• Tidak ada hasil yang ditemukan

LINDA FITRIANA I8709017

N/A
N/A
Protected

Academic year: 2017

Membagikan "LINDA FITRIANA I8709017"

Copied!
77
0
0

Teks penuh

(1)

commit to user

MODEL PENELUSURAN BANJIR DAERAH ALIRAN

SUNGAI BENGAWAN SOLO HULU DENGAN

MENGGUNAKAN METODE MUSKINGUM-CUNGE

TUGAS AKHIR

Diajukan Sebagai Syarat Untuk Memperoleh Gelar Ahli Madya Pada Jurusan Teknik Sipil Fakultas Teknik

Universitas Sebelas Maret Surakarta

Disusun Oleh :

LINDA FITRIANA NIM. I8709017

D3 TEKNIK SIPIL INFRASTRUKTUR PERKOTAAN

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK

UNIVERSITAS SEBELAS MARET

SURAKARTA

(2)

commit to user

MOTTO

“Hai orang-orang yang beriman, mintalah pertolongan ( kepada Allah ) dengan Sabar dan Shalat, sesungguhnya Allah beserta orang-orang yang sabar” (Albaqoroh : 153)

Maut bukanlah kehilangan terbesar dalam hidup...kehilangan yang terbesar adalah apa

yang mati dalam sanubari sementara kita masih hidup (Norman Cousins)

Kekecewaan itu ibarat jalan yang berbongkah-bongkah, melambatkanmu sedikit, tapi

kau akan menikmati jalan halus setelahnya. (Author Unknown)

Banyak yang ingin berbeda dari kebanyakan,tetapi enggan dibedakan (Haryanto

Kandani).

Jangan pertanyakan bagaimana Kita bisa terjatuh,pertanyakan bagaimana Kita bisa

(3)

commit to user

PERSEMBAHAN

Ya Allah ... dengan mengharap ridho dan Hidayah-Mu ingin ku

persembahkan Tugas Akhir ini kepada:

1.

Allah SWT yang selalu memberikan kesempatan, petunjuk dan

Hidayah Nya dalam penyelesaian Tugas Akhir ini

2.

Untuk Bapak Ibu yang tak henti-hentinya mendoakan, mendidik,

menasehati tak pernah jemu dan selalu menaburkan pengorbanan

dengan kasih sayang.

3.

Adikku tersayang tahukah Engkau? Sebaik apa dimataku? Sebaik

kesempurnaan yang Kau miliki. Kau selalu membuat tersenyum

dalam gelisahku.

4.

Pakdhe Budhe,Om Bulik,Nenek Kakek,kakak adik serta semua

saudaraku yang turut memberikan semangat serta doa.

5.

Rekan-Rekan Sipil Infrastruktur 2009 yang telah berjuang

bersama serta memberi bantuan dan dukungannya.

6.

Teman

teman “Omah Putih” terimakasih selalu menemani,

membantu serta memberikan semangat.

7.

Semua orang disekeliling saya yang tak bisa saya sebutkan satu

persatu,terimakasih buat semuanya,,,,terimakasih.

Semoga Allah memberikan karunia dan Ridho-Nya pada kalian semua

(4)

commit to user

ABSTRAK

Linda Fitriana, 2012. Model Penelusuran Banjir Daerah Aliran Sungai Bengawan Solo Hulu Dengan Menggunakan Metode Muskingum – Cunge.

Penelusuran banjir adalah metode peramalan besarnya debit banjir (hidrograf) pada suatu titik (ruas), melalui alur tampungan (waduk) atau melalui alur sungai yang diperoleh dari hasil pengukuran besarnya debit banjir (hidrograf) dari titik (ruas) lainnya.

Tujuan penelitian ini adalah mengetahui besarnya outflow maksimum di Sungai Bengawan Solo Hulu.

Penelitian ini menggunakan metode deskriptif kuantitatif. Data-data yang diperlukan antara lain peta DAS Bengawan Solo dan data curah hujan stasiun pengamatan hujan Baturetno Watugede tahun 1999 - 2011.

Hasil penelitian menunjukkan bahwa terjadi banjir dengan debit dua tahunan (Q2) dengan debit puncak sebesar=191,900 m3/detik terjadi pada kilometer ke-3 jam ke-5, jika terjadi banjir dengan debit lima tahunan (Q5) debit puncak sebesar=256,368 m3/detik terjadi pada kilometer ke-3 jam ke-5, dan jika terjadi banjir dengan debit sepuluh tahunan (Q10) debit puncak sebesar=299,301 m3/detik terjadi pada kilometer ke-3 jam ke-5.

(5)

commit to user

ABSTRACT

Linda Fitriana, 2012, “Flood Routing Model Of Bengawan Solo Upstream Watershed With Muskingum – Cunge Method”

Flood routing is prediction method of hydrograph in one point pass by basin channel or river channel that received from measuring result of hydrograph from another point.

The main purpose of this research is to know maximum outflow in Bengawan Solo Upstream River .

In this research use quantitative descriptive method. Needed data which take from Bengawan Solo Watershed maps and rainfall data Baturetno Watugede rain observation station in year 1999 - 2011.

Result of research its show that flood with two years discharge have maximum flow about 191,900 m3/sec its happened in third kilometres on fifth to hours,if the flood happened with five years discharge the maximum flow about 256,368 m3/sec its happened in third kilometres on fifth to hours,and if the flood happened with ten years discharge the maximum flow about 299,301 m3/sec its happened in third kilometres on fifth to hours.

(6)

commit to user

KATA PENGANTAR

Puji syukur Alhamdulillah penulis panjatkan kehadirat Allah SWT yang telah melimpahkan Rahmat dan hidayah-Nya, Sholawat dan Salam teruntuk makhluk Illahi, Muhammad SAW, yang dengan perjuangannya telah dapat mengantarkan umat pilihan terakhir untuk semua umat manusia demi menuju Ridho-Nya. Maka penulis sangat bersyukur karna telah dapat menyelesaikan Laporan Tugas Akhir ini sesuai dengan yang diharapkan.

Laporan Tugas Akhir ini yang berjudul, “Model Penelusuran Banjir Daerah Aliran Sungai Bengawan Solo Hulu Dengan Menggunakan Metode Muskingum - Cunge”, ini penulis susun untuk memenuhi salah satu syarat untuk memperoleh gelar Ahli Madya pada program D3 Teknik Sipil Infrastruktur Perkotaan Jurusan Teknik Sipil Fakultas Teknik Universitas Sebelas Maret Surakarta.

Penulis menyadari bahwa dalam penyusunan laporan Tugas Akhir ini masih terdapat banyak kekurangan, walaupun telah diusahakan semaksimal mungkin untuk kesempurnaannya. Oleh karena itu penulis sangat mengharapkan saran dan kritik yang bersifat membangun demi perbaikan penulisan laporan pada masa mendatang.

Penyusunan laporan Tugas Akhir ini tidak dapat terwujud tanpa adanya bimbingan, arahan dan bantuan dari berbagai pihak maka dari itu dalam kesempatan ini pula penulis ingin mengucapkan terima kasih yang sebesar – besarnya kepada :

1. Dr.Ir. Rr Rintis Hadiani,MT selaku Dosen Pembimbing Tugas Akhir.

2. Balai Besar Penelitian Sungai Bengawan Solo dalam proses pengambilan data

lapangan.

3. Teman-teman D-III Teknik Sipil Infrastruktur Perkotaan 2009.

4. dan semua pihak yang telah membantu terselesaikannya Tugas Akhir ini.

Penulis hanya dapat mengucapkan terima kasih yang sebesar – sebesarnya atas semua bantuan yang telah diberikan, semoga Allah SWT senantiasa melimpahkan Rahmat dan Hidayah-Nya kepada semua pihak yang telah membantu penulis dalam menyelesaikan laporan Tugas Akhir ini.

Akhir kata, penulis berharap semoga laporan hasil Tugas Akhir ini dapat bermanfaat bagi penulis pada khususnya dan pembaca pada umumnya, Amiin.

Surakarta, Juli 2012

(7)

commit to user

DAFTAR ISI

HALAMAN JUDUL ... i

HALAMAN PERSETUJUAN ... ii

HALAMAN PENGESAHAN ... iii

HALAMAN MOTTO ... iv

HALAMAN PERSEMBAHAN ... v

ABSTRAK ... vi

KATA PENGANTAR…...………… ... vii

DAFTAR ISI ... ix

DAFTAR TABEL ... xii

DAFTAR GAMBAR ... xiv

DAFTAR NOTASI ... xv

BAB I PENDAHULUAN 1.1.Latar Belakang ... 1

1.2.Rumusan Masalah ... 2

1.3.Batasan Masalah ... 2

1.4.Tujuan Penelitian... 2

1.5.Manfaat Penulisan ... 2

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1.Tinjauan Pustaka ... 4

2.1.1 Hujan ... 5

2.1.1.1.Alat Pengukur Hujan ... 6

2.1.1.2 Limpasan ... 7

2.1.1.3 Pengukuran Aliran Air ... 9

2.1.1.4 Hidrograf Aliran ... 9

2.1.2.Banjir ... . 10

(8)

