LAMPIRAN
Lampiran 1 : Daftar Perusahaan Sampel Penelitian
No.
Kode
Saham
Nama Perusahaan
1.
ADES
PT Akasha Wira International Tbk
2.
AISA
PT Tiga Pilar Sejahtera Food Tbk
3.
ALTO
PT Tri Banyan Tirta Tbk
4.
CEKA
PT Wilmar Cahaya Indonesia Tbk
5.
DLTA
PT Delta Djakarta Tbk
6.
DVLA
PT Darya - Varia Laboratoria Tbk
7.
GGRM
PT Gudang Garam Tbk
8.
HMSP
PT Hanjaya Mandala Sampoerna Tbk
9.
ICBP
PT Indofood CBP Sukses Makmur Tbk
10.
INAF
PT Indofarma Tbk
11.
INDF
PT Indofood Sukses Makmur Tbk
12.
KAEF
PT Kimia Farma Tbk
13.
KICI
PT Kedaung Indah Can Tbk
14.
KLBF
PT Kalbe Farma Tbk
15.
LMPI
PT Langgeng Makmur Industry Tbk
16.
MBTO
PT Martina Berto Tbk
17.
MERK
PT Merck Tbk
18.
MLBI
PT Multi Bintang Indonesia Tbk
19.
MRAT
PT Mustika Ratu Tbk
20.
MYOR
PT Mayora Indah Tbk
21.
PSDN
PT Prasidha Aneka Niaga Tbk
22.
PYFA
PT Pyridam Farma Tbk
23.
ROTI
PT Nippon Indosari Corpindo Tbk
24.
SIDO
PT Industri Jamu dan Farmasi Sido Muncul Tbk
25.
SKLT
PT Sekar Laut Tbk
26.
SQBB
PT Taisho Pharmaceutical Indonesia Tbk
27.
STTP
PT Siantar Top Tbk
Lampiran 2 : Hasil Perhitungan FCF
Free Cash Flow
(dalam jutaan rupiah)
Perusahaan
2013
2014
2015
GGRM
-3.205.151
-3.458.317
277.398
HMSP
9.533.249
9.610.194
-21.821
ICBP
900.053
2.305.723
2.419.754
INAF
105.009
92.679
111.331
INDF
-2.819.354
3.987.189
-446.891
KAEF
164.754
183.732
26.582
KICI
2.069
789
-5.171
KLBF
-102.358
1.537.376
1.526.677
LMPI
-36.961
5.993
3.415
Lampiran 3 : Hasil Perhitungan DER
Debt to Equity Ratio
Lampiran 4 : Hasil Perhitungan DPR
Dividend Payout Ratio
Lampiran 5 : Tabel Statistik Deskriptif
Descriptive Statistics
Year N Minimum Maximum Mean Std. Deviation
2013 Fcf 32 -3458317 9610194 298809,00 2093838,644
der 32 ,1308 2,1229 ,783816 ,4728446
dpr 32 -1,0328125 1,4492754 ,288188025 ,4602828940
Valid N (listwise) 32
2014 Fcf 32 -183051 5336816 463852,78 1215878,364
der 32 ,0743 3,0286 ,838125 ,6236904
dpr 32 ,0000000 1,5378245 ,358246576 ,4057478552
Valid N (listwise) 32
2015 Fcf 32 -3205151 9533249 630516,66 2014899,239
der 32 ,0761 2,2585 ,808423 ,5373134
dpr 32 ,0000000 3,9788875 ,432411318 ,7361770598
Lampiran 6 : Hasil Pengujian Normalitas Residual
Model I
Test for normality of residual -
Null hypothesis: error is normally distributed Test statistic: x²= 16.7477
with p-value = 0.00023082
Model II
Test for normality of residual -
Null hypothesis: error is normally distributed Test statistic: x²= 80.8765
with p-value = 2.74085e-18
Model III
Test for normality of residual -
Null hypothesis: error is normally distributed Test statistic: x²= 111.196
with p-value = 7.14645e-25
Model IV
Test for normality of residual -
Null hypothesis: error is normally distributed Test statistic: x²= 110.588
Lampiran 7 : Hasil Pengujian Multikolinearitas
Model I
Variables Entered/Removedb
Model
Variables
Entered
Variables
Removed Method
1 fcfa . Enter
a. All requested variables entered.
b. Dependent Variable: der
Model Summaryb
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate
1 ,256a ,066 ,056 ,5274504
a. Predictors: (Constant), fcf
b. Dependent Variable: der
ANOVAb
Model
Sum of
Squares df
Mean
Square F Sig.
