• Tidak ada hasil yang ditemukan

Bahan presentasi Semnas TIH 2 18 mei 2017 Prof Eniya

N/A
N/A
Protected

Academic year: 2018

Membagikan "Bahan presentasi Semnas TIH 2 18 mei 2017 Prof Eniya"

Copied!
79
0
0

Teks penuh

(1)

WUJUDKAN ENERGI BERSIH

BISA?

Prof. Dr.-Eng. Eniya Listiani Dewi

Agency for the Assessment and Application of Technology – Indonesia

(2)

BPPT establishment was first came from the former President, Soeharto’s idea passed to Prof Dr. Ing. B.J. Habibie on 28th January 1974.

With decree number 76/M/1974 on January 5th,1974, Prof Dr. Ing. B.J. Habibie was elected as Goverment advisor in the field of advanced technology and aviation technology who responsible directly to President by forming Advance Technology and Aviation Technology (ATTP) Pertamina.

Through Board of commisioners of Pertamina’s decree number 04/KPTS/DR/DU/1975 on April 1st , 1976, ATTP was renamed into Pertamina Advanced Technology Division. Later, this name was changed into Agency for the Assessment and Application of Technology (BPPT) through presidental decree Number 25 date August 21st 1978. Renewed with a Presidential decree number 47 year 1991

1974

Prof. Dr.Ing. B.J. Habibie

Dr. Ir. Unggul Priyanto, MSc

BPPT H I ST ORY

Prof. Dr. Rahardi Ramelan

Prof. Dr. Zuhal

MSEE Dr. A.S. Hikam

Ir. M. Hatta Rajasa

Dr. Kusmayanto Kadiman

Prof. Ir. Said Djauharsyah Jenie, Sc.D

(3)

3

(4)

Jumlah Penduduk Jumlah Pulau Luas Daratan Luas Perairan

: 237.641.326 Jiwa (2010) : 17.000 buah

: 1.922.570 Km2

(5)
(6)

ADAT

ETHNIC RACE RELIGION

ADAT

AS A MULTICULTURAL

NATION STATE

More than 700 ethnic groups

And all major religions

More than

(7)

Biodiesel

Solar panel

Wind turbine

Nuclear

Fuel Cell

Resource: Outlook Energi Indonesia 2015/BPPT

NRE 23%

(8)
(9)

Agency for the Assessment and Application of Technology – Indonesia

NRE Production Fossil Production Export

Nett Energy Importer in 2033

Supply and Energy Demand

Energy Sustainability

Energy Sovereignty

Ensure Achieve

Goals

Limitations of energy resources led to the inability of domestic energy production (fossil and renewable energy) to meet domestic consumption

(10)

-600

Crude Export

Crude Import

Net Import Crude (BAU)

Gas Import (HIGH)

Gas Export (HIGH)

Gas Import (BAU)

Nett Gas Importer in 2023 Nett Crude Oil Importer Since Early 2000s

It is hard to rely on the limited fossil fuel in the

next decades at this current

yellow light

situation of fossil energy supply

(11)

Pada 2030 hanya 12.5% NRE dihasilkan, target 23% tercapai?

No.

(12)

Kebutuhan 30-40% masih dari fosil

(13)

Fuel Oil

Negative effect to Envinronment

Hazardouos

Decreasing of

Stock

Renewable energy

alternative (H2)

(14)
(15)
(16)

Agency for the Assessment and Application of Technology – Indonesia

Too many things to do from the highest potential of palm :

World Largest CPO Production (30 million tones per annum)  World Largest Liquid Waste (Palm Oil Mill Effluent, POME)  World Largest Palm Solid Waste

Palm Based Fuels

No

Non Renewable

1 Crude Oil Fuel

Palm based energy sources is promising prospect for

our fuel supply in the near future

Renewable

Solar Electricity

Wind Electricity

Geothermal Electricity

Hydro Electricity

Wave Power Electricity

Ocean Thermal Electricity

Biomass Electricity

Fuel

Strategic

Option

(17)

