• Tidak ada hasil yang ditemukan

BAB VII TRANSFORMASI LAPLACE

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB VII TRANSFORMASI LAPLACE"

Copied!
13
0
0

Teks penuh

(1)

BAB VII

TRANSFORMASI LAPLACE Tujuan Pembelajaran

Setelah mempelajari bab ini, diharapkan mahasiswa memiliki kemampuan untuk membuat bentuk-bentuk Transformasi Laplace dari berbagai jenis fungsi. Demikian juga dengan invers Transformasi Laplace yang dibuatnya. Selanjutnya diharapkan agar mahasiswa mampu merubah PD ke dalam bentuk persamaan yang berisikan unsur-unsur Transformasi Laplace, dan menyelesaikannya, sesuai dengan syarat batas yang diketahui.

A. Pendahuluan

Transformasi Laplace (TL) adalah suatu metode untuk mnyelesaikan persamaan differensial (PD) dan masalah nilai awal serta syarat batas. Prosedur yang ditempuh terdiri dari tiga langkah, yaitu:

1. Merubah PD menjadi persamaan aljabar sederhana (persamaan bantu), dengan memanfaatkan tabel TL.

2. Persamaan bantu diselesaikan secara aljabar sederhana.

3. Mentransformasikan kembali persamaan bantu, hasil penyelesaian (2) ke dalam bentuk awal (sesuai tabel TL), sebagai solusi yang diminta.

B. Transformasi Laplace dari Fungsi f(t)

Suatu fungsi f(t) yang terdefinisi pada t 0, bila di kali dengan e-st dan diintegrasikan terhadap t, pada batas 0 < t < ~, hasilnya berupa fungsi s atau F(s), yang dinyatakan sebagai Transformasi Laplace (TL). Ditulis L{f(t)} = F (s) atau: L 0 st dt e . f(t) F(s) f(t)

(2)

dt e a st a . s a 0 2 1 st e s 2 1 s a s e a s dt e t a s t a s 1 1

]

0 ) ( ) ( 0

sebaliknya, transformasi invers dari F(s) ditulis L 1 F(s) menghasilkan f(t) atau:

f(t) L 1 F(s)

Catatan: Fungsi awal ditulis dengan huruf kecil dan transformasinya dengan huruf besar. Contoh: Y(s) adalah transformasi dari y(t) dan sebagainya. Sebaliknya L1 F(s) y(t)sebagai invers dari TL.

Contoh pembuatan TL : 1. f(t) = a L{f(t)} = L(a) = = 0 st e s a = s a

artinya : adalah TL dari f(t) = a Inversnya adalah : L a s a 1 2. f(t) = t L{f(t)} = L (t) 0 .e dt t st artinya 12 s adalah TL dari f(t) = t inversnya adalah L t s2 1 1 analog untuk f(t) = tn L n n!1 s n t sehingga L n tn n s ! 1 1 1 1

(3)

3. f(t) = eat L a e e dt st at at . 0 artinya a s 1 adalah TL dari f(t) = eat inversnya adalah L at e a s 1 1 L e at a s 1 1 4. f(t) = cos ωt L 2 2 0 . . . cos cos s s dt e t t st dan L t s s . . cos 2 2 1 5. f(t) = sin ωt L 0 2 2 . . sin . sin s dt e t t st dan L t s2 2 sin . 1 6. f(t) = cos h ωt L 2 2 0 . . cosh . cosh s s dt e t t st dan L t s s . . cosh 2 2 1 7. f(t) = sin h ωt L 0 2 2 . . sinh . sinh s dt e t t st dan L t s2 2 sinh. . 1

(4)

a s a s e L e L at at 1 1 2 1 2 1 2 1 bt at e e b a b s L a s L b a ) ( 1 1 1 ) ( 1 1 1 )} ( { )} ( { )} ( { ) ( ). ( . ) ( ) ( ) ( ) ( 0 0 0 0 t h cL t g bL t f aL dt e t h c dt e t g b dt e t f a dt e t ch t bg t af st st st st

Nilai-nilai tersebut di tabelkan, demikian juga nilai-nilai dari bentuk fungsi lainnya. Operasi Transformasi Laplace bersifat linier, untuk setiap f(t), g(t), h(t) ataupun konstanta sembarang.

Sehingga dapat ditulis :

L{a f(t)+b g(t)+c h(t)}= a L{f(t)}+b L{g(t)}+c L{h(t)} Bukti : L{a f(t)+b g(t)+c h(t)}

Sifat ini mempermudah pencarian bentuk-bentuk Transformasi Laplace dari jumlah beberapa fungsi t.