commit to user

2.1.3.1. Macam – Macam Metode Penelusuran Banjir 12

2.3.1.1 Penelusuran Banjir Melalui Sungai .... 12

2.2.Dasar Teori ... 13

2.2.1. Kepanggahan ... 13

2.2.2. Data Hujan ... 13

2.2.3. Poligon Thiessen ... 14

2.2.4 Pengukuran Dispersi ... 14

2.2.4.1Standar Deviasi ... 15

2.2.4.2Koefisien Skewness ... 15

2.2.4.3Koefisien Variasi ... 16

2.2.4.4Koefisien Kurtosis ... 16

2.2.5. Pemilihan Jenis Sebaran ... 16

2.2.5.1. Distribusi Normal ... 17

2.2.5.2. Distribusi Log Normal ... 17

2.2.5.3. Distribusi Gumbell ... 18

2.2.5.4. Distribusi Log Perason Tipe III ... 18

2.2.6. Koefisien Limpasan ... 19

2.2.7. Pengujian Kecocokan Sebaran ... 19

2.2.8. Debir Banjir Rencana ... 19

2.2.8.1. Hidrograf Satuan Sintetik Nakayasu ... 19

2.2.9. Metode Muskingum ... 22

2.2.10.Pengembangan Metode Muskingum ... 22

2.2.10.1.Metode Muskingum – Cunge ... 22

BAB III METODE PENELITIAN 3.1.Lokasi Penelitian ... 25

3.2.Sumber Data ... 25

3.3.Jenis Penelitian ... 25

3.4.Prosedur Penelitian ... 26

3.4.1. Mengolah Data ... 26

3.4.2. Penyusunan Laporan ... 27

(9)

commit to user

BAB IV ANALISIS DAN PEMBAHASAN

4.1 Umum ... 30

4.2 Analisis ... 30

4.1.1. Data ... 30

4.1.2. Penyiapan Seri Data Curah Hujan ... 30

4.1.3. Uji Kepanggahan Data Hujan ... 31

4.1.4. Poligon Thiessen ... 34

4.1.4.1. Perhitungan Koefisien Thiessen ... 35

4.1.5. Hujan Daerah ... 35

4.1.6. Perhitungan Parameter Statistik ... 36

4.1.7. Uji Chi Kuadrat ... 38

4.1.8. Perhitungan Koefisien Pengaliran ... 40

4.1.9. Perhitungan Hujan Kala Ulang ... 41

4.1.10.Perhitungan Hidrograf Satuan Nakayasu ... 42

4.1.11.Perhitungan Penelusuran Banjir Metode Muskingum – Cunge ... 47

4.3. Pembahasan ... ... 59

BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan ... 61

5.2. Saran... ... 61

PENUTUP ... xvii

(10)

commit to user

DAFTAR TABEL

Tabel 2.1. Nilai Kritik Q untuk Uji Kepanggahan ... 13

Tabel 2.2. Parameter Statistik untuk Menentukan Jenis Distribusi ... 17

Tabel 2.3. Koefisien Kekasaran Manning ... 24

Tabel 4.1. Curah Hujan Harian Maksimum Stasiun Hujan Baturetno dan Watugede ... 31

Tabel 4.2. Data Hujan Tahunan DAS Bengawan Solo Hulu ... 31

Tabel 4.3. Uji Kepanggahan dengan Metode RAPS Sta Watugede ... 33

Tabel 4.4. Uji Kepanggahan dengan Metode RAPS Sta Baturetno ... 33

Tabel 4.5. Nilai Kritik Q untuk Uji Kepanggahan ... 34

Tabel 4.6. Koefisien Thiessen Tiap Stasiun Hujan ... 35

Tabel 4.7. Hujan Daerah Tiap Tahun ... 36

Tabel 4.8. Perhitungan Parameter Statistik ... 37

Tabel 4.9. Uji Validitas ... 37

Tabel 4.10. Pemilihan Jenis Distribusi ... 38

Tabel 4.11. Perhitungan Probabilitas ... 39

Tabel 4.12. Perhitungan Chi Kuadrat(Metode Log Pearson Tipe III)... 40

Tabel 4.13. Perhitungan Nilai ln X... 41

Tabel 4.14 Presentase Sebaran Hujan 4 Jaman ... 42

Tabel 4.15. Hasil Perhitungan Hujan Kala Ulang 2,5 dan 10 Tahun Log Pearson Tipe III ... ... 42

Tabel 4.16. Hasil Perhitungan Debit Kala Ulang 2 Tahun(Q2) ... 45

Tabel 4.17. Hasil Perhitungan Debit Kala Ulang 5 Tahun(Q5) ... 46

Tabel 4.18. Hasil Perhitungan Debit Kala Ulang 10 Tahun(Q10) ... 47

Tabel 4.19. Debit Inflow dari Data Tinggi Muka Air ... 49

Tabel 4.20. Hasil Analisis pada Pias Pertama (Q2 Tahun) ... 51

Tabel 4.21. Debit Maksimum pada Tiap Pias Berdasarkan Jarak (Q2 Tahun) ... 53

(11)

commit to user

Tabel 4.23. Debit Maksimum pada Tiap Pias

Berdasarkan Jarak (Q5 Tahun) ... 55

Tabel 4.24. Debit Maksimum pada Tiap Pias

Berdasarkan Waktu (Q5 Tahun) ... 56

Tabel 4.25. Debit Maksimum pada Tiap Pias

Berdasarkan Jarak (Q10 Tahun) ... 57

Tabel 4.26. Debit Maksimum pada Tiap Pias

(12)

commit to user

DAFTAR GAMBAR

Gambar 2.1 Pembagian Daerah dengan Cara Poligon Thiessen ... 14

Gambar 2.2 Hidrograf Satuan Sintetik Nakayasu ... 21

Gambar 3.1 Peta Lokasi Penelitian.. ... 25

Gambar 3.2 Diagram Alir Penelitian ... 27

Gambar 4.1 Poligon Thiessen DAS Bengawan Solo Hulu ... 35

Gambar 4.2 Hidrograf Satuan Sintetik Nakayasu ... 44

Gambar 4.3 Hidrograf Pias Pertama (Q2 Tahun) ... 52

Gambar 4.4 Hidrograf Hasil Perhitungan Metode Muskingum–Cunge (Q2 Tahun) ... 53

Gambar 4.5 Hubungan Antara Jarak dengan Debit Maksimum (Q2 Tahun)... 54

Gambar 4.6 Hubungan Antara Waktu dengan Debit Maksimum (Q2 Tahun)... 55

Gambar 4.7 Hubungan Antara Jarak dengan Debit Maksimum (Q5 Tahun ... 56

Gambar 4.8 Hubungan Antara Waktu dengan Debit Maksimum (Q5 Tahun)... 57

Gambar 4.9 Hubungan Antara Jarak dengan Debit Maksimum (Q10 Tahun) ... 58

(13)

commit to user

DAFTAR NOTASI

= luas daerah tangkapan (km2)

= lebar penampang sungai (m)

= koefisien limpasan

= konstanta waktu penyimpan (detik)

L = panjang sungai (m)

c = kecepatan sebuah gelombang kinematis

= tinggi curah hujan rerata areal (mm)

= jumlah data, k = 1, 2, 3, …, n

= banyak sampel = waktu (jam)

= faktor berat relatif (penimbang),

= curah hujan harian maksimum (mm/hari)

= luas daerah pengaruh pos ke – n (km2)

= luas wilayah (km2)

= tinggi hujan rata-rata tahunan di pos-pos penakar di sekitar X yang

dipakai untuk mencari data X yang hilang

= tinggi curah hujan rata-rata di X

= koefisien kemencengan

, , , = parameter penelusuran banjir

= simpangan baku

Ef = jumlah nilai teoritis pada sub kelompok ke-i

Of = jumlah nilai pengamatan pada sub kelompok ke-i

= limpasan sesudah mencapai debit puncak (m3/dt)

= debit puncak banjir (m3/dt)

= limpasan sebelum menjadi debit puncak (m3/dt)

= debit maksimum (m3/dt),

= harga satuan (mm)

(14)

commit to user

= kemiringan dasar saluran

= nilai komulatif penyimpangan

= tenggang waktu dari permukaan sampai puncak banjir (jam)

= lama hujan efektif yang besarnya 0,5 sampai 1 tg

= tenggang waktu penurunan debit dari puncak sampai 30 % dari debit

= tinggi curah hujan yang hilang

= Parameter Chi-Kuadrat terhitung = waktu konsentrasi (jam)

= curah hujan rerata maksimum, (mm/hari) α = parameter hidrograf

(15)

commit to user

BAB I

PENDAHULUAN

1.1.

Latar Belakang

Sumber daya air di alam ini selain bermanfaat,bisa jadi merugikan manusia jika

tidak dikelola dengan baik. Sumber daya air yang tidak terkendali dengan baik

bisa menimbulkan banjir. Untuk memperkirakan besarnya debir banjir digunakan

suatu metode yang disebut penelusuran banjir.

Penelusuran banjir adalah metode peramalan besarnya debit banjir (hidrograf)

pada suatu titik (ruas), melalui alur tampungan (waduk) atau melalui alur sungai

yang diperoleh dari hasil pengukuran besarnya debit banjir (hidrograf) dari titik

(ruas) lainnya.

Metode penelusuran banjir yang pertama kali dikenal adalah metode Muskingum,

dan selanjutnya terjadi pengembangan metode tersebut, yaitu O’Donnel (1985)

dan Muskingum-Cunge (1989). Metode Muskingum berlaku untuk model aliran

masuk dan keluar tunggal serta pada sungai atau saluran yang uniform, padahal pada kenyataan di alam sungai selalu memiliki anak sungai – anak sungai dan

ununiform. Metode ini menerapkan parameter tampungan (k) dan faktor

pembobot (x) dengan cara konvensional, baru kemudian menerapkan parameter

penelusuran (Ci). Setelah nilai k dan x dihitung,maka hidrograf debit pada akhir

jangkauan dapat dihitung. Cunge mengembangkan metode Muskingum, dengan

hanya berdasar bacaan hidrograf di hulu akan didapatkan hidrograf banjir di hilir,

dengan batasan aliran masuk dan aliran keluar.

Daerah Aliran Sungai (DAS) adalah daerah tempat presipitasi mengkonsentrasi ke

sungai, yang akan dialirkan ke sungai yang lebih besar atau ke badan air yang

lebih besar seperti waduk ataupun laut. Daerah Aliran Sungai Bengawan Solo

(DAS Bengawan Solo) terletak di Wonogiri. Di sepanjang sungai utama mengalir

(16)

commit to user

dalam analisis penelusuran banjir. Di sekitar sungai terdapat pula waduk yang

memberikan kontribusi terhadap debit sungai karena digunakan untuk mengairi

sawah (irigasi). Aliran air untuk irigasi dari waduk ini dianggap sebagai outflow

dari aliran sungai dalam tinjauan penelusuran banjir.

