang si memiliki sentroid pada titik ci. Nilai pengukuran Y, X1, X2, … Xp di masing-masing sub-bidang adalahyi, x1i, x2i, … xpi.
Jika Y memiliki hubungan spasial, dan dipengaruhi oleh X1, X2, … Xp maka model yang bisa dibentuk adalah :
y
i=
x
i’
β
+
z
i’
y
β
* +
ε
i...
(1)dengan xi = (1x1i, 1x2i, …, 1xpi)’ adalah vektor
p x 1 yang berisi nilai-nilai pengamatan peubah X1, X2, … Xp pada sub-bidang si dan y’= (y1, y2 … yn) adalah nilai-nilai pengamatan peubah Y dari seluruh lokasi. Vektor z
berukuran n x 1 menyatakan bobot spasial antar sub-bidang terhadap nilai di sub-bidang lainnya.
Menggunakan notasi matriks, model (1) dapat dituliskan sebagai
y
=
X
β
+
Zy
β
*+
ε
...(2)pada model (2) terdapat Z yang merupakan sebuah matriks bobot spasial. Dalam pencariannya, matriks pembobot spasial ini memerlukan informasi variogram yang merupakan ukuran keragaman spasial.
Penelitian awal dalam pencarian matriks pembobot spasial telah dilakukan oleh Syafitri, dkk (2007). Dimana hasil pemodelan regresi logistik spasial dengan matriks pembobot yang berasal dari tiga model variogram (model
exponential, model power, dan model
spherical) relatif tidak berbeda jauh dengan regresi logistik biner. Oleh karena itu, perlu dilakukannya perubahan metode terhadap pencarian matriks pembobot spasialnya.
Matriks pembobot spasial diharapkan dapat menggambarkan pengaruh antar desa, dimana desa yang berdekatan memberikan pengaruh yang lebih besar dibandingkan dengan desa yang berjauhan. Variogram yang akan digunakan untuk menghitung matriks pembobot spasial ini menggambarkan keragaman antar daerah berdasarkan jaraknya. Semakin jauh jarak antar daerah maka keragaman yang terbentuk akan semakin besar menuju kekonvergenan. Sehingga perlu dilakukan proses pembalikan matriks variogram terlebih dahulu, yang kemudian hasil pembalikan matriks variogram yang dijadikan sebagai matriks pembobot spasial.
Matriks pembobot spasial (Z) yang telah diperoleh dikalikan dengan vektor y yang
2
selanjutnya akan dianggap sebagai sebuah peubah penjelas baru (w) dan akan digunakan dalam analisis regresi logistik .
TINJAUAN PUSTAKA Regresi Logistik Spasial
Hosmer dan Lemeshow (1989) menjelaskan bahwa yang membedakan model regresi logistik dan model regresi linear adalah peubah hasil pada regresi logistik berskala biner atau dikhotom, sedangkan pada regresi linear peubah hasilnya berskala numerik. Model regresi logistik dengan E(Y=1|x)
sebagai (x) adalah : ) ( ) (
1
)
(
g x x ge
e
x
dalam regresi logistik diperlukan fungsi penghubung logit, transformasi logit sebagai fungsi dari (x) adalah :
p p
X
X
x
x
x
g
...
)
(
1
)
(
ln
)
(
0 1 1Terdapat dua pendekatan dasar untuk mempertimbangkan ketergantungan spasial yaitu: membangun model yang lebih kompleks dengan memasukkan struktur autoregresi dan mendesain skema sampling spasial untuk memperluas selang jarak antara tempat-tempat sampel (Xie et al, 2005).
Preisler et al. (1995) dalam Fernandez (2003) menyebutkan bahwa pendekatan dengan memasukkan hubungan spasial ke dalam model terdapat dua pendekatan yaitu memasukkan lokasi ke dalam model dan memasukkan suku autologistik.
Augustin et al. (1996) dalam Fernadez (2003) menggunakan model dalam bentuk :
) ( 1 ) ( log x x y dengan
k j ij k j ij i i w y w 1 1 ˆ model dari
merupakan bentuk dari autokovarian dan merupakan rataan terboboti dari jumlah kejadian dalam suatu lokasi ke-i yang terdiri dari k tetangganya. Pembobot dari lokasi ke-j adalah wij = 1/hij dimana hijadalah jarak euclidean antara lokasi ke-i dan ke-j. Serta yˆ adalah dugaan dari ada/tidaknya suatu kejadian.Variogram
Analisis variogram melakukan penghitungan pada sejumlah lokasi dan melihat hubungan antar observasi pada berbagai lokasi. Variogram menghitung hubungan antara perbedaan pengukuran berpasangan dan jarak dari poin-poin yang bersesuaian satu sama lain. Variogram merupakan keragaman spasial antar lokasi dengan saling ketergantungan satu sama lain dalam ruang berdimensi m. Variogram merupakan fungsi spasial terbaik yang diketahui (Ashraf et al., 1997).