Contoh :

1. Tentukan TL dari cosh a.t

Jawab : Bentuk eksponen dari cosh a.t = 2 at at e e Jadi : L(cosh a.t) L(cosh a.t) 2 2 a s s Inversnya adalah L at a s s . . cosh 2 2 1 2. Bila ) )( ( 1 ) ( b s a s s F tentukan L-1 {F(s)} Jawab: L ) )( ( 1 1 b s a s = L a b s a s b 1 1 ) ( 1 1

(5)

2 2 2 2 2 2 s i s s s i s ) ( ( ) 0 ( sL f t f 3. L(eiωt) ) )( ( 1 i s i s i s i s

atau : L(eiωt) = L cos .t i.sin .t

= L(cos .t) + i L(sin .t) = 2 2 2 2 2 s i s s

C. Transformasi Laplace dari Turunan Fungsi

Sifat linieritas TL dapat dimanfaatkan untuk merubah operasi kalkulus menjadi operasi aljabar yang sederhana dalam bentuk transformasi. Secara kasar deferensiasi suatu fungsi f(t) hanya berhubungan dengan perkalian transformasi F(s) dengan s. Karena integrasi merupakan invers dari deferensiasi, maka operasi sangat berhubungan dengan pembagian transformasi oleh s.

1.Transformasi Turunan Fungsi

Jika f(t) kontinu pada t ≥ 0, untuk setiap γ dan M, dan memiliki turunan f1 (t) yang kontinu pada daerah hasil t ≥ 0, maka TL dari turunan f1(t) ada bila s ≥ γ dan : L(f1) = s L(f) – f (0) Bukti : L 0 0 0 1 1 ). ( ) ( . ) (f f t e stdt e stf t s f t e stdt jadi L(f1) = s L{f (t)} – f (0)

Perluasan dari TL turunan pertama ini digunakan untuk TL turunan yang lebih tinggi.

L(f ``) = s L (f ’ ) – f (0)

= s (s L (f) – f (0)) – (f ’ ) 0

(6)

L(f ’’’) = s L (f ‘’ ) – f ‘(0)

= s (s2 L (f) – sf (0) – f ’ (0)) – f ’’ (0) = s3L (f ) – s2 f (0) – sf’ (0) – f ’’ (0)

L (f(n)) = snL (f ) – sn-1 f (0) – sn-2 f ’(0) – sn-3 f ’’(0) – ... – f (n-1) (0) Melalui TL turunan fungsi ini, juga dapat dicari bentuk-bentuk TL suatu fungsi.

Contoh: 1. Tentukan L (t2) = ... Jawab : f(t) = t2 f `(t) = 2t f ``(t) = 2 f(0) = 0 ; f `(0) ; f ``(0) = 2 jadi : L(f ``) s2 L(f)-sf(0)-f `(0) 2 s2 s L (f) – s.0 – 0 L (f) = 23 s → L (t 2 ) = 23 s 2. Tentukan L(t3) = ... Jawab : f(t) = t3; f `(t) = 3t2; f ``(t) = 6t; f ```(t) = 6 f(0) = 0; f `(0) = 0; f ``(0) = 0; f ```(0) = 6 jadi : L (f ```) = s3L(f) – s2f(0) – sf `(0) – f ``(0) 6 s3 s L( ) 0 .0 0 2 s s f L 4 6 ) ( s f → L (t3) = 34! s 3. Tentukan L (cos ωt) = ....

Jawab : f(t) = cos ωt; f `(t) = -ω sin ωt; f ``(t) = -ω2

cos ωt f(0) = 1; f `(0) = 0; f ``(0) = -ω2;

f ``(t) = -ω.f(t)

L (f ``) = s2 L (f) – s f(0) – f `(0) = -ω2. L (f) s2. L (f) – s1 – 0 = -ω2 L (f)

(7)

2 2 ) . (cos s s t 2 2 ) ( s s f (s2+ω2) L (f) – s = 0 L L dan L-1 ( 4) sin . 2 2 2 t s s 4. Tentukan L (sin2t) = .... Jawab : f(t) = sin2t f(0) = 0

f `(t) = 2 sint cost = sin 2t f `(0) = 0

L (f `) = L (sin2t) s L (f)-f(0 ) = 4 2 2 s L ) 4 ( 2 ) ( 2 s s f L ) 4 ( 2 ) (sin2 2 s s t dan L-1 ( 4) sin . 2 2 2 t s s 5. Tentukan L (t.sin ωt) = .... Jawab: f (t) = t sin ωt f (0) = 0 f `(t) = sin ωt + t. ω.cos ωt f `(0) = 0 f ``(t) = 2 ω cos ωt-ω2.t sin ωt = 2 ω cos ωt – ω2.f(t) L (f ``) = 2ω (cos ωt) – ω2 L (f) S2L (f ) – sf (0) – f ‘(0) = 2 2 2 2 s s L (f ) (s2 2) L (f) = 22 2 s s L (f) = 2 2 2 2 s s L (t sin ωt) = 2 2 2 2 s s