Agency for the Assessment and Application of Technology – Indonesia

- 10.000.000 20.000.000 30.000.000 40.000.000 50.000.000 60.000.000 70.000.000 80.000.000

SUMATERA JAWA NUSA TENGGARA KALIMANTAN SULAWESI MALUKU&PAPUA

SUMATERA JAWA NUSA TENGGARA KALIMANTAN SULAWESI MALUKU&PAPUA TKS 20.940.304 68.560 - 4.863.893 691.118 133.589 Cangkang dan Serat 17.298.512 56.637 - 4.017.999 570.923 110.356 Sekam padi 3.020.300 7.179.163 663.535 889.032 1.400.417 55.398 Jerami 15.101.498 35.895.817 3.317.675 4.445.160 7.002.086 276.992 Tongkol jagung 1.995.309 4.533.697 489.809 138.503 1.353.743 21.916 Batang jagung 8.729.477 19.834.926 2.142.914 605.951 5.922.627 95.883 Bagasse 443.934 826.845 - - 31.939

-Potential Distribution of Waste Biomass in Indonesia

(18)

Agency for the Assessment and Application of Technology – Indonesia

(19)

Agency for the Assessment and Application of Technology – Indonesia

Biohydrogen Sources

5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000

To

n Cassava

(20)

Agency for the Assessment and Application of Technology – Indonesia

Area Vs Production of Palm Oil

and Cassava

5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000

2

Palm Oil Production (ton)

Palm Oil Area (Ha)

Cassava Production (Ton)

(21)

Agency for the Assessment and Application of Technology – Indonesia

INDONESIA is the Biggest Crude Palm Oil (CPO)

Producer In the World

PAPUA 154,8 Ha SUMSEL

737,2 Ha BENGKUL

U 226,8 Ha JAMBI 347,8 Ha

SUMUT 1.057,8

Ha

Elaeis

guineensis

Name of Province Palm Area (Thousand)

30 Million Ton CPO in 2014

(22)

From Biomass to Hydrogen

Textile Waste

Pulp & paper

Resource Process Product

(23)

Agency for the Assessment and Application of Technology – Indonesia

BIOHYDROGEN

PRODUCTION

RESEARCH ACTIVITY

(24)

-Agency for the Assessment and Application of Technology – Indonesia

(25)

Agency for the Assessment and Application of Technology – Indonesia

Laboratory Experiment for Producing Bio-Hydrogen

2.5 5.0 7.5 10.0 min

5.0uV(x10,000) Chromatogram

H

Fuel Cell Test Using Bio-H2

Capacity: 4 Liters

(26)

Agency for the Assessment and Application of Technology – Indonesia

Laboratory Experiment for Producing Bio-Hydrogen

Capacity:15 Liters

0

I (Ampere)

I-V11:30 I-P 11:30

0

I (Ampere)

(27)

Agency for the Assessment and Application of Technology – Indonesia

Waktu Fermentasi (jam)

Produksi Gas

2.5 5.0 7.5 10.0 min

5.0uV(x10,000) Chromatogram

H

(28)

Paten

Bio-H2 production system and its

application for fuel cell, patent No.

(29)

Agency for the Assessment and Application of Technology – Indonesia

BIOHYDROGEN

PRODUCTION

RESEARCH ACTIVITY

(30)

-Agency for the Assessment and Application of Technology – Indonesia

PT Adolina PTPN IV Medan, Indonesia

(31)

Agency for the Assessment and Application of Technology – Indonesia

PKS Kertajaya and Cikasungka PTPN

VIII, Indonesia

(32)

: H2 : CH4 : CO2 : H2Producer

: CH4Producer : Other microbes

CH4Production H2Production

Biohydrogen Production

from POME

Hydrogen Storage

Outlet POME waste

Lab experiment:

1. seed sludge innoculation 2. Screening microorganism 3. Pretreatment seed sludge

(33)

Agency for the Assessment and Application of Technology – Indonesia

PROJECT 2015

Process Design

 Laboratory Test

 Reactor and Control System Design

Household stationary

Telecomunication

Gas Engine

(34)