Persamaan umum untuk contoh variogram adalah (Matheron 1962, dalam Cressie 1993):
) ( 2)
(
,
;
))
(
)
(
(
)
(
1
)
(
2
h N j iz
x
i
j
N
h
x
z
h
N
h
dengan N(h) adalah banyaknya pasangan lokasi (contoh) yang berjarak h. Variogram akan memenuhi beberapa asumsi. Misalkan terdapat gugusan nilai z(xi) pada lokasi xi,
i=1,2,3, ..., n dalam ruang berdimensi m, maka asumsi yang harus terpenuhi adalah (Cressie, 1993):
1.
E
(
Z
(
x
h
)
Z
(
x
))
0
2.
Var
(
Z
(
x
h
)
Z
(
x
))
2
(
h
)
dengan h adalah jarak antara dua lokasi yang terpisah. Sifat dari variogram, adalah:
1. Monoton tidak turun 2. Bernilai positif
Variogram memiliki beberapa model yaitu (Cressie 1993 dan Bohling 2005):
1. Model exponential
Model ini menggambarkan hubungan antara variogram dengan jarak dalam bentuk persamaan : a h c c h) 1 exp 3 ( 0
dengan : c0 = intersepc = ambang semi variogram (sill)
a = parameter model exponential h = jarak antar pengamatan Secara visual kurva persamaan tersebut dengan c0 = 0, a = 1, dan c = 4 dapat tergambarkan pada Gambar 1.
3
Gambar 1. Kurva model variogram
exponentialdengan a = 1 dan c
= 4 2. Model Power
Hubungan antara variogram dengan jarak untuk model power dibentuk dalam persamaan sebagai berikut :
(
h
)
c
o
ph
, dengan 0 < α < 2 dengan :c0 = intersep
p = kemiringan kurva
h = jarak antar pengamatan Jika diketahui = 0.4 dan dan p=4 untuk persamaan tersebut maka kurva yang terbentuk dapat dilihat pada Gambar 2.
Gambar 2. Kurva model variogram power dengan = 0.4 dan dan p=4 3. Model spherical
Bentuk persamaan untuk model spherical
dalam menggambarkan hubungan antara variogram dengan jarak adalah sebagai berikut:
a
h
a
h
a
h
c
c
h
,
2
2
3
)
(
3 3 0
a
h
c
c
h
)
,
(
0
dengan : c0 = intersepc = ambang semi variogram (sill)
a = batas pengaruh contoh
h = jarak antar pengamatan Kurva model variogram spherical ketika diketahui c0= 0, a = 1 dan c = 4 secara visual dapat terlihat pada Gambar 3.
Gambar 3. Kurva model variogram spherical
dengan a = 1 dan c= 4 4. Model Gaussian
Berikut ini adalah persamaan yang dibentuk oleh model Gaussian dalam menggambarkan hubungan antara variogram dengan jarak :
1
exp
3
22a
h
c
h
dengan :c = ambang semi variogram (sill)
a = parameter model gaussian
h = jarak antar pengamatan Gambar 4 merupakan kurva yang terbentuk dari model variogram gaussian ketika a = 1 dan c = 4.
Gambar 4. Kurva model variogram gaussian
4
Generalized Inverse Matrices(Matriks Kebalikan Umum)
Searle (1971) menyebutkan bahwa
generalized inverse dari matriks A adalah sembarang matriks G yang memenuhi persamaan:
A
AGA
Searle (1971) juga menekankan bahwa
generalized inverse penting karena ini merupakan aplikasi umum untuk matriks non-square dan square, singular. Matriks A
memiliki generalized inverse ketika matriksnya singular atau rectangular dalam menyelesaikan permasalahan persamaan
y
Ax
untuk x.Ketika sebuah model dapat ditulis sebagai
e
Xb
y
, prosedur kuadrat terkecil untuk penduagaan b dapat ditunjukan dengan persamaanX
'X
b
ˆ
X
'y
dimana matriksX
X
' adalah singular. Oleh karena itu,solusinya tidak dapat ditulis
X'X 1X'y,tetapi solusinya adalah dengan menggunakan
generalized inverse dari
X
'X
. BAHAN DAN METODEBahan
Bahan yang digunakan merupakan hasil survei oleh Badan Pusat Statistik tentang Potensi Desa (PODES) tahun 2006 meliputi kota dan kabupaten yang terlihat pada Tabel 1. Tabel 1. Daftar nama kota dan kabupaten yang
digunakan Kode
Kabupaten Nama Kabupaten
Jumlah Desa 3201000000 KAB BOGOR 415 3202000000 KAB SUKABUMI 340 3203000000 KAB CIANJUR 344 3204000000 KAB BANDUNG 436 3213000000 KAB SUBANG 248 3214000000 KAB PURWAKARTA 190 3215000000 KAB KARAWANG 304 3216000000 KAB BEKASI 179 3271000000 KOTA BOGOR 63 3272000000 KOTA SUKABUMI 33 3273000000 KOTA BANDUNG 139 3275000000 KOTA BEKASI 43 3277000000 KOTA CIMAHI 15 TOTAL 2749
Peubah-peubah yang digunakan merupakan hasil dari regresi logistik dengan menggunakan operasi bertatar dalam pemilihan peubah penjelasnya, dimana peubah respon yang digunakan adalah status kemiskinan desa (0 = tidak miskin, 1 = miskin) dan peubah penjelas yang digunakan disajikan pada Tabel 2.