(8)

dan L-1 ( ) sin . 2 2 2 2 2 t s s

D. Penggunaan TL untuk Penyelesaian Persamaan Differensial

Sesuai dengan tujuan semula, yaitu pembahasan TL digunakan untuk membantu penyelesaian persamaan differensial, maka selanjutnya akan di kemukakan beberapa contoh untuk penyelesaian Persamaan Differensial tersebut.

Contoh :

1. Selesaikan y et dt

dy

, bila y (0) = 1

Jawab : Persamaan ini dapat ditulis dalam bentuk TL yaitu L(Y)= Y, sehingga dapat ditulis :

s.Y – f(0) + Y = L (et) s.Y – 1 + Y = ) 1 ( 1 s (s +1) Y = 1 ) 1 ( 1 s (s +1) Y = ) 1 (s s Y = 1 ) 1 )( 1 ( s2 s s s s y(t) = L-1 (Y) = L-1 ) 1 (s2 s = cosh t atau : y(t) = ( ) 2 1 t t e

e , coba selesaikan dengan metode penyelesaian PD ordo satu.

2. Selesaikan y``+ 4y`+3y = 0, bila y(0) = 3 dan y`(0)=1 Jawab : Persamaan dapat ditulis dalam bentuk TL = y S2Y – sf(0) – f `(0) + 4(sY-f(0)) + 3Y = 0

(9)

t t e e 5 2 3 2 2 2 2 2 2 ) 0 `( ) 0 ( . 1 2 ) 0 `( ) 0 ( ) 2 ( ) 0 `( ) 0 ( s y y s Y s s Y y sy Y s t L Y f sf Y s ) 1 ( 2 1 1 ) 0 `( 1 ) 0 ( 2 2 2 2 s s s y s s y Y t t B t A t y t t y t y t y t t t y t y t y 2 sin cos ) ( 2 sin ) 2 ) 0 `( ( cos ) 0 ( ) ( sin 2 2 sin ) 0 `( cos ) 0 ( ) ( S2Y – 3s – 1 + 4sY – 12 +3Y = 0 (s2 + 4s + 3) Y = 3S + 13 ) 1 ( 5 ) 3 ( 2 ) 1 )( 3 ( 13 3 s s Y s s s Y didapat : y(t) = -2 L-1 5 3 1 s 1 1 s

coba selesaikan dengan metode penyelesaian PD ordo dua.

3. Selesaikan y``+y = 2t untuk

2 1 4 y dan 2 2 4 ` y

Jawab : ambil TL L(Y) = Y Persamaan dapat ditulis

y(t) = y (0) L-1 (0) 1 ' 2 y s s L-1 1 1 2 s + 2 L -1 1 1 1 2 2 s s Solusi umum

(10)

) 1 ( 4 e 5t 1). 2 1 ) ( 4 t y t B A B A 4 2 2 2 1 2 2 1 2 1 2). 2 2 ) `( 4 t y t A B B A t B t A t y 2 2 2 2 1 2 2 1 2 2 2 cos sin ) `( di dapat : A = 1 ; B = -1

jadi jawaban PD adalah y(t) = cos t – sin t + 2t 4. Dik : sirkuit elektrik t = 0; i = 0

Dit : i untuk t > 0 Jawab :

PD yang dapat dibuat: 2 10i 40

dt di atau 20 5i dt di

Gunakan L(I)= I, persamaan dapat ditulis : s. I + i(0) + I = L (20) (s+5) I + 0 = 20 5 4 5 4 ) 5 ( 20 s s s I i(t) = L e t s 5 1 4 4 5 4 5 4

jadi kuat arus pada saat t > 0 adalah i(t) = 4(1-e-5t)

Soal-soal :

1. Carilah Transformasi Laplace dari fungsi berikut: a. (t2+1)2 b. e-at+b c. sin(at+b) d. cos(ωt+2) e. cos2 ωt f. sin2 ωt g. cos2 t h. sin2t i. sinh2t