Agency for the Assessment and Application of Technology – Indonesia

Batch 100 mL

Batch 2 L

Laboratory Test

Batch 40 L

POME was taken from PKS Kertajaya PTPN VIII Banten, Indonesia COD 20,000 – 30,000 mg/L

(Chong et al. (2009) reported POME COD is 75,000 – 96,300 mg/L)

Media Condition Biogas (ml)

POME + glucose + activator

Sterile 273.59

non sterile 317.00

POME

Glucose 327.42

Non-glucose 320.47

POME

Activator 320.47

Non activator 311.79

(35)

Agency for the Assessment and Application of Technology – Indonesia

without nutrient addition and unsterile condition, was produced

0.1 L H2/L. media/ hour.

(36)

Experiment Scheme

(37)

37

Industry-academic Joint Project between FCU and BPPT, Indonesia.

ONE M

3

MOBILE BIOH

2

PRODUCTION

SYSTEM BY POME IS CONSTRUCTING

(38)

Agency for the Assessment and Application of Technology – Indonesia

Control System Design for Bio-hydrogen Fermenter

 Temperature control  pH control

 And software control and its reactor acquisition

(39)

Agency for the Assessment and Application of Technology – Indonesia

HYDROGEN

(40)
(41)
(42)
(43)

Market possibility in Indonesia

Base station GSM need 3 kW Base station CDMA need 5 kW Remote area have >3000 station

Mostly use DC inverter, thus need to change DC on site >700 points BTS installed FC

User: Telecommunication industries

(44)

PEMFC Hidrogen as BTS backup power di Medan

44

Note:

1. Hydrogen consumption was 6 tank of Hydrogen for 18 h

2. 3 tanks for operation 3 for backup 3. Fuel Cell 2.5 kW, standby 52.9 V, 0 A,

tank pressure 2036 psi dan 1186 psi, stack 80 cell

4. Medan has 50 site BTS fuel cells 5. Hydrogen gas was supplied by

(45)

300 kW Fuel Cell in Ancol

Investasi KOYCA 3 juta USD

Investasi PEMDA Investasi Jakarta Properti

(46)
(47)

Kuliah I 47

March 2015

February 2015 PEM Fuel Cell installed as backupserver for Data Center of BPPT @Serpong

(48)
(49)
(50)

Online Monitoring System

(51)

Direct Methanol Fuel Cell Education Kit

(52)

INAFHE.ORG

Since 2014

 Senior High School Education

 Workshop and training on fuel cell and hydrogen implementation,

Jakarta Convention Center, 11-13 April 2016

(53)
(54)
(55)

26/05/2017 55

Supported by IAHE (International Association of Hydrogen Energy)

MoU Signing between PT. Cascadiant - BPPT

(56)

Agency for the Assessment and Application of Technology – Indonesia

THANK YOU

(57)

0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

M

NRE Production Fossil Production Export

Net Domestic Supply

Nett Energy Importer in 2033

Limitations of energy resources led to the inability of domestic energy production (fossil and renewable energy) to meet domestic consumption in 2033 and Indonesia would become a

Nett Energy Importer

.

Supply and Energy Demand

Energy Sustainability

Energy Sovereignty

Ensure Achieve

(58)

Agency for the Assessment and Application of Technology – Indonesia

- 10.000.000 20.000.000 30.000.000 40.000.000 50.000.000 60.000.000 70.000.000 80.000.000

SUMATERA JAWA NUSA TENGGARA KALIMANTAN SULAWESI MALUKU&PAPUA

SUMATERA JAWA NUSA TENGGARA KALIMANTAN SULAWESI MALUKU&PAPUA TKS 20.940.304 68.560 - 4.863.893 691.118 133.589

Cangkang dan Serat 17.298.512 56.637 - 4.017.999 570.923 110.356 Sekam padi 3.020.300 7.179.163 663.535 889.032 1.400.417 55.398 Jeram i 15.101.498 35.895.817 3.317.675 4.445.160 7.002.086 276.992 Tongkol jagung 1.995.309 4.533.697 489.809 138.503 1.353.743 21.916