Tabel 2. Peubah penjelas yang digunakan Peubah Jenis Keterangan Ada/tidak
penduduk desa yang bekerja sebagai TKI (X1)
Kategorik 1 = ada0 = tidak ada Jarak dari desa
ke ibukota kabupaten / kota (X2)
Numerik Satuan kilometer (km) Persentase
keluarga yang menerima kartu sehat (X3)
Numerik Jumlah penerimaJumlah keluarga Persentase luas
sawah (X4) Numerik
Luas lahan sawah Luas desa / kelurahan Persentase rumah tangga yang menggunakan listrik (X5) Numerik Jumlah pemakai Jumlah keluarga Ada/tidak puskesmas di desa tersebut (X6)
Kategorik 1 = ada0 = tidak ada
Status kemiskinan suatu desa ditentukan dari persentase keluarga miskin di masing-masing desa, dimana persentase keluarga miskin suatu desa diperoleh dari jumlah keluarga miskin suatu desa dibagi dengan jumlah keluarga secara keseluruhan di desa tersebut. Jika persentase keluarga miskin suatu desa lebih besar dari persentase keluarga miskin secara keseluruhan maka desa tersebut dikategorikan sebagai desa miskin.
Untuk memperoleh informasi hubungan spasial terhadap data maka dibutuhkan data mengenai lokasi spasial dari masing-masing desa (lintang dan bujur desa). Data tersebut kemudian digabung dengan data PODES 2006. Total data yang digunakan sebanyak 2749 desa.
5
Metode
Berikut ini adalah bagan metode yang dilakukan dalam penelitian :
Gambar 5. Bagan Alur Penelitian Berdasarkan Gambar 5, alur penelitian dapat dijelaskan sebagai berikut :
1. Membuat matriks jarak euklid antar desa berdasarkan lintang dan bujur desa
2. Mencari fungsi variogram sebaran teoritik (exponential, power,
spherical dangaussian).
3. Berdasarkan fungsi variogram dan matriks jarak dibuat matriks peragam spasial
4. Membalikan matriks peragam spasial yang kemudian akan dijadikan matriks pembobot spasial (Z)
5. Membuat peubah penjelas baru (w) yang telah diberi pengaruh spasial dengan mengalikan Z dan y
6. Melakukan pendugaan dengan menggunakan regresi logistik yang
telah ditambahkan peubah penjelasnya.
7. Membandingkan hasil pendugaan regresi logistik menggunakan matriks pembobot dari model variogram
exponential, power, spherical dan
gaussian.
Pembandingan model dilihat dari nilai
correct classification rate dan c-statistic. Perangkat lunak yang digunakan dalam penelitian ini adalah SAS ver 9.1 dan Microsoft Office Excel 2003.
PEMBAHASAN Deskripsi Data
Berdasarkan Tabel 3 dapat diketahui distribusi jumlah keluarga miskin untuk setiap kabupaten/kota. Persentase keluarga miskin untuk setiap kabupaten relatif lebih tinggi dibandingkan dengan persentase keluarga miskin di kota. Hal ini sebanding dengan jumlah keluarga di setiap kabupaten lebih banyak dibandingkan dengan jumlah keluarga di setiap kota.
