• Tidak ada hasil yang ditemukan

Program Studi Manajemen FEB UNIKA Soegijapranata

N/A
N/A
Protected

Academic year: 2019

Membagikan "Program Studi Manajemen FEB UNIKA Soegijapranata"

Copied!
23
0
0

Teks penuh

(1)

LAMPIRAN

Lampiran 1 : Daftar Perusahaan Sampel Penelitian

No.

Kode

Saham

Nama Perusahaan

1.

ADES

PT Akasha Wira International Tbk

2.

AISA

PT Tiga Pilar Sejahtera Food Tbk

3.

ALTO

PT Tri Banyan Tirta Tbk

4.

CEKA

PT Wilmar Cahaya Indonesia Tbk

5.

DLTA

PT Delta Djakarta Tbk

6.

DVLA

PT Darya - Varia Laboratoria Tbk

7.

GGRM

PT Gudang Garam Tbk

8.

HMSP

PT Hanjaya Mandala Sampoerna Tbk

9.

ICBP

PT Indofood CBP Sukses Makmur Tbk

10.

INAF

PT Indofarma Tbk

11.

INDF

PT Indofood Sukses Makmur Tbk

12.

KAEF

PT Kimia Farma Tbk

13.

KICI

PT Kedaung Indah Can Tbk

14.

KLBF

PT Kalbe Farma Tbk

15.

LMPI

PT Langgeng Makmur Industry Tbk

16.

MBTO

PT Martina Berto Tbk

17.

MERK

PT Merck Tbk

18.

MLBI

PT Multi Bintang Indonesia Tbk

19.

MRAT

PT Mustika Ratu Tbk

20.

MYOR

PT Mayora Indah Tbk

21.

PSDN

PT Prasidha Aneka Niaga Tbk

22.

PYFA

PT Pyridam Farma Tbk

23.

ROTI

PT Nippon Indosari Corpindo Tbk

24.

SIDO

PT Industri Jamu dan Farmasi Sido Muncul Tbk

25.

SKLT

PT Sekar Laut Tbk

26.

SQBB

PT Taisho Pharmaceutical Indonesia Tbk

27.

STTP

PT Siantar Top Tbk

(2)

Lampiran 2 : Hasil Perhitungan FCF

Free Cash Flow

(dalam jutaan rupiah)

Perusahaan

2013

2014

2015

GGRM

-3.205.151

-3.458.317

277.398

HMSP

9.533.249

9.610.194

-21.821

ICBP

900.053

2.305.723

2.419.754

INAF

105.009

92.679

111.331

INDF

-2.819.354

3.987.189

-446.891

KAEF

164.754

183.732

26.582

KICI

2.069

789

-5.171

KLBF

-102.358

1.537.376

1.526.677

LMPI

-36.961

5.993

3.415

(3)

Lampiran 3 : Hasil Perhitungan DER

Debt to Equity Ratio

(4)

Lampiran 4 : Hasil Perhitungan DPR

Dividend Payout Ratio

(5)

Lampiran 5 : Tabel Statistik Deskriptif

Descriptive Statistics

Year N Minimum Maximum Mean Std. Deviation

2013 Fcf 32 -3458317 9610194 298809,00 2093838,644

der 32 ,1308 2,1229 ,783816 ,4728446

dpr 32 -1,0328125 1,4492754 ,288188025 ,4602828940

Valid N (listwise) 32

2014 Fcf 32 -183051 5336816 463852,78 1215878,364

der 32 ,0743 3,0286 ,838125 ,6236904

dpr 32 ,0000000 1,5378245 ,358246576 ,4057478552

Valid N (listwise) 32

2015 Fcf 32 -3205151 9533249 630516,66 2014899,239

der 32 ,0761 2,2585 ,808423 ,5373134

dpr 32 ,0000000 3,9788875 ,432411318 ,7361770598

(6)

Lampiran 6 : Hasil Pengujian Normalitas Residual

Model I

Test for normality of residual -

Null hypothesis: error is normally distributed Test statistic: x²= 16.7477

with p-value = 0.00023082

Model II

Test for normality of residual -

Null hypothesis: error is normally distributed Test statistic: x²= 80.8765

with p-value = 2.74085e-18

Model III

Test for normality of residual -

Null hypothesis: error is normally distributed Test statistic: x²= 111.196

with p-value = 7.14645e-25

Model IV

Test for normality of residual -

Null hypothesis: error is normally distributed Test statistic: x²= 110.588

(7)

Lampiran 7 : Hasil Pengujian Multikolinearitas

Model I

Variables Entered/Removedb

Model

Variables

Entered

Variables

Removed Method

1 fcfa . Enter

a. All requested variables entered.

b. Dependent Variable: der

Model Summaryb

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate

1 ,256a ,066 ,056 ,5274504

a. Predictors: (Constant), fcf

b. Dependent Variable: der

ANOVAb

Model

Sum of

Squares df

Mean

Square F Sig.