1 Regression 1,836 1 1,836 6,599 ,012a
Residual 26,151 94 ,278
Total 27,987 95
a. Predictors: (Constant), fcf
Coefficientsa
Model
Unstandardized
Coefficients
Standardized
Coefficients
t Sig.
Collinearity
Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) ,774 ,056 13,926 ,000
fcf 7,703E-8 ,000 ,256 2,569 ,012 1,000 1,000
a. Dependent Variable: der
Coefficient Correlationsa
Model fcf
1 Correlations Fcf 1,000
Covariances Fcf 8,993E-16
a. Dependent Variable: der
Collinearity Diagnosticsa
Model Dimension Eigenvalue Condition Index
Variance Proportions
(Constant) fcf
1 1 1,250 1,000 ,37 ,37
2 ,750 1,292 ,63 ,63
a. Dependent Variable: der
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,507941 1,514656 ,810121 ,1390100 96
Residual -,7221876 2,2180753 ,0000000 ,5246670 96
Std. Predicted Value -2,174 5,068 ,000 1,000 96
Std. Residual -1,369 4,205 ,000 ,995 96
Model II
Removed Method
1 dera . Enter
a. All requested variables entered.
b. Dependent Variable: dpr
Model Summaryb
a. Predictors: (Constant), der
b. Dependent Variable: dpr
ANOVAb
a. Predictors: (Constant), der
b. Dependent Variable: dpr
Coefficientsa
Coefficient Correlationsa
Model der
1 Correlations der 1,000
Covariances der ,011
a. Dependent Variable: dpr
Collinearity Diagnosticsa
Model Dimension Eigenvalue Condition Index
Variance Proportions
(Constant) der
1 1 1,832 1,000 ,08 ,08
2 ,168 3,304 ,92 ,92
a. Dependent Variable: dpr
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,328041822 ,454812318 ,359615306 ,0232903076 96
Residual -1,3657529354 3,6388018131 ,0000000000 ,5501508135 96
Std. Predicted Value -1,356 4,087 ,000 1,000 96
Std. Residual -2,469 6,579 ,000 ,995 96
Model III
Removed Method
1 fcfa . Enter
a. All requested variables entered.
b. Dependent Variable: dpr
Model Summaryb
a. Predictors: (Constant), fcf
b. Dependent Variable: dpr
ANOVAb
a. Predictors: (Constant), fcf
b. Dependent Variable: dpr
Coefficientsa
Coefficient Correlationsa
Model fcf
1 Correlations fcf 1,000
Covariances fcf 9,405E-16
a. Dependent Variable: dpr
Collinearity Diagnosticsa
Model Dimension Eigenvalue Condition Index
Variance Proportions
(Constant) fcf
1 1 1,250 1,000 ,37 ,37
2 ,750 1,292 ,63 ,63
a. Dependent Variable: dpr
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,090590931 ,986845851 ,359615306 ,1237573002 96
Residual -1,3601531982 3,6430120468 ,0000000000 ,5365561356 96
Std. Predicted Value -2,174 5,068 ,000 1,000 96
Std. Residual -2,522 6,754 ,000 ,995 96
Model IV
Removed Method
1 der, fcfa . Enter
a. All requested variables entered.