Tabel 3. Distribusi jumlah keluarga miskin berdasarkan kabupaten / kota
No Nama Kabupaten KeluargaJumlah Miskin Jumlah Keluarga % Keluarga Miskin 1 KAB BOGOR 289110 878315 32,92% 2 KAB SUKABUMI 245714 574845 42,74% 3 KAB CIANJUR 208562 541270 38,53% 4 KAB BANDUNG 350256 1028703 34,05% 5 KAB SUBANG 226214 395703 57,17% 6 KAB PURWAKARTA 54924 195672 28,07% 7 KAB KARAWANG 239993 516782 46,44% 8 KAB BEKASI 240166 446209 53,82% 9 KOTA BOGOR 23557 176058 13,38% 10 KOTA SUKABUMI 20503 62880 32,61% 11 KOTA BANDUNG 137313 444505 30,89% 12 KOTA BEKASI 44384 327151 13,57% 13 KOTA CIMAHI 16237 105496 15,39% Total 2.096.933 5.693.589 36,83%
Total keluarga miskin dari 13 kabupetan/kota tersebut adalah 2.096.933 dari total 5.693.589 keluarga atau sekitar 36% keluarga termasuk keluarga miskin (Tabel 3). Berdasarkan batasan ini maka jika suatu desa mempunyai persentase keluarga miskin lebih dari 36% maka dikategorikan ke dalam desa miskin sedangkan jika kurang dari sama
Matriks Peragam Spasial (V) Matriks Pembobot Spasial (Z) Peubah Penjelas Baru (w) w= Z*y Fungsi Variogram Teoritik Matriks Jarak Z=V -dan Zij = 1/vij
Pendugaan dengan Menggunakan Regresi Logistik
6
dengan 36% dikategorikan sebagai desa tidak miskin. Berdasarkan kriteria tersebut terdapat 1550 desa (56,38%) tergolong ke dalam desa miskin. Sedangkan sisanya sebesar 1199 (43,62%) tergolong ke dalam desa tidak miskin (Tabel 4).
Tabel 4. Distribusi jumlah desa berdasarkan kabupaten / kota No KabupatenNama Jumlah Desa Miskin Jumlah Desa Tidak Miskin Total Desa 1 KAB BOGOR 201 214 415 2 KAB SUKABUMI 210 130 340 3 KAB CIANJUR 179 165 344 4 KAB BANDUNG 227 209 436 5 KAB SUBANG 205 43 248 6 KAB PURWAKARTA 77 113 190 7 KAB KARAWANG 229 75 304 8 KAB BEKASI 155 24 179 9 KOTA BOGOR 1 62 63 10 KOTA SUKABUMI 15 18 33 11 KOTA BANDUNG 49 90 139 12 KOTA BEKASI 1 42 43 13 KOTA CIMAHI 1 14 15 Total 1550 1199 2749
Distribusi jumlah desa berdasarkan kabupetan/kota terlihat pada Tabel 4. Kabupaten relatif memiliki desa lebih banyak dibandingkan dengan kota. Hal ini berkaitan dengan luas wilayah dari kabupaten yang umumnya lebih besar dibanding luas wilayah dari kota.
Pemodelan Regresi Logistik Klasik Pemodelan regresi logistik tanpa memperhatikan pengaruh spasial dari data dinamakan dengan pemodelan regresi logistik klasik. Tujuan dari pemodelan regresi logistik klasik ini adalah sebagai batasan untuk melihat perbaikan pendugaan parameter setelah dimasukkan pengaruh spasial ke dalam model. Hasil dugaan koefisien model dengan enam peubah penjelas dapat dilihat pada Tabel 5.
Hasil dugaan koefisien yang terdapat pada Tabel 5 merupakan hasil dugaan koefisien ketika dimodelkan dalam peluang Y=0 (status desa tidak miskin).
Tabel 5. Nilai dugaan koefisien untuk model regresi logistik klasik
Parameter Coef Wald Chi-Square P Intercept 0,9429 23,2457 <0,0001 Ada/tidak penduduk yang bekerja sebagai TKI -0,2839 7,1612 0,0074
Jarak dari desa ke ibukota kabupaten/kota -0,0172 4,234 0,0396 Persentase keluarga yang menerima kartu sehat -3,4685 135,2959 <0,0001 Persentase luas sawah -1,6589 96,3885 <0,0001 Pesentase keluarga yang memakai listrik 0,441 5,9096 0,0151 ada/tidak puskesmas di desa tersebut 0,2169 6,6489 0,0099
Setelah diperoleh peubah penjelas yang akan digunakan maka ingin diketahui karakteristik desa miskin dan desa tidak miskin untuk setiap peubah penjelas. Berdasarkan Tabel 6 dapat diketahui bahwa desa yang berstatuskan desa miskin dicirikan dengan desa-desa yang memiliki penduduk sebagai TKI lebih banyak, jarak dari desa ke ibukota kabupaten/kota yang lebih jauh, jumlah keluarga penerima kartu sehat yang lebih banyak, sawah yang lebih luas, rumah tangga yang menggunakan listrik lebih sedikit, dan desa yang memiliki puskesmas lebih sedikit dibandigkan dengan desa yang berstatuskan desa tidak miskin.