Batang jagung 8.729.477 19.834.926 2.142.914 605.951 5.922.627 95.883

Bagasse 443.934 826.845 - - 31.939

-Potential Distribution of Various Biomass Waste in Indonesia

(59)

Agency for the Assessment and Application of Technology – Indonesia

Candidate for Biohydrogen Sources

5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 35,000,000

T

o

n Cassava

(60)

Electrical and/or thermal energy Biofertilizer

Organic

wastes Anaerobic

digestion

Biogas

Solar energy

Biofuel production

Animal husbandry

Crop harvesting

Industrial processing

Human consumption

Photosynthesis

H2O

CO2

Biogas Cycle

Energy crops

(61)
(62)

The Process of Biodigestion

Liquefaction

Acid Production

Acetate Production

Methane Production

Methanogenesis

Complex Organic Carbon

Monomers & Oligomers

Organic Acids

Acetate –

H

2

/ CO

2

CH

4

+ CO

2

Hydrolysis

Acidogenesis

(63)

State Of The Art

Inokulum Substrat HRT Konsentrasi substrat

Optimal Index Ref

C. butyricum TISTR 1032

Sugarcane juice

4 25 g sucrose/L 3.38 mmol H2/L/jam atau 1 mol H2/mol

hexose

Pattra, Lay, Lin, O-Thong & Reungsang, 2011

municipal n soluble

(CMS)

4 40 g-COD/L 400 mmol H2/L/day atau 16.67 mmol

H2/L/jam atau 1 mol H2/mol hexose

J.-J. Chang et al., 2008

Cl. butyricum CGS2

Pati 2 25 g Total

sugar/L

1,5 L H2/L/jam

Atau 66,9 mmol/L/jam atau 1,28 mol

H2/mol glukosa

J.-J. Chang et al., 2008

Anaerobic digester

Cheese whey

24 40 g COD/L 2,5 l H2/L/hari atau 4,6 mmol H2/L/jam

Atau 5 mmol/g-COD

Azbar, Dokgoz, Keskin, Korkmaz & Syed, 2009

Anaerobic

H2/mol lactose

Davil-Vazquez, Cota-Navaro, Rosales-Colunga, Leon-Rodriquez & Razo-Flores, 2009

Anaerobic sludge POME

POME 96 50 g/L 74 33 ml/jam/Liter Yussof, Hassan, S.Abd-Aziz,

& Rahman, 2009

sludge POME POME 48 4850 ml H2/liter O-Thong, Hniman,

(64)

CSTR for hydrogen production

Inokulum Susbtrat HRT (jam) Optimal index Ref

C. butyricum TISTR 1032

Sugarcane juice 4 3.38 mmol H2/L/jam atau 1

mol H2/mol hexose

Pattra dkk, 2011

municipal sewage treatment

Condensed molasses fermentation soluble (CMS)

4 400 mmol H2/L/day atau

16.67 mmol H2/L/jam atau

1 mol H2/mol hexose

Chang, 2008

Cl. butyricum CGS2 Starch 2 1,5 L H2/L/jam

Atau 66,9 mmol/L/jam atau

1,28 mol H2/mol glukosa

Chen, 2008

Anaerobic digester Cheese whey 24 2,5 l H2/L/hari atau 4,6

mmol H2/L/jam

Atau 5 mmol/g-COD

Azbar, 2009

Anaerobic granular sludge

Cheese whey 6 46,61 mmol H2/L/jam atau

2,8 mol H2/mol lactose

Vazquez, 2009

Sludge POME POME 96 7433 ml/jam/Liter Yussof, 2009

Municipal sewage

sludge Glucose 0.5

Max H2yield 1.81 mol/mol

glucose

Wang, 2009

Anaerobic sludge Glucose 4 Max H2prod rate 0.11568

mmol/hari

Wang, 2009

Municipal sewage

sludge Sucrose 4

Max H2yield 4.7 mol/mol

sucrose

Wang, 2009

Municipal sewage

sludge Sucrose 8

Max H2yield 4.52 mol/mol

sucrose

(65)