1.2.

Rumusan Masalah

1. Bagaimana menghitung parameter sungai k dan x?

2. Bagaimana menghitung inflow maksimum DAS?

3. Bagaimana menghitung debit maksimum di titik uji?

1.3.

Batasan Masalah

Pembatasan masalah dalam penulisan Tugas Akhir ini supaya tidak meluas dalam

pembahasan adalah :

1. Tinjauan di DAS Bengawan Solo Hulu di Sub DAS Bengawan Solo Hulu 3.

2. Data hujan yang digunakan adalah data hujan dari tahun 1999-2011.

3. Analisis dilakukan terhadap debit Q2, Q5,Q10.

4. ∆ penelusuran tiap 3000 meter.

5. Sungai diasumsikan sebagai saluran segiempat dengan luas penampang sama

yaitu A.

6. Koefisien Manning (n) bernilai 0,035 di setiap alur utama dan alur samping di

sepanjang potongan sungai.

1.4.

Tujuan Penelitian

Tujuan dari penulisan Tugas Akhir ini adalah:

Mengetahui debit maksimum di Bengawan Solo Hulu dengan metode

Muskingum-Cunge.

1.5.

Manfaat Penelitian

Manfaat yang diharapkan dalam penelitian ini adalah :

1. Manfaat teoritis,

Memberikan suatu informasi ilmu ketekniksipilan, terutama hidrologi berupa

model penelusuran banjir dengan menggunakan metode muskingum-cunge di

(17)

commit to user

2. Manfaat praktis,

nilai k dan x bisa digunakan pada pias Sungai Bengawan Solo Hulu. Selain itu

(18)

commit to user

BAB II

TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1

Tinjauan Pustaka

Hujan merupakan komponen yang paling penting pada proses hidrologi, karena

jumlah kedalaman hujan (rainfall depth) dialihragamkan menjadi aliran di sungai baik melalui limpasan permukaan (surface runoff), aliran antara (subsurface flow)

atau sebagai aliran air tanah (groundwater) (Sri Harto Br, 1993). Hujan yang jatuh mempunyai intensitas yang tidak sama di tiap daerah , menurut Soemarto,1987:

Curah hujan atau input ditentukan oleh intensitas, lama waktu (durasi), dan distribusi curah hujan. Input ini masuk ke dalam sistem DAS dimana terjadi

beberapa proses seperti infiltrasi, perkolasi, evapotranspirasi, dan sebagian lain

akan menjadi limpasan dan mengalir sebagai output.

Hujan dibagi menjadi empat variasi model hujan yaitu : hujan seragam, hujan

yang deras ditengah, hujan deras di akhir dan hujan deras di awal (Suprapto M,

2000). Hubungan hujan dengan waktu disebut hyetograf yang diturunkan dari

pola curah hujan DAS tersebut, dimana pola curah hujan tersebut merupakan

grafik hubungan antara curah hujan dan waktu (Chow,1988).

Aliran dari hujan yang tidak meresap ke dalam tanah dapat dibuat suatu hidrograf,

yaitu suatu grafik yang menunjukkan hubungan antara debit sungai (sebagai

ordinat) dan waktu pengamatan (sebagai absis). Bentuk lengkung hidrograf

tergantung dari karakteristik hujan yang mengakibatkan aliran (Subarkah,1978).

Karakteristik hidrologi suatu daerah terutama ditentukan oleh keadaan geologi,

geografi, dan iklim. Faktor iklim yang membentuk ciri – ciri hidrologi suatu

daerah antara lain jumlah dan distribusi presipitasi, pengaruh angin, temperatur,

dan kelembaban terhadap evaporasi (Linsley et al,1989).

Analisa hidrograf tersebut ada beberapa cara, salah satunya Metode Rasional

(19)

commit to user

seragam yang akan memberikan debit maksimum ketika semua bagian dari daerah

aliran memberikan kontribusi ke aliran keluar dari titik yang ditinjau.

Pengembangan dari Metode Rasional dinamakan Metode Time Area merupakan

penelusuran lahan secara hidrologi yang merubah hyetograf hujan efektif menjadi

hidrograf aliran, dengan memperhitungkan distribusi air di permukaan lahan tanpa

memperhitungkan efek dari tampungan di lahan. Metode Time Area didasarkan

pada konsentrasi aliran yang merupakan pengembangan metode rasional, tetapi

dapat dipakai untuk menghitung debit yang berasal dari hujan kompleks

(Ponce,1989).

2.1.1 Hujan

Hujan adalah suatu proses turunnya sejumlah air dari atmosfer ke bumi, air

tersebut mengalami siklus atau proses yang dapat membawa air tersebut kembali

ke atmosfer yang akhirnya turun ke bumi dan begitu seterusnya.

Air yang jatuh ke permukaan tanah, ke atas vegetasi, permukaan air dan saluran –

saluran air berinfiltrasi ke dalam tanah dan menurun (perkolasi) menuju air tanah.

Air mengalir melalui permukaan tanah kemudian ke laut dan selanjutnya

berevaporasi, kemudian kembali ke permukaan bumi sebagai hujan/presipitasi.

Hujan adalah uap yang mengkonsentrasi dan jatuh ke tanah dalam rangkaian

siklus hidrologi. Hujan diukur dalam satuan mm atau cm dengan kurun waktu

tertentu seperti jam, hari, bulan, dan tahun. Durasi hujan yaitu waktu yang

dihitung dari awal kejadian hujan sampai hujan akhir (Ponce,1989). Kedalaman

dan durasi hujan sangat bervariasi, tergantung pada letak geografi, cuaca, iklim,

dan waktu. Pada umumnya hujan yang deras mempunyai durasi yang pendek,

sebaliknya hujan tidak deras mempunyai durasi yang panjang. Dilihat dari

frekuensi hujannya, hujan deras mempunyai frekuensi kejadian lebih jarang

daripada hujan tidak deras. Kedalam hujan per satu satuan waktu dapat dinyatakan

dalam mm/jam yang dinyatakan sebagai intensitas hujan. Hujan kecil mempunyai

intensitas hujan <3 mm/jam, hujan sedang 3-10 mm/jam, dan hujan deras >10

mm/jam (Ponce,1989).

Air hujan merupakan salah satu sumber air yang banyak dimanfaatkan oleh

(20)

commit to user

(1987) mengemukakan bahwa sebagian air hujan yang tiba ke permukaan tanah

akan masuk ke dalam tanah (infiltrasi) dan sebagian lain yang merupakan kelebihan akan mengisi lekuk – lekuk permukaan tanah, kemudian mengalir ke

daerah – daerah yang rendahm amsuk ke sungai – sungai dan akhirnya ke laut.

Tidak semua butir air yang mengalir akan tiba ke laut. Dalam perjalanannya,

sebagian air akan menguap dan kembali ke udara. Sebagian air yang masuk ke

dalam tanah, akan keluar kembali ke sungai – sungai dan disebut aliran intra

(inter flow). Sebagian besar air ini tersimpan sebagai air tanah (ground water). Air yang tersedia di sungai sangat tergantung pada kondisi hidrologi dan

karakteristik daerah pengaliran sungai tersebut, seperti curah hujan, iklim, luas

DAS (Daerah Aliran Sungai), dan jenis tanah. Aliran yang masuk ke dalam sungai

dibedakan sebagai berikut :

1. Aliran langsung, yaitu bagian dari hujan yang langsung masuk ke sungai.

2. Aliran dasar, yaitu hujan yang terinfiltrasi kemudian menuju air tanah, dan

akhirnya mengalir ke sungai.

Ada lima unsur yang perlu ditinjau dalam pembicaraan data hujan (dalam

Soemarto, 1987), yaitu :

1. Intensitas hujan I, adalah laju hujan = tinggi air per satuan waktu, misalnya :

mm/menit, mm/jam, mm/hari.

2. Durasi hujan (duration) t, adalah lamanya curah hujan (durasi dalam menit atau jam.

3. Tinggi hujan h, adalah jumlah atau banyaknya hujan dinyatakan dalam

banyaknya ketebalan air diatas permukaan datar, dalam mm.

4. Frekuensi, adalah frekuensi terjadinya, biasanya dinyatakan dengan waktu

ulang (return period) T, misalnya sekali dalam T tahun. 5. Luas, adalah luas geografis curah hujan.

2.1.1.1 Alat Pengukur Hujan

Banyaknya hujan bisa diukur dengan alat pengukur hujan (rain gauge). Alat pengukur hujan ada dua macam, yaitu :

1. Alat pengukur hujan biasa.

(21)

commit to user

Tujuan pengukuran hujan adalah untuk mengukur banyak dan intensitas hujan

yang turun pada permukaan datar, tanpa memperhatikan adanya infiltrasi,

pengaliran atau penguapan.

2.1.1.2 Limpasan

Limpasan adalah bagian dari hujan, salju atau perpindahan air yang muncul dalam

permukaan yang tak terkontrol, sungai atau tampungan. Limpasan dapat dibagi

menjadi dua kelompok, yaitu :

1. Limpasan permukaan (surface runoff) yaitu bagian limpasan yang mengalir di atas permukaan tanah menuju saluran sungai.

2. Limpasan bawah permukaan (subsurface runoff) dapat dibedakan menjadi dua, yaitu :

a. Aliran antara (interflow) yaitu air yang berinfiltrasi ke dalam tanah dan bergerak secara vertikal melalui horizon – horizon tanah bagian atas

menuju sungai. Gerakannya lebih lambat dibandingkan surface runoff.

b. Aliran bawah tanah/air tanah (baseflow) yaitu air hujan yang berperkolasi ke bawah sungai mencapai muka air tanah.