Tabel 6. Karakteristik desa miskin dan desa tidak miskin
Status Kemiskinan Desa Peubah
Miskin MiskinTidak Persentase desa yang
memiliki penduduk sebagai TKI
84,45% 70,98%
Rata-rata jarak dari desa ke ibukota kabupaten/kota (km)
5,52 4,82
Rata-rata persentase jumlah keluarga yang menerima kartu sehat
27,28% 16,78%
Rata-rata persentase luas
sawah 42,87% 27,15%
Rata-rata Persentase rumah tangga yang menggunakan listrik
71,91% 76,53%
Persentase desa yang
7
Model Variogram Status Kemiskinan Desa Variogram dari status kemiskinan sebagian desa di Jawa Barat terlihat pada Gambar 6. Dari Gambar 6 terlihat bahwa semakin jauh jarak antrar desa maka nilai variogram akan semakin besar, menuju konvergen pada jarak tertentu. Hal ini mengindikasikan adanya unsur spasial dari status kemiskinan suatu desa.
Gambar 6. Plot antar jarak (h) dengan nilai variogramnya
Berdasarkan hasil dugaan variogram dari status kemiskinan desa tersebut dilakukan pemodelan variogram secara teoritik yaitu model exponential, power, spherical,
gaussian. Adapun nilai dugaan parameter dari masing-masing model terdapat pada Tabel 7. Tabel 7. Nilai dugaan parameter model
variogram
Model Dugaan Model
Expo-nential 1823 , 0 3 , 0 3 exp 1 0670 , 0 ) ( ^ h h R2 =92,82% Power ( ) 0,1753h0,3 0,0802 ^ h R2 =73,21% Spheri-cal 0,1877, 0,25 25 , 0 * 2 25 , 0 3 0,0605 ) ( 3 3 ^ h h h h 25 , 0 , 2482 , 0 ^ h R2 =94,26% Gaussian 0,26 0,1994 3 exp 1 0,0498 ) ( 2 2 ^ h h R2 =95,22%
Model gaussian merupakan model terbaik untuk menggambarkan hubungan antara jarak antar desa dengan nilai variogramnya. Hal ini ditunjukkan oleh nilai R2 tertinggi (95,22%).
Sedangkan model power tidak terlalu baik untuk menggambarkan hubungan jarak antar desa dengan nilai variogramnya, hal ini ditunjukkan oleh nilai R2 terendah (73,21%).
Sedangkan model power tidak terlalu baik
dalam menggambarkan hubungan antara jarak antar desa dengan nilai variogramnya, hal ini ditunjukkan oleh R2 terendah (73,21%) dan
didukung oleh Gambar 7.
Gambar 7. Plot dugaan dari masing-masing model variogram
Terlihat dari plot hasil dugaan masing-masing model dengan nilai variogram bahwa hanya model power yang tidak mampu menggambarkan kondisi variogram yang sebenarnya (Gambar 7).
Pembuatan Matriks Pembobot Spasial Setelah dilakukan pemodelan variogram secara teoritik untuk beberapa model variogram, langkah selanjutnya adalah memanfaatkan hasil dugaan parameter model variogram yang terdapat pada Tabel 6 untuk pembuatan matriks pembobot spasial (Z). Dalam pembuatan matriks pembobot spasial ini juga memanfaatkan matriks jarak yang akan digunakan untuk membuat matriks peragam spasial (V). Matriks ragam spasial adalah sebuah matriks yang merupakan fungsi dari matriks jarak dengan model variogram teoritik.
Setelah diperoleh matriks V, maka dilakukan proses pembalikan matriks terhadap matriks V untuk memperoleh matriks Z.
Pembalikan matriks V antara lain dapat dilakukan dengan metode :
1. Membuat matriks yang berisikan nilai-nilai dari satu per matriks V (1/Vij). Hal
ini dimaksudkan untuk mempercepat komputasi.
2. Membuat matriks yang merupakan hasil dari generalized inverse matriks V. Data pembobot spasial yang digunakan untuk pemodelan regresi logistik spasial dibatasi sampai jarak 27,5 km, sedangkan untuk jarak yang lebih dari 27,5 km nilai pembobot spasialnya sama dengan nol.