b. Dependent Variable: dpr
Model Summaryb
a. Predictors: (Constant), der, fcf
b. Dependent Variable: dpr
ANOVAb
a. Predictors: (Constant), der, fcf
b. Dependent Variable: dpr
Coefficientsa
Coefficient Correlationsa
Model der fcf
1 Correlations der 1,000 -,256
fcf -,256 1,000
Covariances der ,011 -8,661E-10
fcf -8,661E-10 1,017E-15
a. Dependent Variable: dpr
Collinearity Diagnosticsa
Model Dimension Eigenvalue
Condition
Index
Variance Proportions
(Constant) fcf der
1 1 2,009 1,000 ,06 ,07 ,06
2 ,830 1,556 ,04 ,89 ,01
3 ,162 3,525 ,89 ,05 ,92
a. Dependent Variable: dpr
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,086454622 ,993675590 ,359615306 ,1240624056 96
Residual -1,3698550463 3,6359109879 ,0000000000 ,5364856713 96
Std. Predicted Value -2,202 5,111 ,000 1,000 96
Std. Residual -2,526 6,706 ,000 ,989 96
Lampiran 8 : Hasil Pengujian Heteroskedastisitas
Model I
White's test for heteroskedasticity OLS, using observations 1-96
Dependent variable: û² Unadjusted R-squared = 0.024025
coeffcient std. error t-ratio p-value
const 0.258946 0.0559682 4.627 1.20e-05 ***
fcf 7.96963e-08 5.57865e-08 1.429 0.1565
fcf¹ 0.00000 0.00000 -0.9329 0.3533
Test statistic: TR2 = 2.306370, with p-value = P(Chi-square > 2.306370) =
0.315630
White's test for heteroskedasticity -
Null hypothesis: heteroskedasticity not present Test statistic: LM = 2.30637
with p-value = P(x²> 2.30637) = 0.31563
Model II
White's test for heteroskedasticity OLS, using observations 1-96
Dependent variable: û² Unadjusted R-squared = 0.016792
coeffcient std. error t-ratio p-value
const 0.707762 0.362086 1.955 0.0536 *
der -0.904895 0.719568 -1.258 0.2117
der² 0.341647 0.298487 1.145 0.2553
Test statistic: TR²= 1.612030, with p-value = P(x² > 1.612030) = 0.446634
White's test for heteroskedasticity -
Null hypothesis: heteroskedasticity not present Test statistic: LM = 1.61203
Model III
White's test for heteroskedasticity OLS, using observations 1-96
Dependent variable: û² Unadjusted R-squared = 0.002568
coeffcient std.error t-ratio p-value
const 0.301869 0.145989 2.068 0.0414 **
fcf -3.81592e-08 1.45516e-07 -0.2622 0.7937
fcf² 0.00000 0.00000 -0.002489 0.9980
Test statistic: TR² = 0.246504,
with p-value = P(Chi-square(2) > 0.246504) = 0.884041
White's test for heteroskedasticity -
Null hypothesis: heteroskedasticity not present Test statistic: LM = 0.246504
with p-value = P(x²> 0.246504) = 0.884041
Model IV
White's test for heteroskedasticity OLS, using observations 1-96
Dependent variable: û²Unadjusted R-squared = 0.023445
coeffcient std. error t-ratio p-value
const 0.740534 0.371325 1.994 0.0491 **
fcf -3.17483e-08 2.55537e-07 0.9014
der -1.03583 0.747245 -1.386 0.1691
fcf² 0.00000 0.00000 0.2545 0.7997
fcf*der -3.05087e-08 1.77072e-07 -0.1723 0.8636
der² 0.421092 0.325330 1.294 0.1989
Test statistic: TR²= 2.250748, with p-value = P(Chi-square(5) >2.250748) = 0.813473
White's test for heteroskedasticity -
Lampiran 9 : Hasil Pengujian Autokorelasi
Removed Method
1 fcfa . Enter
a. All requested variables entered.
b. Dependent Variable: der
Model Summaryb
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate Durbin-Watson
1 ,256a ,066 ,056 ,5274504 2,508
a. Predictors: (Constant), fcf
b. Dependent Variable: der
ANOVAb
Model Sum of Squares df Mean Square F Sig.
1 Regression 1,836 1 1,836 6,599 ,012a
Residual 26,151 94 ,278
Total 27,987 95
a. Predictors: (Constant), fcf
b. Dependent Variable: der
Coefficientsa
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,507941 1,514656 ,810121 ,1390100 96
Residual -,7221876 2,2180753 ,0000000 ,5246670 96
Std. Predicted Value -2,174 5,068 ,000 1,000 96
Std. Residual -1,369 4,205 ,000 ,995 96
a. Dependent Variable: der
Model II
Variables Entered/Removedb
Model
Variables
Entered
Variables
Removed Method
1 dera . Enter
a. All requested variables entered.
b. Dependent Variable: dpr
Model Summaryb
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate Durbin-Watson
1 ,042a ,002 -,009 ,5530694059 2,131
a. Predictors: (Constant), der
b. Dependent Variable: dpr
ANOVAb
Model Sum of Squares df Mean Square F Sig.