1 Regression 1,836 1 1,836 6,599 ,012a

Residual 26,151 94 ,278

Total 27,987 95

a. Predictors: (Constant), fcf

(8)

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

Collinearity

Statistics

B Std. Error Beta Tolerance VIF

1 (Constant) ,774 ,056 13,926 ,000

fcf 7,703E-8 ,000 ,256 2,569 ,012 1,000 1,000

a. Dependent Variable: der

Coefficient Correlationsa

Model fcf

1 Correlations Fcf 1,000

Covariances Fcf 8,993E-16

a. Dependent Variable: der

Collinearity Diagnosticsa

Model Dimension Eigenvalue Condition Index

Variance Proportions

(Constant) fcf

1 1 1,250 1,000 ,37 ,37

2 ,750 1,292 ,63 ,63

a. Dependent Variable: der

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,507941 1,514656 ,810121 ,1390100 96

Residual -,7221876 2,2180753 ,0000000 ,5246670 96

Std. Predicted Value -2,174 5,068 ,000 1,000 96

Std. Residual -1,369 4,205 ,000 ,995 96

(9)

Model II

Removed Method

1 dera . Enter

a. All requested variables entered.

b. Dependent Variable: dpr

Model Summaryb

a. Predictors: (Constant), der

b. Dependent Variable: dpr

ANOVAb

a. Predictors: (Constant), der

b. Dependent Variable: dpr

Coefficientsa

(10)

Coefficient Correlationsa

Model der

1 Correlations der 1,000

Covariances der ,011

a. Dependent Variable: dpr

Collinearity Diagnosticsa

Model Dimension Eigenvalue Condition Index

Variance Proportions

(Constant) der

1 1 1,832 1,000 ,08 ,08

2 ,168 3,304 ,92 ,92

a. Dependent Variable: dpr

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,328041822 ,454812318 ,359615306 ,0232903076 96

Residual -1,3657529354 3,6388018131 ,0000000000 ,5501508135 96

Std. Predicted Value -1,356 4,087 ,000 1,000 96

Std. Residual -2,469 6,579 ,000 ,995 96

(11)

Model III

Removed Method

1 fcfa . Enter

a. All requested variables entered.

b. Dependent Variable: dpr

Model Summaryb

a. Predictors: (Constant), fcf

b. Dependent Variable: dpr

ANOVAb

a. Predictors: (Constant), fcf

b. Dependent Variable: dpr

Coefficientsa

(12)

Coefficient Correlationsa

Model fcf

1 Correlations fcf 1,000

Covariances fcf 9,405E-16

a. Dependent Variable: dpr

Collinearity Diagnosticsa

Model Dimension Eigenvalue Condition Index

Variance Proportions

(Constant) fcf

1 1 1,250 1,000 ,37 ,37

2 ,750 1,292 ,63 ,63

a. Dependent Variable: dpr

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,090590931 ,986845851 ,359615306 ,1237573002 96

Residual -1,3601531982 3,6430120468 ,0000000000 ,5365561356 96

Std. Predicted Value -2,174 5,068 ,000 1,000 96

Std. Residual -2,522 6,754 ,000 ,995 96

(13)

Model IV

Removed Method

1 der, fcfa . Enter

a. All requested variables entered.

b. Dependent Variable: dpr

Model Summaryb

a. Predictors: (Constant), der, fcf

b. Dependent Variable: dpr

ANOVAb

a. Predictors: (Constant), der, fcf

b. Dependent Variable: dpr

Coefficientsa

(14)

Coefficient Correlationsa

Model der fcf

1 Correlations der 1,000 -,256

fcf -,256 1,000

Covariances der ,011 -8,661E-10

fcf -8,661E-10 1,017E-15

a. Dependent Variable: dpr

Collinearity Diagnosticsa

Model Dimension Eigenvalue

Condition

Index

Variance Proportions

(Constant) fcf der

1 1 2,009 1,000 ,06 ,07 ,06

2 ,830 1,556 ,04 ,89 ,01

3 ,162 3,525 ,89 ,05 ,92

a. Dependent Variable: dpr

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,086454622 ,993675590 ,359615306 ,1240624056 96

Residual -1,3698550463 3,6359109879 ,0000000000 ,5364856713 96

Std. Predicted Value -2,202 5,111 ,000 1,000 96

Std. Residual -2,526 6,706 ,000 ,989 96

(15)