Plot pencaran antara nilai bobot spasial dengan jarak dapat dilihat pada Lampiran 1. Plot pencaran dari matriks pembobot spasial
8
yang diharapkan adalah plot pencaran yang monoton menurun dari kiri atas ke kanan bawah. Pembalikan matriks V menggunakan 1/Vij menghasilkan plot pencaran yang tidak
sesuai dengan harapan. Lain halnya dengan pembalikan matriks V menggunakan
generalized inverse matriks V untuk model variogram exponential dan power
menghasilkan plot pencaran sesuai dengan monoton menurun dari kiri atas ke kanan bawah.
Dugaan Model Regresi Logistik Spasial Matriks pembobot spasial yang menggambarkan pengaruh spasial antar desa yang berasal dari beberapa model variogram, dikalikan dengan peubah responnya dan kemudian dimasukan ke dalam model regresi logistik sebagai sebuah peubah penjelas baru yang dinamakan dengan x-spasial. Pemodelan regresi logistik dengan melibatkan pengaruh spasial ke dalam model dinamakan dengan model regresi logistik spasial, yang hasil dugaan parameternya terlihat pada Tabel 8 dan Tabel 9. Penelitian ini fokus dalam pencarian arah koefisien dari dugaan parameter, belum memperhatikan segi interpretasi dari dugaan parameter.
Nilai dugaan parameter untuk peubah penjelas x-spasial pada seluruh model regresi logistik spasial berkoefisien negatif, yang dapat diartikan jika suatu desa berdekatan erat dengan desa yang miskin maka peluang desa tersebut berstatus tidak miskin adalah kecil, dan dengan kata lain desa tersebut berpeluang besar sebagai desa miskin. Dugaan terhadap
koefisiean x-spasial ini telah sesuai dengan perkiraan awal penelitian yang menyatakan bahwa status kemiskinan suatu desa diperkirakan dipengaruhi oleh kondisi desa lainnya.
Hasil dugaan parameter untuk setiap metode pembalikan matriks V, menghasilkan arah koefisien yang seragam untuk masing-masing peubah penjelasnya. Keseragaman koefisien yang dihasilkan yaitu koefisien negatif untuk peubah penjelas ada/tidak penduduk yang bekerja sebagai TKI, jarak dari desa ke ibukota kabupaten/kota, persentase keluarga yang menerima kartu sehat, dan persentase luas sawah. Sedangkan koefisien positif untuk peubah penjelas persentase keluarga yang memakai listrik, dan ada/tidak puskesmas di desa tersebut.
Keseragamaan arah koefisien untuk masing-masing peubah penjelas ini akan
memberikan kemudahaan dalam
menginterpretasikan hubungan antar peubah penjelas dengan peubah responnya. Misalkan untuk peubah penjelas persentase luas sawah, yang berkoefisienkan negatif. Interpretasinya adalah ketika persentase luas tanah suatu desa bertambah, maka peluang desa tersebut berstatus desa tidak miskin akan semakin kecil. Sedangkan interpretasi untuk peubah penjelas yang berkoefisien positif, misalkan untuk peubah penjelas persentase keluarga yang memakai listrik maka interpretasinya adalah ketika persentase keluarga yang memakai listrik bertambah, maka peluang desa tersebut berstatuskan desa tidak miskin akan semakin besar.
Tabel 8. Nilai dugaan koefisien regresi logistik dari model klasik dan model spasial menggunakan matriks pembobot spasial dari 1/Vij
Dugaan koefisien
Peubah Klasik Exponential Power Spherical Gaussian
Intercept 0,9429 2,6901 2,7299 2,6408 2,6865
Ada/tidak penduduk yang bekerja sebagai
TKI -0,2839 -0,2336 -0,2305 -0,2368 -0,2326 Jarak dari desa ke ibukota kabupaten/kota -0,0172 -0,0158 -0,0157 -0,0158 -0,0158 Persentase keluarga yang menerima kartu
sehat -3,4685 -2,6599 -2,6364 -2,6873 -2,6590 Persentase luas sawah -1,6589 -1,2869 -1,2710 -1,3046 -1,2852 Persentase keluarga yang memakai listrik 0,4410 0,4751 0,4702 0,4799 0,4739 Ada/tidak puskesmas di desa tersebut 0,2169 0,2511 0,2520 0,2502 0,2513 X Spasial -3,9095 -4,0039 -3,7945 -3,9043
C-statistic 72,30% 73,90% 74,00% 73,80% 73,90%
Correct Classification Rate 65,52% 66,86% 66,89% 66,56% 66,90% Catatan :
9
Tabel 9. Nilai dugaan koefisien regresi logistik dari model klasik dan model spasial menggunakan matriks pembobot spasial dari (V)
-Dugaan koefisien
Peubah Klasik Exponential Power Spherical Gaussian
Intercept 0,9429 1,9862 2,4719 0,9513 0,9400
Ada/tidak penduduk yang bekerja
sebagai TKI -0,2839 -0,2483 -0,1985 -0,2877 -0,2824 Jarak dari desa ke ibukota