Limpasan dipengaruhi oleh dua faktor yang sangat berbeda yaitu faktor

metereologi yang berupa karakteristik curah hujan, dan faktor fisik yang

merupakan karakteristik dari daerah tersebut. Faktor karakteristk curah hujan

meliputi :

1. Pola hujan

Limpasan pada multi strom lebih besar dibandingkan single strom.

2. Intensitas curah hujan

Curah hujan yang berintensitas tinggi mempunyai limpasan yang lebih besar

dibanding hujan dengan intensitas rendah untuk durasi hujan yang sama.

(22)

commit to user

Durasi hujan yang lebih lama menghasilkan limpasan yang lebih besar

dibandingkan hujan dengan durasi yang lebih pendek untuk intensitas hujan

yang sama.

4. Distribusi hujan

Apabila hanya sebagian dari suatu DAS yang hujan, limpasan yang terjadi

lebih kecil jika dibandingkan hujan terdistribusi merata ke semua area DAS.

5. Arah gerak hujan

Arah gerak hujan ke hilir akan mempunyai debit puncak yang lebih besar

dibandingkan hujan yang bergerak ke arah hulu.

Faktor fisik meliputi hal – hal sebagai berikut :

1. Tata guna lahan

Pada daerah permukiman, limpasan yang terjadi lebih besar dibandingkan

daerah persawahan atau padang rumput. Hal ini dikarenakan air hujan

langsung melimpas tanpa adanya infiltrasi.

2. Vegetasi

Semakin rapat vegetasi pada suatu daerah, limpasan yang terjadi semakin

kecil dibandingkan dengan daerah yang gersang.

3. Tipe tanah

Kapasitas infiltrasi tergantung dari permeabilitas tanah yang menentukan

kapasitas simpanan dan mempengaruhi kemampuan air untuk masuk ke

lapisan yang lebih dalam.

4. Kemiringan daerah tangkapan

Daerah dengan kemiringan yang curam akan menghasilkan limpasan yang

lebih besar dibandingkan kemiringan yang lebih landai.

5. Bentuk dan luas daerah tangkapan

Bentuk daerah tangkapan mempengaruhi pola limpasan yang terjadi,

sedangkan luas daerah tangkapan mempengaruhi jumlah air hujan yang

masuk. Keduanya berpengaruh pada lamanya waktu yang dibutuhkan air

untik mencapai outlet.

(23)

commit to user

Elevasi muka air adalah elevasi permukaan air pada saluran/ sungai, danau diukur

terhadap datum. Tujuan pengukuran elevasi muka air pada umumnya adalah :

1. Meramalkan aliran pada daerah banjir.

2. Merencanakan dimensi bangunan yang akan dibangun pada sungai atau

didekatnya.

Pengukuran aliran air dapat dilakukan dengan dua cara, yaitu :

a. Pengukuran manul (papan duga).

Alat ini mempunyai skala ukuran (biasanya dalam cm) dipasang pada

lokasi yang dipilih sehingga sebagian dari mistar/ papan duga itu terendam

air.

b. Pengukuran dengan alat pengukur muka air otomatis.

2.1.1.4 Hidrograf Aliran

Hidrograf adalah penyajian grafis antara salah satu unsur aliran dengan waktu. “Discharge hydrograph” adalah hidrograf yang menunjukkan hubungan antara debit dengan waktu yang menggambarkan tanggapan menyeluruh (integral respon) DAS terhadap masukan tertentu. Hidrograf aliran selalu berubah sesuai dengan besaran dan waktu terjadinya masukan. Sedangkan hidrograf yang menunjukkan antara tinggi muka air dengan waktu disebut “ Stage Hydrograph “.

Faktor lain yang mempengaruhi hidrograf antara lain :

1. Penutupan Permukaan Tanah.

Penutupan permukaan tanah adalah sejumlah luasan yang berada pada suatu

permukaan lahan. Penutupan tersebut mempunyai hubungan erat yaitu dengan

semakin banyaknya penutupan maka semakin tinggi pula debit limpasan

permukaan yang terjadi dan waktunya juga akan semakin cepat.

2. Jenis tanah.

Permeabilitas tanah atau sering diartikan sebagai daya serap tanah terhadap

air mempengaruhi limpasan air yang melewati suatu permukaan tanah. Jenis

tanah dengan permeabilitas tinggi mengakibatkan kecilnya limpasan

permukaan tanah, sebaliknya tanh yang mempunyai permeabilitas rendah

(24)

commit to user

3. Kemiringan permukaan tanah

Air mengalir dari tempat tinggi ke tempat yang lebih rendah, dengan dasar itu

secara logika kita dapat mengetahui semakin besar kemiringan suatu daerah

tangkapan makan semakin besar pula limpasan permukaannya.

2.1.2 Banjir

Permasalahan banjir akibat hujan lokal dan rob merupakan permasalahan yang laten.

Banjir adalah merupakan suatu keadaan sungai dimana aliran airnya tidak

tertampung oleh palung sungai, karena debit banjir lebih besar dari kapasitas

sungai yang ada.

Secara umum penyebab terjadinya banjir dapat dikategorikan menjadi dua hal,

yaitu karena sebab – sebab alami dan karena tindakan manusia. Penyebab alami

terjadinya banjir diantaranya :

฀ Curah hujan

Pada musim penghujan curah hujan yang tinggi akan mengakibatkan banjir di

sungai dan bilamana melebihi tebing sungai, maka akan timbul banjir atau

genangan .

฀ Pengaruh fisiografi

Fisiografi atau geografi fisik sungai seperti bentuk, dan kemiringan. Daerah

Aliran Sungai (DAS), kemiringan sungai, Geometri hidrolik (Bentuk penampang

seperti lebar, kedalaman, potongan memanjang, material dasar sungai), lokasi

sungai .

฀ Erosi dan sedimentasi

Erosi di DAS berpengaruh terhadap kapasitas penampungan sungai, karena tanah

yang tererosi pada DAS tersebut apabila terbawa air hujan ke sungai akan

mengendap dan menyebabkan terjadinya sedimentasi. Sedimentasi akan

mengurangi kapasitas sungai dan saat terjadi aliran yang melebihi kapasitas

sungai dapat menyebabkan banjir.

(25)

commit to user

Pengurangan kapasitas aliran banjir pada sungai disebabkan oleh pengendapan

yang berasal dari erosi dasar sungai dan tebing sungai yang berlebihan, karena

tidak adanya vegetasi penutup.

฀ Pengaruh air pasang

Air laut memperlambat aliran sungai ke laut. Pada waktu banjir bersamaan dengan

air pasang yang tinggi, maka tinggi genangan/banjir menjadi lebih tinggi karena

terjadi aliran balik (back water).

Penyebab banjir akibat tindakan manusia diantaranya :

฀ Perubahan kondisi daerah pengaliran sungai

Perubahan DAS seperti penggundulan hutan, usaha pertanian yang kurang tepat,

perluasan kota dan perubahan tata guna lainnya dapat memperburuk masalah

banjir karena berkurangnya daerah resapan air dan sediment yang terbawa ke

sungai akan memperkecil kapasitas sungai yang mengakibatkan meningkatnya

aliran banjir.

฀ Kawasan kumuh

Perumahan kumuh yang terdapat di bantaran sungai merupakan penghambat

aliran sungai.

฀ Sampah

Pembuangan sampah di alur sungai dapat meninggikan muka air banjir karena

menghalangi aliran.

2.1.3 Penelusuran Banjir

Penelusuran banjir (flood routing) merupakan prosedur matematika untuk menentukan dan memprediksi perubahan debit aliran dan ketinggian muka air

akibat banjir pada satu atau beberapa titik pada suatu ruas aliran sungai. Model

penelusuran banjir (flood routing) didasarkan pada persamaan differensial parsial yang memungkinkan untuk menghitung debit aliran dan ketinggian muka air

sebagai fungsi dari ruang dan waktu.

Penelusuran banjir adalah metode peramalan besarnya debit banjir (hidrograf)

(26)

commit to user

yang diperoleh dari hasil pengukuran besarnya debit banjir (hidrograf) dari titik

(ruas) lainnya (Lily Montarcih L, 2010).

Penelusuran banjir merupakan hitungan hidrograf banjir di suatu lokasi sungai

yang didasarkan pada hidrograf banjir di lokasi lain. Hidrograf banjir dapat

ditelusuri lewat palung sungai dengan tujuan : (1) mengetahui hidrograf banjir

suatu lokasi yang tidak mempunyai pengamatan muka air, (2) peramalan banjir

jangka pendek, (3) perhitungan hidrograf banjir hilir berdasar hidrograf hulu.

(Sobriyah dan Sudjarwadi, 2000).

Pada dasarnya penelusuran banjir lewat palung sungai merupakan aliran tidak

lunak (non steady flow), maka dapat dicari penyelesaiannya. Karena pengaruh gesekan tidak dapat diabaikan, maka penyelesaian persamaan dasar alirannya

akan sulit. Dengan menggunakan karakteristik atau finite difference akan dapat diperoleh penyelesaian yang memadai, tetapi masih memerlukan usaha yang

sangat besar.

2.1.3.1 Macam – macam metode penelusuran banjir

Metode penelusuran banjir yang telah dikembangkan menurut tingkat

kerumitannya dibagi menjadi tiga kelompok,yaitu :

a. Metode penelusuran banjir secara hidrologi, meliputi penelusuran waduk

(reservoir routing), penelusuran aliran sungai atau saluran (stream or channel routing).

b.Metode penelusuran berdasarkan persamaan convection diffusion.

c. Metode penelusuran secara hidrolik, yaitu berdasarkan pada persamaan

numerik dan kontinuitas.