0 0.5 1 1.5 2 2.5 3 Waste activated sludge

Thermoanaerobacterium… Thermoanaerobacterium…

Anaerobically digested sludge

Clostridium acetobutylicum…

Yield(mol H

2/mol glukosa)

0 0.5 1 1.5 2 2.5 Clostridium butyricum CGS5

Clostridium sp.HR-1 (from cow…

T. thermosaccharolyticum W16

Yield(mol H

2/mol xilosa)

0 1 2 3 4 5 6

Wasted activated sludge Clostridium butyricum CGS5 Clostridium pasteurianum CH4 Anaerobic sludge

Thermoanaerobacterium…

Anaerobic digester sludge

Yield(mol H

2/mol sukrosa)

0 50 100 150 200 250 300 350 Anaerobic sludge

Cracked cereals Mixed culture municipal wastewater Cattle dung compost Anaerobis sludge Mixed culture Anaerobic mixed microflora Mixed culture Municipal sewage sludge

Yield (ml H2/gram pati)

0 1000 2000 3000 4000 5000 6000 7000 Thermoanaerobacterium rich sludge

POME Sludge Clostridium butyricum EB6 Anaerobic seed sludge Sludge POME Sludge POME

Yield(ml H

(66)

Operating condition parameter

Organism

Temperature

pH

Alkalinity

Macro nutrients

Micro nutrients

Toxicity

Reaction time

Substrate transfer

 Oxidize ammonia to nitrites  Oxidize nitrites to nitrates.

 Remove BOD

 Add oxygen

 Remove carbon dioxide

 Remove excess nitrogen and other inert gasses  Remove turbidity and clarify the water

 Remove various organic contaminants

(67)

Hydrogen Production at different substrate

Gas composition (%)

Substrate

utilization

H

2

CO

2

10

5.59±0.81

0.68±0.14

28.34±1.91

71.62±1.90 95.68±4.19

15

17.18±1.04

1.62±0.09

44.80±0.73

55.20±0.73 91.71±2.49

20

20.37±0.86

1.41±0.05

42.56±1.76

57.56±1.61 91.71±5.36

(68)

SMP at different substrate concentration

Effluent (SMP) g/L Buty rate/

selektifi

ty

nol Acetate

Propio nate

butyr ate

10 28,34 5,59 0,68 95,68 0,25 0,00 0,62 0,16 1,28 1,41 1,08

15 44,8 17,18 1,61 91,71 1,01 0,00 0,92 0,18 3,16 2,37 2,37

20 42,56 20,37 1,41 91,71 1,43 0,00 0,72 0,40 5,04 4,87 1,999

(69)

Biomass concentration

Time (day)

0 10 20 30 40 50 60

VSS bottom (g/L) VSS middle (g/L) VSS top (g/L) HRT (h)

(70)

Hydraulic Retention Time effect

Time (day)

0 10 20 30 40 50 60 70

HPR (L H2/L/day)

H2 content (%)

(71)

Soluble Metabolite Product at different Hydraulic Retention Time

Effluent (SMP) g/L Butyrat

e/acetat

8 46,22 13,74 1,8 98,86 0,17 0,08 0,32 0,39 1,57 2,73 3,01

4 45,93 28,64 1,82 94,54 0,34 0,00 1,51 0,15 5,53 2,64 2,35

1 40,57 83,69 1,42 91,89 1,0 0 0,7 0,3 3,3 3,26 2,33

(72)

VSS at different substrate concentration

Time (day)

10 20 30 40 50 60 70

(73)

Carrier effect

M365

M190

No carrier

HRT (h)

4

4

4

Biogas rate (L biogas/L/d)

61.82±1.62

47.88±1.55

35.89±1.65

% H

2

44.43±3.16

42.56±1.76

43.04±1.50

HPR (L H

2

/L/d)