kabupaten/kota -0,0172 -0,0172 -0,0166 -0,0171 -0,0169 Persentase keluarga yang menerima
kartu sehat -3,4685 -2,9509 -2,6316 -3,4712 -3,4619 Persentase luas sawah -1,6589 -1,1672 -0,9617 -1,6573 -1,6657 Persentase keluarga yang memakai
listrik 0,4410 0,2356tn 0,1599tn 0,4343 0,4493 Ada/tidak puskesmas di desa tersebut 0,2169 0,2089 0,2123 0,2181 0,2164 X Spasial -2,1860 -3,3069 -0,0015tn -0,0067tn
C-statistic 72,30% 79,20% 80,50% 72,30% 72,30%
Correct Clasification Rate 65,52% 72,17% 73,45% 65,48% 65,52%
Catatan :
tn= peubah yang tidak nyata pada taraf α=10%
Yang dimodelkan P(Y=0)
Berdasarkan nilai c-statistic yang terdapat pada Tabel 8 dan Tabel 9 terlihat bahwa secara umum model regresi logistik spasial memiliki nilai c-statistic yang lebih besar dibandingkan dengan nilai c-statistic dari model regresi logistik klasik. Kecuali untuk model spherical
dan gaussian ketika menggunakan metode pembalikan matriks V dengan generalized inverse matriks V nilai c-statistic yang diperoleh sama dengan model klasik (72,3%). Hal ini dapat dinyatakan bahwa terdapat perbaikan pendugaan parameter model regresi logistik setelah diberikan pengaruh spasial terhadap data. Perbaikan pendugaan parameter juga didukung dengan correct classification rate model regresi logistik spasial lebih tinggi dibandingkan dengan model regresi logistik klasik.
Nilai c-statistic untuk masing-masing model regresi logistik spasial dapat terlihat secara deskriptif pada Gambar 8. Berdasarkan Gambar 8, terlihat bahwa model power menghasilkan nilai c-statistic tertinggi pertama yaitu sebesar 80,50% untuk pembalikan matriks V menggunakan generalized inverse
variogram. Sedangkan nilai c-statistic tertinggi kedua dihasilkan oleh model exponential yaitu sebesar 79,20% dengan metode pembalikan matriks V yang sama. Metode pembalikan matriks V menggunakan 1/Vij menghasilkan
nilai c-statistic yang relatif sama untuk setiap model regresi logistik spasial yaitu sekitar 74,00%. Nilai c-statistic terkecil dihasilkan oleh model spherical dan gaussian yaitu
sebesar 72,3% ketika menggunakan pembalikan matriks V dengan generalized inverse variogram, hal ini dikarenakan oleh x-spasial yang tidak nyata dalam pemodelan regresi logistik spasial.
0 10 20 30 40 50 60 70 80 90 100
Klasik Exponential Power Spherical Gaussian
Model Variogram C -S ta ti st ic ( % )
C-statistic (1/Vij) C-statistic (ginv(V)) Gambar 8. Perbandingan nilai c-statistic
model regresi logistik klasik dengan model regresi logistik spasial untuk berbagai model variogram
Pada Gamabar 9 terlihat secara deskriptif hasil dari correct classification rate masing-masing model regresi logistik spasial. Hasil tertinggi pertama diperoleh model power sebesar 73,45%, sedangkan tertinggi kedua diperoleh model exponential sebesar 72,17%
10
untuk metode pembalikan matriks V yang sama yaitu menggunakan generalized inverse
variogram. Correct classification rate
terendah dihasilkan dari model spherical yaitu sebesar 65,48% ketika menggunakan metode pembalikan matriks V dengan generalized inverse variogram. Metode pembalikan matriks V menggunakan 1/Vij menghasilkan
correct classification rate yang sama untuk model power, eksponenesial, dan Gaussian
yaitu sebesar 66,9%, sedangkan untuk model
spherical menghasilkan correct classification rate terendah yaitu sebesar 66,56%.
0,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0
Klasik Exponential Power Spherical Gaussian
Model Variogram C o rr ec t C la ss if ic at io n R at e (% )
Correct Classification rate (1/Vij) Correct Classification Rate (ginv(V))
Gambar 9. Perbandingan hasil correct classification rate model regresi logistik klasik dengan model regresi logistik spasial untuk berbagai model variogram
Pembalikan matriks V dengan menggunakan generalized inverse variogram dan 1/Vijmenghasilkan nilai dugaan parameter
yang berbeda dan dapat dilihat pada Tabel 8 dan Tabel 9. Pada Tabel 8 terlihat bahwa seluruh nilai dugaan untuk x-spasial nyata
pada taraf α=10%, sedangkan pada Tabel 9 nilai dugaan untuk x-spasial model spherical
dan Gaussian tidak nyata pada taraf α=10%. Oleh karena itu, pembalikan matriks dengan menggunakan 1/Vij lebih baik dalam
menggambarkan matriks pembobot spasial yang diharapkan.