2.1.3.1.1 Penelusuran Banjir Melalui Sungai

Sungai merupakan suatu aliran terbuka dengan ukuran geometri berubah dengan

waktu, tergantung pada debit, material dasar dan tebing, serta jumlah dan jenis

sedimen yang terangkut oleh aliran. Pengaruh debit dan angkutan sedimen yang

tidak selalu tetap dapat mengakibatkan transport sedimen berhenti. Hal tersebut

terjadi sepanjang alur sungai, akhirnya erosi dan endapan yang terjadi dapat

(27)

commit to user

kestabilan sistem. Perubahan geometri sungai sangat berpengaruh pada hidrolika

aliran yang akibatnya dapat mengganggu bangunan-bangunan yang ada di sungai.

Penelusuran banjir di sungai dan penerapan metode tertentu untuk menganalisis

banjir, terkadang memiliki hasil yang tidak sama. Hal ini disebabkan karena setiap

metode mempunyai asumsi yang berbeda, namun yang paling penting adalah

dilakukannya kalibrasi untuk setiap metode penelusuran banjir agar metode

tersebut dapat digunakan dengan akurat (Lily Montarcih L, 2010) .

2.2

Dasar Teori

2.2.1 Kepanggahan

Penelitian ini menggunakan metode RAPS (Rescaled Adjusted Partial Sums) dalam menentukan kepanggahan data.

Tabel 2.1 Nilai Kritik Q Untuk Uji Kepanggahan

Jumlah

Data Q/√ (n)

N 90% 95% 99%

10 1,050 1,140 1,29

13 1,065 1,164 1,329 20 1,100 1,220 1,42 30 1,120 1,240 1,46 40 1,130 1,260 1,50 50 1,150 1,270 1,52 100 1,170 1,290 1,55 Sumber: Bambang Triatmodjo,2008

2.2.2 Data hujan

Suripin (2004) menerangkan bahwa data hujan yang diperoleh dari satu stasiun

hujan tertentu merupakan hujan yang terjadi hanya pada satu titik saja (point rainfall), maka hujan titik tersebut harus diubah menjadi hujan daerah. Penelitian ini menggunakan metode Thiessen dalam mengubah hujan titik menjadi hujan

daerah.

(28)

commit to user

Cara ini memberikan proporsi luasan daerah pengaruh pos penekar hujan untuk

mengakomodasi ketidakseragaman jarak. Cara ini cocok untuk daerah datar

dengan luas 500 – 5000 km2 (Sri Harto, 1993).

Gambar 2.1 Pembagian Daerah dengan Cara Poligon Thiessen

Rumus metode Thiessen :

n n n A A A A p A p A p A p A p ... ... 3 2 1 3 3 2 2 1 1 2.1 n nW p W p W p W p

p 1 1 2 2 3 3 ...

2.2

dengan :

p = curah hujan rata – rata (mm),

p1,p2,p3,pn = curah hujan masing – masing stasiun (mm),

W1,W2,W3,Wn = faktor bobot masing – masing stasiun yaitu % daerah

pengaruh terhadap luas keseluruhan.

2.2.4 Pengukuran Dispersi

Dispersi atau variasi adalah besarnya derajat atau besarnya varian disekitar nilai

rata–ratanya. Pengukuran dispersi dilakukan terhadap data untuk mengetahui

karakteristik data.

Adapun cara pengukuran dispersi antara lain :

(29)

commit to user

Umumnya ukuran dispersi yang paling banyak digunakan adalah deviasi standart

(standart deviation) dan varian (variance). Varian digunakan untuk menghitung nilai kuadrat dari deviasi standar. Apabila penyebaran data sangat besar terhadap

nilai rata-rata maka nilai standar devioasi akan besar, tetapi apabila penyebaran

data sangat kecil terhadap nilai rata-rata maka standar deviasi akan kecil.

Rumus : 5 , 0 2 1 1 n X x S n i i 2.3 dengan :

S = standar deviasi, xi = nilai varian,

X = curah hujan rata – rata, n = jumlah data.

2.2.4.2Koefisien Skewness (Cs)

Kemencengan (skewness) adalah suatu nilai yang menunjukkan derajat ketidaksimetrisan (asymetry) dari suatu bentuk distribusi. Umumnya ukuran kemencengan dinyatakan dengan besarnya koefisien kemencengan (coefficient of skewness). Rumus : n i i X x S n n n Cs 1 3 3 2 1 2.4 dengan:

Cs = koefisien kemencengan,

Xi = nilai varian,

X= nilai rata-rata, n = jumlah data,

S = standar deviasi.

(30)

commit to user

Koefisien variasi (variation coefficient) adalah nilai perbandingan antara deviasi standar dengan nilai rata-rata hitung dari suatu distribusi.

Rumus :

X S

Cv 2.5

dengan :

Cv = koefisien variasi,

S = standar deviasi,

X= nilai rata-rata.

2.2.4.4Koefisien Kurtosis (Ck)

Pengukuran kurtosis dimaksudkan untuk mengukur keruncingan dari bentuk

kurva distribusi, yang umumnya dibandingkan dengan distribusi normal.

Rumus :

n

i

i X

x S n n n

n Ck

1

4 4

2

3 2 1

2.6

dengan :

Ck = koefisien kurtosis,

Xi = nilai varian,

X= nilai rata-rata, n = jumlah data,

S = standar deviasi.

2.2.5 Pemilihan Jenis Sebaran

Bambang Triadmodjo (2008) memberikan penentuaan jenis analisis distribusi

[image:30.595.108.516.135.539.2]

berdasarkan parameter statistik sebagai berikut .

Tabel 2.2 Parameter Statistik Untuk Menentukan Jenis Distribusi

(31)

commit to user 1 Normal Cs = 0

Ck = 3

2 Log Normal Cv3+3Cv Cs (ln x) = 0 Cv8+6Cv6+ 15Cv4+16Cv2+3 Ck (ln x) = 3 3 Gumbell Cs = 1,14

Ck = 5,4

4 Log Pearson Tipe III Jika semua syarat tidak terpenuhi

2.2.5.1Distribusi Normal

Dalam analisis hidrologi distribusi normal banyak digunakan untuk menganalisis frekuensi curah hujan, analisis statistik dari distribusi curah hujan tahunan, debit

rata-rata tahunan. Distribusi normal atau kurva normal disebut pula Distribusi

Gauss.

Rumus :

S k X

Xt rt . 2.7

dengan :

Xt = curah hujan rencana,

Xrt = curah hujan rata-rata,

k = koefisien distribusi normal,

S = standar deviasi.

2.2.5.2Distribusi Log Normal

Distribusi Log Normal, merupakan hasil transformasi dari Distribusi Normal,

yaitu dengan mengubah varian X menjadi nilai logaritmik varian X.

Rumus :

S k LogX

LogXt rt .

t LogX t

X 10 2.8

dengan :

Xt = curah hujan rencana,

Xrt = curah hujan rata-rata,

k = koefisien distribusi normal,

S = standar deviasi.

(32)

commit to user

Distribusi Gumbell digunakan untuk analisis data maksimum, misalnya untuk

analisis frekuensi banjir.

Rumus :

S S

Y Y X X

n n rt

t .

2.9

dengan :

Xt = curah hujan rencana,

Xrt = curah hujan rata-rata,

S = standar deviasi,

Sn = standar deviasi ke –n,

Y = koefisien distribusi Gumbell,

Yn = koefisien distribusi Gumbell ke –n.

2.2.5.4Distribusi Log Pearson Tipe III

Distribusi Log-Pearson tipe III banyak digunakan dalam analisis hidrologi,

terutama dalam analisis data maksimum (banjir) dan minimum (debit minimum)

dengan nilai extrim. Bentuk Distribusi Log-Pearson tipe III merupakan hasil

transformasi dari distribusi Pearson tipe III dengan menggantikan varian menjadi

nilai logaritmik.

Rumus :

S k LogX

LogXt rt .

t LogX t

X 10 2.10

dimana :

Xt = curah hujan rencana,

Xrt = curah hujan rata-rata,

k = koefisien distribusi log pearson,

S = standar deviasi.

2.2.6 Koefisien Limpasan (C)

Koefisien limpasan (C) merupakan suatu bilangan yang merupakan nilai

(33)

commit to user

oleh berbagai faktor seperti laju infiltrasi, keadaan tata guna lahan atau tutupan

lahan, intensitas hujan, dan kemampuan tanah menahan air (Asdak, 2004).

c =

I f

I 2.11

2.2.7 Pengujian Kecocokan Sebaran (Uji Chi Kuadrat)

Pengujian chi kuadrat dilakukan dengan menggunakan parameter χ2, dengan

rumus sebagai berikut :

K

i Ef

Of Ef

1

2

2 2.12

dengan : χ2

= harga Chi - kuadrat terhitung,

K = banyaknya kelas,

Of = frekuensi terbaca pada setiap kelas,

Ef = frekuensi yang diharapkan untuk setiap kelas. Nilai χ2 hasil perhitungan dibandingkan dengan nilai χ2

kritis (telah ditetapkan).

2.2.8 Debit Banjir Rencana

Cara untuk menghitung debit banjir rencana adalah sebagai berikut :

2.2.8.1Hidrograf Satuan Sintetik (HSS) Nakayasu

Hidrograf satuan sintetik merupakan hidrograf yang didasarkan pada karakteristik

fisik dari DAS. Metode hidrograf satuan sintetik dalam penelitian ini

menggunakan metode Nakayasu yang merupakan hidrograf satuan sintetik yang

sering digunakan pada sungai di pulau Jawa.

Hidrograf satuan sintetik Nakayasu dikembangkan berdasarkan beberapa sungai

di Jepang (Soemarto, 1987). Namun dengan karakteristik sungai yang hampir

sama antara Jepang dan Indonesia, maka hidrograf satuan sintetik ini banyak

diterapkan di Indonesia.

(34)

commit to user ) . 3 , 0 .( 6 , 3 . 3 , 0 T T R A Q p o p 2.13 dengan : p

Q = debit puncak banjir (m3/dtk),

A = luas daerah maksimum (km2),

o

R = hujan satuan,

p

T = waktu mencapai debit puncak,

3 , 0

T = waktu yang diperlukan oleh penurunan debit,dari puncak sampai 30%

dari debit puncak.