1 Regression ,052 1 ,052 ,168 ,682a
Residual 28,753 94 ,306
Total 28,805 95
Coefficientsa
a. Dependent Variable: dpr
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,328041822 ,454812318 ,359615306 ,0232903076 96
Residual -1,3657529354 3,6388018131 ,0000000000 ,5501508135 96
Std. Predicted Value -1,356 4,087 ,000 1,000 96
Std. Residual -2,469 6,579 ,000 ,995 96
a. Dependent Variable: dpr
Model III
Removed Method
1 fcfa . Enter
a. All requested variables entered.
b. Dependent Variable: dpr
Model Summaryb
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate Durbin-Watson
1 ,225a ,051 ,040 ,5394026072 2,104
a. Predictors: (Constant), fcf
ANOVAb
Model Sum of Squares df Mean Square F Sig.
1 Regression 1,455 1 1,455 5,001 ,028a
Residual 27,350 94 ,291
Total 28,805 95
a. Predictors: (Constant), fcf
b. Dependent Variable: dpr
Coefficientsa
a. Dependent Variable: dpr
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,090590931 ,986845851 ,359615306 ,1237573002 96
Residual -1,3601531982 3,6430120468 ,0000000000 ,5365561356 96
Std. Predicted Value -2,174 5,068 ,000 1,000 96
Std. Residual -2,522 6,754 ,000 ,995 96
a. Dependent Variable: dpr
Model IV
Removed Method
Model Summaryb
Model R R Square
Adjusted R
Square
Std. Error of the
Estimate Durbin-Watson
1 ,225a ,051 ,030 ,5422236492 2,103
a. Predictors: (Constant), der, fcf
b. Dependent Variable: dpr
ANOVAb
Model Sum of Squares df Mean Square F Sig.
1 Regression 1,462 2 ,731 2,487 ,089a
Residual 27,343 93 ,294
Total 28,805 95
a. Predictors: (Constant), der, fcf
b. Dependent Variable: dpr
Coefficientsa
a. Dependent Variable: dpr
Residuals Statisticsa
Minimum Maximum Mean Std. Deviation N
Predicted Value ,086454622 ,993675590 ,359615306 ,1240624056 96
Residual -1,3698550463 3,6359109879 ,0000000000 ,5364856713 96
Std. Predicted Value -2,202 5,111 ,000 1,000 96
Std. Residual -2,526 6,706 ,000 ,989 96
Lampiran 10 : Hasil Pengujian Hipotesis
Model I
Model 1: OLS, using observations 1-96 Dependent variable: der
Coeffcient Std. Error t-ratio p-value
Const 0.774115 0.0556345 13.9143 0.0000
Fcf 7.70487e-08 3.00044e-08 2.5679 0.0118
Mean dependent var 0.809896 S.D. dependent var 0.543047 Sum squared resid 26.17903 S.E. of regression 0.527731 R2 0.065552 Adjusted R2 0.055611
F(1; 94) 6.594152 P-value(F) 0.011808
Model II
Model 2: OLS, using observations 1-96 Dependent variable: dpr
Coeffcient Std. Error t-ratio p-value
Const 0.327017 0.101586 3.2191 0.0018
der 0.0395670 0.104348 0.3792 0.7054
Mean dependent var 0.359063 S.D. dependent var 0.549815 Sum squared resid 28.67436 S.E. of regression 0.552310 R2 0.001527 Adjusted R2 -0.009095
Model III
Model 3: OLS, using observations 1-96 Dependent variable: dpr
Coeffcient Std. Error t-ratio p-value
Const 0.327209 0.0567743 5.7633 0.0000
Fcf 6.85927e-08 3.06192e-08 2.2402 0.0274
Mean dependent var 0.359063 S.D. dependent var 0.549815 Sum squared resid 27.26272 S.E. of regression 0.538543 R2 0.050682 Adjusted R2 0.040583
F(1; 94) 5.018448 P-value(F) 0.027435
Model IV
Model 4: OLS, using observations 1-96 Dependent variable: dpr
Coeffcient Std. Error t-ratio p-value
Const 0.342775 0.0998220 3.4339 0.0009
Fcf 7.01421e-08 3.18386e-08 2.2031 0.0301
Der -0.0201090 0.105799 -0.1901 0.8497
Mean dependent var 0.359063 S.D. dependent var 0.549815 Sum squared resid 27.25213 S.E. of regression 0.541326 R2 0.051051 Adjusted R2 0.030643