Lampiran 8 : Hasil Pengujian Heteroskedastisitas

Model I

White's test for heteroskedasticity OLS, using observations 1-96

Dependent variable: û² Unadjusted R-squared = 0.024025

coeffcient std. error t-ratio p-value

const 0.258946 0.0559682 4.627 1.20e-05 ***

fcf 7.96963e-08 5.57865e-08 1.429 0.1565

fcf¹ 0.00000 0.00000 -0.9329 0.3533

Test statistic: TR2 = 2.306370, with p-value = P(Chi-square > 2.306370) =

0.315630

White's test for heteroskedasticity -

Null hypothesis: heteroskedasticity not present Test statistic: LM = 2.30637

with p-value = P(x²> 2.30637) = 0.31563

Model II

White's test for heteroskedasticity OLS, using observations 1-96

Dependent variable: û² Unadjusted R-squared = 0.016792

coeffcient std. error t-ratio p-value

const 0.707762 0.362086 1.955 0.0536 *

der -0.904895 0.719568 -1.258 0.2117

der² 0.341647 0.298487 1.145 0.2553

Test statistic: TR²= 1.612030, with p-value = P(x² > 1.612030) = 0.446634

White's test for heteroskedasticity -

Null hypothesis: heteroskedasticity not present Test statistic: LM = 1.61203

(16)

Model III

White's test for heteroskedasticity OLS, using observations 1-96

Dependent variable: û² Unadjusted R-squared = 0.002568

coeffcient std.error t-ratio p-value

const 0.301869 0.145989 2.068 0.0414 **

fcf -3.81592e-08 1.45516e-07 -0.2622 0.7937

fcf² 0.00000 0.00000 -0.002489 0.9980

Test statistic: TR² = 0.246504,

with p-value = P(Chi-square(2) > 0.246504) = 0.884041

White's test for heteroskedasticity -

Null hypothesis: heteroskedasticity not present Test statistic: LM = 0.246504

with p-value = P(x²> 0.246504) = 0.884041

Model IV

White's test for heteroskedasticity OLS, using observations 1-96

Dependent variable: û²Unadjusted R-squared = 0.023445

coeffcient std. error t-ratio p-value

const 0.740534 0.371325 1.994 0.0491 **

fcf -3.17483e-08 2.55537e-07 0.9014

der -1.03583 0.747245 -1.386 0.1691

fcf² 0.00000 0.00000 0.2545 0.7997

fcf*der -3.05087e-08 1.77072e-07 -0.1723 0.8636

der² 0.421092 0.325330 1.294 0.1989

Test statistic: TR²= 2.250748, with p-value = P(Chi-square(5) >2.250748) = 0.813473

White's test for heteroskedasticity -

(17)

Lampiran 9 : Hasil Pengujian Autokorelasi

Removed Method

1 fcfa . Enter

a. All requested variables entered.

b. Dependent Variable: der

Model Summaryb

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate Durbin-Watson

1 ,256a ,066 ,056 ,5274504 2,508

a. Predictors: (Constant), fcf

b. Dependent Variable: der

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 1,836 1 1,836 6,599 ,012a

Residual 26,151 94 ,278

Total 27,987 95

a. Predictors: (Constant), fcf

b. Dependent Variable: der

Coefficientsa

(18)

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,507941 1,514656 ,810121 ,1390100 96

Residual -,7221876 2,2180753 ,0000000 ,5246670 96

Std. Predicted Value -2,174 5,068 ,000 1,000 96

Std. Residual -1,369 4,205 ,000 ,995 96

a. Dependent Variable: der

Model II

Variables Entered/Removedb

Model

Variables

Entered

Variables

Removed Method

1 dera . Enter

a. All requested variables entered.

b. Dependent Variable: dpr

Model Summaryb

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate Durbin-Watson

1 ,042a ,002 -,009 ,5530694059 2,131

a. Predictors: (Constant), der

b. Dependent Variable: dpr

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression ,052 1 ,052 ,168 ,682a

Residual 28,753 94 ,306

Total 28,805 95

(19)

Coefficientsa

a. Dependent Variable: dpr

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,328041822 ,454812318 ,359615306 ,0232903076 96

Residual -1,3657529354 3,6388018131 ,0000000000 ,5501508135 96

Std. Predicted Value -1,356 4,087 ,000 1,000 96

Std. Residual -2,469 6,579 ,000 ,995 96

a. Dependent Variable: dpr

Model III

Removed Method

1 fcfa . Enter

a. All requested variables entered.

b. Dependent Variable: dpr

Model Summaryb

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate Durbin-Watson

1 ,225a ,051 ,040 ,5394026072 2,104

a. Predictors: (Constant), fcf

(20)

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 1,455 1 1,455 5,001 ,028a

Residual 27,350 94 ,291

Total 28,805 95

a. Predictors: (Constant), fcf

b. Dependent Variable: dpr

Coefficientsa

a. Dependent Variable: dpr

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,090590931 ,986845851 ,359615306 ,1237573002 96