Untuk menentukan Tp dan T0,3digunakan pendekatan rumus sebagai berikut : p

T = tg + 0,8 tr 2.14

3 , 0

T = α tg 2.15

tr = 0,5 tg sampai 1 tg 2.16

Sedangkan tg adalah time lag yaitu waktu antara hujan sampai debit puncak banjir (jam) yang dihitung dengan ketentuan :

Sungai dengan panjang alur L > 15 km :

tg = 0,4 + 0,058 L 2.17

Sungai dengan panjang alur L < 15 km :

tg = 0,21 L0,7 2.18

α adalah parameter hidrograf dengan ketentuan : α = 2 => pada daerah pengaliran biasa

(35)
[image:35.595.114.503.83.529.2]

commit to user

Gambar 2.2 Hidrograf Satuan Sintetik Nakayasu

Menurut Bambang Triatmodjo (2008) bentuk hidrograf satuan Nakayasu dapat

digambar dengan mengikuti persamaan sebagai berikut :

1. Pada waktu naik : 0 < t < Tp

p p t Q T t Q 24 , 0 2.19

2. Pada kurva turun (decreasing limb) a. Selang nilai : 0 ≤ t ≤ (Tp + T0,3)

3 , 0 3 , 0 . ) ( T T t p t p Q Q 2.20

b. Selang nilai : (Tp + T0,3) ≤ t ≤ (Tp + T0,3 + 1,5 T0,3)

3 , 0 3 , 0 . 5 , 1 5 , 0 )

( .0,3

T T T t p t p Q Q 2.21

c. Selang nilai t > (Tp + T0,3 + 1,5 T0,3)

3 , 0 3 , 0 . 0 , 2 5 , 1 )

( .0,3

(36)

commit to user

Hidrograf banjir dihitung dengan persamaan sebagai berikut :

n

i

i n

k UiP

Q

1

) 1 (

. 2.23

2.2.9 Metode Muskingum

Beberapa metode penelusuran banjir mengacu prinsip hidrologi yang didasarkan

pada persamaan kontinuitas. Metode ini mengabaikan pengaruh dinamik pada

suatu gelombang banjir. Oleh karena itu metode penelusuran banjir yang

didasarkan prinsip hidrolika lebih baik hasilnya. Analisis Cunge (1969)

menunjukkan bahwa penelusuran Muskingum yang berdasarkan prinsip hidrologi,

merupakan suatu teknik penelusuran tampungan yang bisa ditingkatkan untuk

melibatkan pengaruh dinamik sampai tingkat tertentu dengan pemilihan

parameter– parameter yang tepat.

Penelusuran aliran sungai yang telah dikembangkan oleh metode Muskingum

menghasilkan keluaran yang cukup baik. Namun dalam menentukan parameter

penelusurannya, diperlukan data hidrograf masukan dan keluaran. Cunge

mengembangkan metode tersebut dalam menentukan parameter penelusurannya

dan hanya dibutuhkan satu data hidrograf aliran di hulu. Dengan melakukan

penelusuran model Muskingum - Cunge non linier, dan menetapkan nilai

parameter penelusuran yang berubah menurut besarnya debit masukan, akan

dihasilkan (1) debit maksimum keluaran dengan nilai parameter penelusuran yang

konstan dan (2) untuk penelusuran non linier, kenaikan hidrografnya nampak

lebih terjal dibandingkan penurunan yang lebih landai.

2.2.10 Pengembangan Metode Muskingum

2.2.10.1 Metode Muskingum - Cunge (Ponce,1989)

Cunge (1969) menganalisa metode Muskingum dan mengembangkannya,

sehingga muncul metode Muskingum – Cunge. Dengan metode ini hanya dengan

berdasar hidrograf bacaan hidrograf di hulu akan diperoleh hidrograf banjir di

hilir.

Menurut Lily Montarcih (2010) penghitungan koefisien Muskingum-Cunge

(37)

commit to user k = c x 2.24 x = 2 1 x c So B Q . . . 1 2.25 C1 = ) 1 ( 2 2 x K t x K t C2 = ) 1 ( 2 2 x K t x K t C3 = ) 1 ( 2 ) 1 ( 2 x K t K t x C4 = ) 1 ( 2 2 x K t K t 2.26

Sehingga diperoleh persamaan Muskingum-Cunge :

1 1 n j

Q = C1Qnj C2Qnj 1 C3Qjn1 C4QL 2.27

Karena tidak ada lateral flow, maka QL = 0. Persamaan Muskingum-Cunge

menjadi :

1 1 n j

[image:37.595.110.497.79.498.2]

Q = C1Qnj C2Qjn 1 C3Qjn1 2.28

Tabel 2.3 Koefisien Kekasaran Manning

(38)

commit to user Bersih,lurus,tingkat penuh,tak ada kolam

0.025 0.030 0.033 Bersih,lurus,tingkat penuh,tak ada

kolam,banyak batu dan gulma 0.030 0.035 0.040 Bersih,berlekuk,beberapa kolam dan beting

0.033 0.040 0.045 Bersih,berlekuk,beberapa kolam dan

beting,banyak batu dan gulma 0.015 0.040 0.045 Bersih,berlekuk,beberapa kolam dan

beting,banyak batu dan gulma,tingkat lebih rendah,lebih banyak lereng,tidak efektif dan bagian - bagian

0.040 0.048 0.055

Bersih,berlekuk,beberapa kolam dan beting,

gulma dan banyak batu 0.045 0.050 0.060

Sungai lembam,kolam – kolam dalam 0.050 0.070 0.080 Sungai sangat bergulma,kolam dalam,atau

jalur banjir dengan hutan lebat tumbuhan bawah

0.075 0.100 0.150

(Sumber : Chow,1959)

Untuk menghitung debit inflow digunakan rumus dari Data Sungai Bengawan

Solo yaitu :

Q = A (TMA-ho)b 2.29

dengan :

Q = debit inflow,

A = 28,452

TMA = tinggi muka air,

ho = -1,195

b = 2

(39)

commit to user

BAB III

METODOLOGI PENELITIAN

3.1.

Lokasi Penelitian

Lokasi penelitian adalah Daerah Aliran Sungai (DAS) Bengawan Solo Hulu,

[image:39.595.121.459.250.482.2]

terletak di daerah Wonogiri.

Gambar 3.1 Peta Lokasi Penelitian

3.2.

Sumber Data

Data yang digunakan dalam penelitian ini adalah data sekunder. Data sekunder

yang digunakan adalah :

1. Peta DAS Bengawan Solo Hulu skala 1:25000 dari FKIP UNS Jurusan

Pendidikan Geografi.

2. Data curah hujan pada tahun 1999- 2011 yang diperoleh dari Perusahaan

Umum Jasa Tirta 1 Kabupaten Wonogiri.

3. Data curah hujan pada tahun 1999 – 2011 yang diperoleh dari Dinas Pengairan,

Energi dan Sumber Daya Mineral Kabupaten Wonogiri.

3.3.

Jenis Penelitian

Metode Penelitian yang dipakai adalah metode deskriptif kuantitatif. Sedangkan

metode analisisnya adalah dengan menggunakan metode Muskingum Cunge.

(40)

commit to user

hidrograf di hulu akan didapatkan hidrograf banjir di hilir, dengan batasan aliran

masuk dan aliran keluar.

3.4

Prosedur Penelitian

Tahapan – tahapan yang dilakukan dalam penelitian ini adalah sebagai berikut :

1. Tahap persiapan

Tahap dimaksudkan untuk mempermudah jalannya penelitian, seperti

pengumpulan data, analisis, dan penyusunan laporan.

Tahap persiapan meliputi:

a. Studi Pustaka

Studi pustaka dimaksudkan untuk mendapatkan arahan dan wawasan sehingga

mempermudah dalam pengumpulan data, analisis data maupun dalam

penyusunan hasil penelitian.

b. Observasi Lapangan

Observasi lapangan dilakukan untuk mengetahui dimana lokasi atau tempat

dilakukannya pengumpulan data yang diperlukan dalam penyusuan penelitian.

2. Pengumpulan Data

Pengumpulan data dilakukan dengan menggunakan data yang dimiliki oleh

Kantor Balai Besar Penelitian Sungai Bengawan Solo yang mengelola

permasalahan yang berhubungan dengan Sungai Bengawan Solo tersebut.

3.4.1 Mengolah Data

Setelah mendapatkan data yang diperlukan, langkah selanjutnya adalah

pengolahan data tersebut. Pada tahap pengolahan atau menganalisis data

dilakukan dengan menghitung data yang ada dengan rumus yang sesuai.

Hasil dari suatu pengolahan data digunakan kembali sebagai data untuk

menganalisis yang lainnya dan berlanjut seterusnya sampai mendapatkan hasil

akhir tentang penelusuran banjir tahunan di DAS Bengawan Solo Hulu. Adapun

urutan dalam analisis data dapat dilihat pada diagram alir pada Gambar 3.2

(41)

commit to user

3.4.2 Penyusunan Laporan

Seluruh data atau informasi yang telah terkumpul kemudian diolah atau dianalisis

dan disusun untuk mendapatkan hasil akhir yang dapat mengetahui prediksi banjir

tahunan yang mungkin terjadi di DAS Bengawan Solo Hulu.