KESIMPULAN
Terdapat enam peubah penjelas yang dapat mempengaruhi status kemiskinan sebagian desa di Jawa Barat, yaitu :
Ada/tidak penduduk yang bekerja sebagai TKI
Jarak dari desa ke ibukota kabupaten/kota
Persentase keluarga yang menerima kartu sehat
Persentase luas sawah
Persentase rumah tangga yang menggunakan listrik
Ada/tidak puskesmas di desa tersebut Peubah-peubah tersebut dipilih dari hasil analisis regresi logistik setelah melalui proses bertatar dalam pemilihan peubah penjelasnya.
Data status kemiskinan sebagian desa di Jawa Barat memiliki pola spaisal dan dapat dimodelkan dengan model variogram teoritik (model exponential, model power, model
spherical, dan model gaussian). Hasil terbaik pemodelan regresi logistik spasial untuk berbagai model variogram, secara umum dihasilkan dari model power dengan nilai c-statistic sebesar 80,50% untuk pembalikan matriks V menggunakan generalized inverse
variogram dan 74,00% untuk membalikan matriks V menggunakan 1/Vij. Secara umum
nilai c-statistic dancorrect classification rate
yang dihasilkan dari model regresi logistik spasial lebih tinggi dibandingkan dengan regresi logistik klasik yang memiliki nilai c-statistic sebesar 72,3% dan correct classification rate sebesar 65,52%. Hal ini dapat dinyatakan bahwa terjadi perbaikan pendugaan dalam pemodelan regresi logistik setelah dimasukkan pengaruh spasial ke dalam model.
SARAN
Untuk penelitian selanjutnya disarankan agar dalam penyusunan matriks pembobot spasial dilakukan simulasi dengan mencoba berbagai variasi radius jarak desa yang diakomodir dalam model, sehingga dihasilkan pemodelan yang lebih tepat dalam memprediksi status kemiskinan desa.
DAFTAR PUSTAKA
Ashraf, M., Jim C. L., K. G. Hubbard. 1997.
Application of Geostatistics to Evaluate Partial Weather Station Network. J. Agricultural and Forest Meteorology. 84:255-271.
Bohling, Geoff. 2005. Introduction to Geostatistics and Variogram Analysis.
Kansas Geological Survey 864-2093.
http://people.ku.edu/~gbohling/cpe940
Cressie, NAC. 1993. Statistics for Spatial Data. Canada: John Wiley and Sons, Inc.
11
Fernández. Bernal Herrera. 2003.
Classification and modeling of trees outside forest in Central American landscapes by combining remotely sensed data and GIS. Dissertation. Forstwissenschaftlichen Fakultät. Albert-Ludwigs-Universität.
http://www.freidok.uni-freiburg.de/volltex te/752/[8 Mei 2008]
Frei, Allan. 2005. Notes On Spatial Autoccorelation and Regrresion. Hunter College.
http://www.geography.hunter.cuny.edu/~a frei/gtech702_fall03_webpages/notes_spa tial_autocorrelation.htm[25 April 2008] Hosmer DW, Lemeshow S. 1989. Applied
Logistic Regression. New York: J. Wiley. Searle, S. R. 1971. Linear Models. John Wiley
& Sons, Inc: New York, hal 1-7.
Syafitri, U. D., Bagus S., Vinda P. 2007.
Pembandingan Hasil Akurasi Prediksi Model Regresi Logistik Spasial untuk Berbagai Model Variogram. Makalah Seminar ITS 3 November 2007.
Xie, Chenglin, Bo Huang, Christophe Claramunt and Magesh Chandramouli. 2005. Spatial Logistic Regression and GIS to Model Rural-Urban Land Conversion.
http://www.civ.utoronto.ca/sect/traeng/ilut e/processus2005/PaperSession/Paper10_X ie-etal_SpatialLogisticRegression_CD.pdf
12
Lampiran 1. Plot pencaran antara bobot spasial data dengan jarak untuk berbagai model variogram
Model Eksponensial (1/Vij) Model Power (1/Vij)
Model Spherical (1/Vij) Model Gaussian (1/Vij)
Model Eksponensial (ginv( variogram)) Model Power (ginv( variogram))