Residual -1,3601531982 3,6430120468 ,0000000000 ,5365561356 96

Std. Predicted Value -2,174 5,068 ,000 1,000 96

Std. Residual -2,522 6,754 ,000 ,995 96

a. Dependent Variable: dpr

Model IV

Removed Method

(21)

Model Summaryb

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate Durbin-Watson

1 ,225a ,051 ,030 ,5422236492 2,103

a. Predictors: (Constant), der, fcf

b. Dependent Variable: dpr

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 1,462 2 ,731 2,487 ,089a

Residual 27,343 93 ,294

Total 28,805 95

a. Predictors: (Constant), der, fcf

b. Dependent Variable: dpr

Coefficientsa

a. Dependent Variable: dpr

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N

Predicted Value ,086454622 ,993675590 ,359615306 ,1240624056 96

Residual -1,3698550463 3,6359109879 ,0000000000 ,5364856713 96

Std. Predicted Value -2,202 5,111 ,000 1,000 96

Std. Residual -2,526 6,706 ,000 ,989 96

(22)

Lampiran 10 : Hasil Pengujian Hipotesis

Model I

Model 1: OLS, using observations 1-96 Dependent variable: der

Coeffcient Std. Error t-ratio p-value

Const 0.774115 0.0556345 13.9143 0.0000

Fcf 7.70487e-08 3.00044e-08 2.5679 0.0118

Mean dependent var 0.809896 S.D. dependent var 0.543047 Sum squared resid 26.17903 S.E. of regression 0.527731 R2 0.065552 Adjusted R2 0.055611

F(1; 94) 6.594152 P-value(F) 0.011808

Model II

Model 2: OLS, using observations 1-96 Dependent variable: dpr

Coeffcient Std. Error t-ratio p-value

Const 0.327017 0.101586 3.2191 0.0018

der 0.0395670 0.104348 0.3792 0.7054

Mean dependent var 0.359063 S.D. dependent var 0.549815 Sum squared resid 28.67436 S.E. of regression 0.552310 R2 0.001527 Adjusted R2 -0.009095

(23)

Model III

Model 3: OLS, using observations 1-96 Dependent variable: dpr

Coeffcient Std. Error t-ratio p-value

Const 0.327209 0.0567743 5.7633 0.0000

Fcf 6.85927e-08 3.06192e-08 2.2402 0.0274

Mean dependent var 0.359063 S.D. dependent var 0.549815 Sum squared resid 27.26272 S.E. of regression 0.538543 R2 0.050682 Adjusted R2 0.040583

F(1; 94) 5.018448 P-value(F) 0.027435

Model IV

Model 4: OLS, using observations 1-96 Dependent variable: dpr

Coeffcient Std. Error t-ratio p-value

Const 0.342775 0.0998220 3.4339 0.0009

Fcf 7.01421e-08 3.18386e-08 2.2031 0.0301

Der -0.0201090 0.105799 -0.1901 0.8497

Mean dependent var 0.359063 S.D. dependent var 0.549815 Sum squared resid 27.25213 S.E. of regression 0.541326 R2 0.051051 Adjusted R2 0.030643

Referensi

Dokumen terkait

Kalori yang terkandung dalam makanan yang dikonsumsi Operator tidak dapat memenuhi kebutuhan energi yang dikeluarkan, hal ini dapat dilihat pada tabel 5.2., hasil

Data yang digunakan dalam penelitian ini adalah data karakteristik kualitas limbah cair gabungan yang dihasilkan setelah proses produksi gula yang diperoleh dari

As the interview data indicated, the teacher faced some problems in developing lesson plans based on 2013 Curriculum, including the difficulties to state the

Yasin & Rekan untuk melaksanakan pekerjaan perhitungan kelebihan pembayaran Pajak Penghasilan pasal 21 PNS Pemerintah Kabupaten Langkat Tahun 2001 dan 2002,

Oleh sebab itu penulis mengangkat judul ini untuk membuat aplikasi yang lebih akurat dalam mendeteksi bola berwarna dengan menggunakan ruang warna HSV untuk

12) penyiapan bahan pemberian bimbingan teknis dan supervisi penerapan kebijakan di bidang perlindungan dan pemberdayaan perempuan korban kekerasan di dalam rumah

Berdasarkan hasil pengujian yang dilakukan, dapat dilihat bahwa ketika moulded case circuit breaker berada pada kondisi open, close, dan trip maka sistem akan menampilkan indikator

Agar semua kondisi yang tidak diinginkan tidak terjadi, seperti hilangnya dokumen kerja yang belum disimpan ketika menyalakan komputer, rusaknya komponen komputer yang digunakan