Langkah – langkah dalam penelitian ini adalah sebagai berikut :

Ya MULAI

Data :

-Peta DAS Bengawan Solo Hulu -Peta stasiun hujan Sub DAS Bengawan Solo Hulu 3

-Data hujan harian stasiun hujan di Sub DAS Bengawan Solo Hulu 3

Penentuan data hujan harian maksimum tahunan

Perhitungan metode RAPS

Pemanggahan dengan metode RAPS

B Tidak

Uji Metode RAPS

(42)

commit to user

B

Perhitungan koefisien Thiessen

Transformasi hujan harian menjadi hujan daerah Thiessen

Perhitungan parameter statistik S,Cv,Ck,dan Cs

Pemilihan jenis distribusi hujan berdasarkan nilai S,Cs,Ck, dan Cv : - Gumbell - Log Normal - Normal - Log Pearson III

Uji kecocokan distribusi data hujan (Uji Chi kuadrat)

Perhitungan hujan kala ulang P2,P5, dan P10 sesuai jenis distribusi yang dihasilkan

Perhitungan unit HSS Nakayasu untuk Q2,Q5, dan Q10

C

Perhitungan data fisik DAS (luas dan tata guna lahan) dan panjang sungai Perhitungan koefisien pengaliran (C)

(43)
[image:43.595.171.448.117.556.2]

commit to user

Gambar 3.2. Diagram Alir Penelitian C

Pembagian 9 pias model Sungai Bengawan Solo Hulu

Perhitungan parameter sungai yang mempunyai karakteristik sama dengan Sungai

Bengawan Solo Hulu

Memasukkan Q2,Q5, dan Q10 sebagai data

debit masukan pada perhitungan muskingum-cunge

Perhitungan penelusuran banjir dengan metode muskingum-cunge di tiap pias

Persamaan model pada debit maksimum di tiap pias

(44)

commit to user

BAB IV

ANALISIS DAN PEMBAHASAN

4.1.

Umum

Sungai Bengawan Solo Hulu terletak di Wonogiri. Panjang sungai Bengawan

Solo Hulu kurang lebih 27 km, dan luas catchment areanya kurang lebih 200 km2. Sungai Bengawan Solo Hulu merupakan sungai utama yang bermuara ke dalam

Waduk Wonogiri. Letak Sungai Bengawan Solo Hulu yang yang relatif agak

tinggi dari daerah sekitarnya sering mengakibatkan banjir, sehingga ini

merupakan hal yang menarik untuk dikaji.

4.2.Analisis

4.2.1.Data

Data yang digunakan dalam penelitian ini berupa data curah hujan dari tahun 1999 – 2011 sebagai data awal. Data curah hujan diperoleh dari Perusahaan Umum Jasa Tirta I dan Dinas Pengairan, Energi dan Sumber Daya Sumber Mineral Kabupaten

Wonogiri.

Penelitian ini menggunakan data hujan di stasiun hujan Baturetno dan Watugede.

Pemilihan kedua stasiun tersebut sehubungan dengan ketersediaan data di dua

stasiun tersebut.

4.2.2. Penyiapan Seri Data Curah Hujan

Pengolahan data curah hujan dalam penelitian ini menggunakan data curah hujan

harian maksimum tahun 1999 – 2011 di stasiun curah hujan Baturetno dan

Watugede. Pengolahan data diawali dengan cara memilih data hujan

termaksimum tiap tahun (data curah hujan harian maksimum). Data curah hujan

(45)

commit to user

Tabel 4.1. Curah Hujan Harian Maksimum Stasiun Hujan Baturetno dan

Watugede

No Tahun Stasiun Hujan (mm) Baturetno Watugede

1 1999 78 143

2 2000 73 143

3 2001 53 109

4 2002 96 67

5 2003 110 50

6 2004 94 55

7 2005 56 85

8 2006 123 87

9 2007 163 87

10 2008 69 68

11 2009 73 98

12 2010 87 97

13 2011 67 97

4.2.3. Uji Kepanggahan Data Hujan

[image:45.595.109.511.124.733.2]

Uji kepanggahan data menggunakan uji RAPS (Rescaled Adjusted Partial Sums). Pengujian data dilakukan pada data curah hujan tahunan.

Tabel 4.2 Data Hujan Tahunan DAS Bengawan Solo Hulu

Tahun Hujan Tahunan (mm/tahun)

Baturetno Watugede

1999 2159 2667

2000 1625 2477

2001 1437 2010

2002 430 647

2003 1042 347

2004 825 868

2005 671 1061

2006 1235 1867

2007 500 530

2008 927 1198

2009 845 2407

2010 2014 1911

(46)

commit to user

Uji kepanggahan yang dilakukan memberikan hasil bahwa kedua stasiun, yaitu

Baturetno dan Watugede mempunyai data yang panggah dan bisa digunakan

untuk analisis. Contoh perhitungan metode RAPS di stasiun Watugede tahun

1999 adalah :

Intensitas hujan (i) tahun 1999 = 2667

SK = (intensitas hujan stasiun Watugede

tahun 1999 – rerata intensitas

hujan selama 13 tahun)

= 2667/ 1670

= 997

Kum SK = 997

SK** = (Kum SK/Standar deviasi)

= (997/997,3609)

= 1,000

Kum SK** = 1,000

Absolut = 1,000

Q abs maks = nilai absolut maksimal dari tahun

1999 sampai tahun 2011

= 3,036

Q/√ (n) = 3,036 /√ 13

(47)
[image:47.595.113.491.105.532.2]

commit to user

Tabel 4.3 Uji Kepanggahan dengan Metode RAPS Sta Watugede

Tahun i Sk Kum Sk Sk** Kum** Absolut

1999 2667,000 997,000 997,000 1,000 1,000 1,000 2000 2477,000 807,000 1804,000 0,809 1,809 1,809 2001 2010,000 340,000 2144,000 0,341 2,150 2,150

2002 647,000

-1023,000 1121,000 -1,026 1,124 1,124

2003 347,000

-1323,000 -202,000 -1,327 -0,203 0,203 2004 868,000 -802,000 -1004,000 -0,804 -1,007 1,007 2005 1061,000 -609,000 -1613,000 -0,611 -1,617 1,617 2006 1867,000 197,000 -1416,000 0,198 -1,420 1,420

2007 530,000

-1140,000 -2556,000 -1,143 -2,563 2,563 2008 1198,000 -472,000 -3028,000 -0,473 -3,036 3,036 2009 2407,000 737,000 -2291,000 0,739 -2,297 2,297 2010 1911,000 241,000 -2050,000 0,242 -2,055 2,055 2011 3720,000 2050,000 0,000 2,055 0,000 0,000 Jumlah 21710,000

Rerata 1670,000

SD 997,361

N 13

Q Abs

3,036

<

Nilai

Kriktik Keterangan Maks

Abs

[image:47.595.114.488.574.754.2]

(Q/√n) 0,842 1,164 Panggah

Tabel 4.4 Uji Kepanggahan dengan Metode RAPS Sta Baturetno

Tahun i Sk* Kum Sk* Sk** Kum Absolut

(48)

commit to user

2008 927 -250,692 -925,923 -0,451 -1,667 1,667 2009 845 -332,692 -1258,615 -0,599 -2,266 2,266 2010 2014 836,308 -422,308 1,506 -0,760 0,760 2011 1600 422,308 0,000 0,760 0,000 0,000 Jumlah 15310,000

Rerata 1177,692

SD 555,481

N 13

Q Abs

3,039

<

Nilai

Kriktik Keterangan Maks

Abs

(Q/√n) 0,842 1,164 Panggah

[image:48.595.111.498.80.477.2]

Dari hasil perhitungan diatas kemudian dicari nilai kritik pada tabel 2.1.

Tabel 4.5 Nilai Kritik Q untuk Uji Kepanggahan

n 90 % 95 % 99 %

13 1,065 1,164 1,329

Karena 0,842 < titik kritik panggah maka data hujan di stasiun Watugede dan

Baturetno panggah

4.2.4.Poligon Thiessen

Transformasi hujan titik menjadi hujan daerah dengan menggunakan poligon

Thiessen. Metode ini sering dipakai di Indonesia terkait dengan ketersediaan data

pada stasiun baturetno dan Watugede dan metode ini memperhatikan jarak antar

stasiun hujan.

Data curah hujan masing – masing stasiun diubah menjadi hujan daerah dengan

menggunakan metode poligon Thiessen. Posisi dari tiap stasiun hujan diplot ke

dalam peta DAS Bengawan Solo Hulu kemudian plot garis yang menghubungkan

(49)

commit to user

4.2.4.1Perhitungan Koefisien Thiessen

Hasil pengeplotan poligon Thiessen DAS Bengawan Solo Hulu dengan stasiun

hujan Baturetno dan Watugede menghasilkan koefisien Thiessen untuk tiap

stasiun hujan. Perhitungan koefisien Thiessen dilakukan dengan membandingkan

antara luas poligon Thiessen untuk tiap stasiun hujan dan luas total DAS

Bengawan Solo Hulu. Contoh perhitungan koefisien Thiessen untuk poligon

Baturetno adalah :

Luas poligon stasiun hujan Baturetno = 110,752 km2.

Luas DAS Bengawan Solo Hulu = 205,529 km2.

Koefisien Thiessen Baturetno = 110,752 / 205,529

[image:49.595.199.424.74.220.2]

= 0,539.

Tabel 4.6 Koefisien Thiessen Tiap Stasiun Hujan

Stasiun hujan Luas Koef Thiessen

Baturetno 110,752 0,539

Watugede 94,777 0,461

Jumlah 205,529 1

4.2.5.Hujan daerah

Koefisien Thiessen digunakan sebagai pengali dalam perhitungan hujan daerah.

Hujan daerah mewakili hujan yang terjadi di seluruh DAS Bengawan Solo Hulu. Gambar 4.1 Poligon Thiessen DAS Bengawan Solo Hulu

(50)
[image:50.595.116.514.111.501.2]

commit to user

Tabel 4.7 Hujan Daerah Tiap Tahun

No Tahun Baturetno Watugede Hujan daerah

0,539 0,461

1 1999 78 143 107,965

2 2000 73 143 105,270

3 2001 53 109 78,816

4 2002 96 67 82,631

5 2003 110 50 82,340

6 2004 94 55 76,021

7 2005 56 85 69,369

8 2006 123 87 106,404

9 2007 163 87 127,964

10 2008 69 68 68,539

11 2009 73 98 84,525

12 2010 87 97 91,610

13 2011 67 97 80,830

Contoh perhitungan hujan daerah pada tahun 1999 adalah :

Hujan titik tahun 1999 di stasiun hujan Baturetno = 78

Hujan titik tahun 1999 di stasiun hujan Watugede = 143

Hujan daerah tahun 1999 = (78 x 0,539) + (143 x

0,461)

= 107,965

4.2.6.Perhitungan Parameter Statistik

Perhitungan parameter dilakukan terhadap hujan daerah yang dihasilkan pada

tabel 4.7. Parameter yang dilakukan adalah perhitungan dispersi data yaitu deviasi

standar (S), koefisien Skewness (Cs), koefisien variasi (Cv), dan koefisien

kurtosis(Ck). Perhitungan dilakukan berdasarkan Rumus 2.3 – 2.6.