(11)

j. cosh2t k. t.et l. t.cost m. t.e-st n. t.sin ωt o. eatsin ωt

2. Diketahui F(s), seperti di bawah ini, carilah transformasi inver f(t)=L-1(F)

a. 9 1 2 s b. 4 1 2 2 s s c. 4 4 2 s s d. 2 3 s c s b s a e. ) 2 )( 1 ( 1 s s f. 16 ) 1 ( 4 2 s s g. s s 3 1 2 h. 16 ) 1 ( 4 2 s s i. 2 1 2 s s j. ) 2 )( 1 )( 1 ( 3 4 s s s s k. ) 2 ( 1 s s l. ) 9 ( 10 2 s s m. ) 1 ( 4 2 s s n. s s2 1 o. ) 1 ( 1 2 s s

(12)

3. Dengan menggunakan TL, selesaikanlah ! a. Y``+ 9y = 0 ; bila y(0) = 0 dan y`(0) = 2 b. 4y`` + π2y = 0 ; bila y(0) = 2 dan y`(0) = 0 c. y`` + 25y = t ; bila y(0) = 1 dan y1(0) = 0,04 d. y`` - 2y` - 3y = 0 ; bila y(0) = 1 dan y`(0) = 7 e. y`` + 2y` - 8y = 0 ; bila y(0) = 1 dan y`(0) = 8

4.Tentukan ketinggian maximum peluru yang ditembakkan vertikal ke atas dengan kecepatan awal 1960 cm/dt , g = 980 m/dt2. Selesaikan dengan TL!

5.Tali tergantung pada pasak sepanang 8m dan 12m pada tiap sisinya. Bila massa tali m kg dan g = 10 m/dt2. Hitunglah waktu agar tali lepas dari pasak. Gunakan TL!

Tabel 7.1 Transformasi Laplace

(13)

1 1 1 s 2 a as 3 t 1 2 s 4 t2 2! 3 s 5 tn ! n 1 s n 6 eat 1(s a) 7 e-at 1(s a) 8 Cos ωt ( 2 2) s s 9 Sin ωt ( 2 2) s 10 Cosh at 2 2) a s s 11 Sinh at ( 2 2) a s a 12 t.eat 2 ) ( 1 a s 13 tn-1eat n a s n ) ( )! 1 ( 14 eat-ebt (a b)(s a)(s b) 15 aeat - bebt (a b)s(s a)(s b) 16 eat.sin ωt 2 2 ) (s a 17 eat.cos ωt 2 2 ) ( ) ( a s a s 18 t.sin ωt 2 2 2 ) ( . 2 s s 19 cos at – cos bt ) )( ( ) ( 2 2 2 2 2 2 b s a s s a b

20 sin at. sinh at 2 ( 4 4 4) 2

a s s a

Gambar

Tabel 7.1   Transformasi Laplace

Referensi

Dokumen terkait

Tipe wilayah pegunungan dengan tanah kurang subur (kritis) yaitu Kecamatan Parang, Kecamatan Lembeyan, Kecamatan Poncol bagian Timur, dan Keca- matan Kawedanan Bagian Selatan..

Simpulan bisa diambil penulis berdasarkan dari konsep pengambilan keputusan dari Lovell adalah keputusan Jepang yang melakukan investasi dalam proyek PLTU Batang tidak bisa

Dari hasil penelitian ini dapat dibuktikan bahwa mahasiswa dan mahasiswi yang kuliah di Unpad kampus Jatinangor meskipun bahasa pertamanya bukan bahasa Sunda mulai menggunakan

Analisis sidik raga m pengaruh olah tanah terhadap perubahan sifat fisika berat volume tanah lahan kering berpasir dapat dilihat pada Tabel La mp iran 8. Rata-rata

Secara umum, kegiatan Praktik Pengalaman Lapangan (PPL) di SMK Muhammadiyah 1 Bantul telah berjalan lancar sesuai rencana meskipun ada beberapa yang sedikit tidak

Hal ini sesuai dengan pendapat Tarigan (1993 : 2) yang mengatakan bahwa kosakata merupakan suatu elemen penting yang harus dikuasai dalam menunjang ketemapilan berbahasa, karena

Berikut ini adalah hasil penelitian variasi musiman dan kuantitas produksi serasah dari jenis dominan hutan pegunungan rendah di Taman Nasional Gunung Halimun.. Tujuan penelitian

Tanlain, dkk dalam Djamarah mengemukakan bahwa sesungguhnya guru yang bartanggung jawab memiliki beberapa sifat yaitu : menerima dan mematuhi norma, nilai-nilai