27.27±1.05

20.37±0.86

15.45±1.81

Substrate utilization (%)

97.97±0.68

91.71±5.36

85.44±9.04

(74)

Soluble metabolit products (SMP)

TVFA (mg

COD/L)

% Butyric/A

cetic Ethanol Acetic

acid

carrier 738.14 7709.91 8.74 17.12 0.00 74.14 10.82

M365 452.65 7941.26 5.39 22.41 0.57 71.57 7.98

(75)

Established the technology of granulation and optimization on

biohydrogen production bacteria

carrier

Granular

Sludge

(76)

Conclusion

• Substrate concentration of 15-20 g sugar/liter give high yield and HPR

• Recommended operating condition is HRT 1 hour and substrate concentration 20 g sugar/L with HPR 88.73 73 L H2/L/day, substrates utilization and yield respectively, 92.95% and 1.42 mol H2/mol glucose , HRT of 0.5 hours gives the highest HPR, it was 124.87 L H2/L/day, on the other hand, substrate utilization and yield were low, which were 82.39% and 1.17 mol H2/mol glucose, respectively.

• The larger of carrier surface area, the higher of biohydrogen production. M365 is more suitable for biohydrogen production from sugary waste water. It has higher extensive surface area specific than the M190 that provides higher contact area between microorganisms and susbtrate.

(77)

Terima Kasih

Dr. Unggul Priyanto Dr. Chen Yeon Chu Prof. Chen Yu Lin Dr. Mahyudin (R.I.P) Zulaicha Dwi Hastuti Kurniawan

Lies A. W. Herri Susanto

Oka Pradipta Arjasa Siti Julekha

(78)

Kesimpulan

• Proses fermentasi limbah pabrik minuman menjadi biohidrogen yang baik terjadi pada konsentrasi 15 20 g gula/liter. Pada konsentrasi ini memberikan nilai HPR dan yield yang tinggi.

• Kondisi operasi yang direkomendasikan adalah HRT 1 jam dan konsentrasi substrat 20 g gula/L dengan HPR 88,73 73 L H2/L/hari, penggunaan substrat dan yield

masing-masing, 92,95 % dan 1,42 mol H2/mol glukosa. Pada HRT 0,5 jam

memberikan HPR tertinggi, yakni 124,87 L H2/L/hari, namum konversi substrat dan yieldnya rendah, yakni masing-masing 82,39% dan 0 mol H2/mol glukosa.

Carrier yang memiliki luas permukaan lebih besar menghasilkan kecepatan

produksi biohidrogen yang lebih tinggi. M365 lebih cocok untuk produksi biohidrogen dari limbah pabrik minumam karena M365 memiliki luas luas permukaan specifik lebih tinggi dari M190 sehingga memberikan luas bidang kontak antara mikroorganisme dengan susbtrat yang baik.

(79)

Referensi

Dokumen terkait

[r]

Abstraksi. Tujuan penulisan artikel ini adalah mengkaji aplikasi The Tower Hamlets Family Well-being Model yang dikembangkan oleh Susan Acland dalam mengoptimalkan tumbuh

Alat yang digunakan dalam penelitian ini meliputi: alat angkut truk besar yang telah didesain untuk mengangkut sapi sebanyak 12 ekor, timbangan sapi merek Iconix FX1

b. jika setelah mengecualikan pemesan Efek terafiliasi sebagaimana dimaksud dalam angka 4 huruf c peraturan ini dan terdapat sisa Efek yang jumlahnya lebih kecil dari jumlah yang d

The objectives of this study are: (1) to find out the target and learning needs of 4 th semester students of international science classes of Yogyakarta State University (2)

[r]

sumber yang ada, baik sumber daya maupun dana sehingga dapat memberikan pelayanan keperawatan yang efektif baik kepada. pasien, keluarga

KETEPATAN PEMBUATAN Pembuatan dokumen sesuai standar dan dikerjakan dengan rapi Pembuatan dokumen sesuai standar Dokumen tidak memenuhi salah satu standar pembuatan