Hasil perhitungan digunakan dalam menentukan jenis distribusi data sesuai nilai

(51)

commit to user

Tabel 4.8 Perhitungan Parameter Statistik

No Tahun R24 Max X - Xbar (X - Xbar) 2

(X - Xbar) 3

(X - Xbar) 4

1 1999 67,540 -1,298 1,685 -2,186 2,838 2 2000 93,951 25,113 630,667 15837,980 397740,401 3 2001 64,263 -4,575 20,930 -95,753 438,062 4 2002 54,049 -14,789 218,712 -3234,519 47835,046 5 2003 82,340 13,502 182,306 2461,511 33235,507 6 2004 50,666 -18,172 330,219 -6000,710 109044,448 7 2005 39,185 -29,653 879,296 -26073,692 773161,187

8 2006 78,283 9,445 89,209 842,590 7958,331 9 2007 127,964 59,126 3495,893 206698,437 12221267,674 10 2008 37,191 -31,647 1001,528 -31695,271 1003057,814 11 2009 60,553 -8,285 68,640 -568,677 4711,443 12 2010 76,518 7,680 58,984 452,998 3479,063 13 2011 62,390 -6,448 41,576 -268,077 1728,540 Jumlah 894,893 0,000 7019,644 158354,631 14603660,354

Dari Tabel 4.8 didapat nilai :

Rata-rata (Xbar ) = 68,84

Standar deviasi (S) = 24,19

Koefisien varian (Cv) = 0,35

Koefisien skewness (Cs) = 1,10

Koefisien kurtosis (Ck) = 1,96

Tabel 4.9 Uji Validitas

No Tahun ln R24 Max X - Xbar (X - Xbar) 2

(X - Xbar) 3

(X - Xbar) 4

1 1990 4,213 0,035 0,001 0,000 0,000 2 1991 4,543 0,365 0,133 0,049 0,018 3 1992 4,163 -0,015 0,000 0,000 0,000 4 1993 3,990 -0,188 0,036 -0,007 0,001 5 1994 4,411 0,233 0,054 0,013 0,003 6 1995 3,925 -0,253 0,064 -0,016 0,004 7 1996 3,669 -0,509 0,260 -0,132 0,067

(52)

commit to user

12 2001 4,338 0,160 0,025 0,004 0,001 13 2002 4,133 -0,045 0,002 0,000 0,000 Jumlah 54,315 0,000 1,384 0,043 0,401

Dari Tabel 4.9 didapat nilai :

Rata-rata (Xbar ) = 4,18

Standar deviasi (S) = 0,34

Koefisien varian (Cv) = 0,08

Koefisien skewness (Cs) = 0,11

Koefisien kurtosis (Ck) = 0,23

Dari perhitungan parameter statistik berdasarkan Tabel 4.8 dan tabel 4.9

kemudian disesuaikan dengan syarat pada tabel 2.2 maka jenis distribusi data

[image:52.595.111.511.168.541.2]

yang digunakan adalah Log Pearson tipe III.

Tabel 4.10 Pemilihan Jenis Distribusi

Jenis Distribusi

Syarat Hasil Keputusan

Normal Cs = 0 Ck = 3

Cs = 1,10 Ck = 1,96

Tidak

Log Normal

Cv3+3Cv Cs (ln x) = 0 Cv8+6Cv6+ 15Cv4+16Cv2+3 Ck (ln x) = 3

Cs = 0,11 Ck = 0,23

Tidak

Gumbell Cs = 1,14 Ck = 5,4

Cs = 1,10 Ck = 1,96

Tidak

Log Pearson Tipe III

Jika semua syarat tidak terpenuhi Cs = 0,11 Ck = 0,23

Ya

4.2.7.Uji Chi Kuadrat

Sebelum melakukan uji chi kuadrat diperlukan perhitungan probabilitas yang

(53)
[image:53.595.114.515.95.647.2]

commit to user

Tabel 4.11 Perhitungan Probabilitas

No

X Sn

Log Xi G Pr P (x) [Sn (x) - P (x)]

(mm) (%)

1 37,182 7,143 1,570 -1,656 95,296 4,704 2,439

2 39,197 14,286 1,593 -1,500 103,698 -3,698 17,984

3 50,653 21,429 1,705 -0,745 76,337 23,663 2,235

4 54,037 28,571 1,733 -0,555 69,437 30,563 1,992

5 60,549 35,714 1,782 -0,220 57,294 42,706 6,992

6 62,389 42,857 1,795 -0,132 54,101 45,899 3,042

7 64,274 50,000 1,808 -0,044 50,895 49,105 0,895

8 67,559 57,143 1,830 0,103 45,739 54,261 2,881

9 76,523 64,286 1,884 0,470 27,996 72,004 7,718

10 78,270 71,429 1,894 0,536 11,733 88,267 16,838

11 82,332 78,571 1,916 0,685 10,813 89,187 10,616

12 93,963 85,714 1,973 1,074 8,409 91,591 5,877

13 127,954 92,857 2,107 1,984 2,793 97,207 4,350

Xr 1,815

SD 0,147

Cs 0,109

Uji Chi kuadrat dilakukan untuk jenis distribusi data Log Pearson dengan tingkat

signifikansi yang dipakai adalah 5 %. Perhitungan yang dilakukan dengan Uji Chi

Kuadrat adalah :

(54)

commit to user

[image:54.595.114.512.177.492.2]

Derajat kebebasan = 2 ∆ kritis = 5,991 Frekuensi harapan = 2,6

Tabel 4.12 Perhitungan Chi Kuadrat (Metode Log Pearson Tipe III)

No Probability (P)

Expected Frequency

(Ef)

Ovserved Frequency

(Of)

Ef - Of (Ef - Of)2

1 0,00 < P 20,00 2,6 1 1,6 2,56

2 20,00 < P 40,00 2,6 2 0,6 0,36

3 40,00 < P 60,00 2,6 4 -1,4 1,96

4 60,00 < P 80,00 2,6 1 1,6 2,56

5

80,00 < P

100,00 2,6 4 -1,4 1,96

Jumlah 12 9,40

Uji Chi Kuadrat dari tabel 4.12 menghasilkan x2 = 9,400 dan nilai x2 kritis =

5,991, maka x2> x2 kritis sehingga Uji Chi Kuadrat diterima.

Hasil perhitungan Uji Chi Kuadrat menunjukkan bahwa data panggah. Data

dinyatakan panggah karena panggah di perhitungan dan bisa digunakan dalam

analisis.

4.2.8.Perhitungan Koefisien Pengaliran (C)

Data yang diolah adalah luas tata guna lahan DAS Tirtomoyo yang merupakan

DAS terdekat dengan DAS Bengawan Solo Hulu berdasarkan peta bakosurtanal

(55)

commit to user

4.2.9.Perhitungan Hujan Kala Ulang

Perhitungan parameter statistik data menghasilkan bahwa distribusi hujan yang

dipakai adalah Log Pearson Tipe III. Data masukan dalam perhitungan ini adalah

[image:55.595.112.509.204.552.2]

hujan daerah DAS Bengawan Solo Hulu.

Tabel 4.13. Perhitungan Nilai ln X

Tahun R24 Max ln X ln X-ln Xi (ln X-ln Xi) 2

(ln X-ln Xi)3 1999 67,540 4,213 0,035 0,001 0,000 2000 93,951 4,543 0,365 0,133 0,048

Gambar

Tabel 2.2 Parameter Statistik Untuk Menentukan Jenis Distribusi
Gambar 2.2 Hidrograf Satuan Sintetik Nakayasu
Tabel 2.3 Koefisien Kekasaran Manning
Gambar 3.1 Peta Lokasi Penelitian
+7

Referensi

Dokumen terkait

Hasil penelitian menunjukkan bahwa: (1) Faktor yang mendasari produsen tahu menggunakan kedelai lokal adalah kandungan pati dan harga kedelai Sedangkan faktor

Faktor lainnya adalah pengetahuan keluarga tentang ASI eksklusif. Keluarga yang memiliki pengetahuan tentang ASI eksklusif baik berjumlah 22 orang dengan

Validasi output model penilaian risiko kebakaran di Kota Kendari dilakukan melalui wawancara dengan pakar dan melakukan pencocokkan antara hasil penilaian risiko dari model

How does the query engine handle large parallel data flows for complex analytical queries and at the same time provide quick direct access to data for operational workloads. What

Antar Muka Unit Program (Uji Coba) Status Aplikasi Skenario Pengujian Hasil yang Diharapkan 10 Halaman Monitoring Progress Pengajuan Pencairan Anggaran pada

Dalam melaksanakan Tugas Sarjana sampai dengan selesainya laporan ini, banyak pihak yang telah membantu, maka pada kesempatan ini penulis mengucapkan terima kasih kepada :..

saja. Pencarian dengan cara Group Search seperti pada Gbr.7 menggunakan kolom-kolom yang sering digunakan sebagai acuan pengelompokan, misalnya kolom kurikulum, kolom

atribut dimensi yang perlu diprioritaskan dan dioptimalkan oleh PT.Asuransi MPM yaitu penampilan karyawan klaim dengan tingakt pri- orotas 98%, keadaan lingkungan kantor menjadi