• Tidak ada hasil yang ditemukan

Makalah Hukum 2 Termodinamika Dan Aplikasinya

N/A
N/A
Protected

Academic year: 2021

Membagikan "Makalah Hukum 2 Termodinamika Dan Aplikasinya"

Copied!
30
0
0

Teks penuh

(1)

BAB I PENDAHULUAN

1.1 Latar Belakang

Termodinamika adalah ilmu tentang energi, yang secara spesifik membahas tentanghub ungan antara energi panas dengan kerja. Energi dapat berubah dari satu bentuk ke bentuklain, baik secara alami maupun hasil rekayasa teknologi.

Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.

Hukum keseimbangan / kenaikan entropi: Panas tidak bisa mengalir dari material yang dingin ke yang lebih panas secara spontan. Entropi adalah tingkat keacakan energi. Jika satu ujung material panas, dan ujung satunya dingin, dikatakan tidak acak, karena ada konsentrasi energi. Dikatakan entropinya rendah. Setelah rata menjadi hangat, dikatakan entropinya naik.

Proses termodinamik yang berlanggsung secara alami seluruhnya disebut proses ireversibel(irreversibel process). Proses tersebut berlanggsung secara spontan pada satu arah tetapi tidak pada arah sebaliknya. Contohnya kalor berpindah dari benda yang bersuhu tinggi ke benda yang bersuhu rendah.

Proses reversibel adalah proses termodinamik yang dapat berlanggsung secara bolak-balik. Sebuah sistem yang mengalami idealisasi proses reversibel selalu mendekati keadaan kesetimbangan termodinamika antara sistem itu sendiri dan lingkungannya. Proses reversibel merupakan proses seperti-kesetimbangan (quasi equilibrium process).

Sejarah awal dari AC (air Conditioner ) sudah dimulai sejak jaman Romawi yaitu dengan membuat penampung air yang mengalir di dalam dinding rumah sehingga menurunkan suhu ruangan , tetapi saat itu hanya orang tertentu saja yang bisa karena biaya membangunnya sangatlah mahal karena membutuhkan air dan juga bangunan yang tidak biasa. Hanya para raja dan orang kaya saja yang dapat membangunnya.

Kemudian pada tahun 1820 ilmuwan Inggris bernama Michael Faraday Image menemukan cara baru mendinginkan udara dengan menggunakan Gas Amonia dan pada tahun 1842 seorang dokter menemukan cara mendinginkan ruangan dirumah sakit Apalachicola

(2)

yang berada di Florida Ameika Serikat. Dr.Jhon Gorrie Image adalah yang menemukannya dan ini adalah cikal bakal dari tehnologi AC (air conditioner) tetapi sayangnya sebelum sempurna beliau sudah meninggal pada tahun 1855.

Willis Haviland Carrier Image seorang Insinyur dari New York Amerika menyempurnakan penemuan dari Dr.Jhon Gorrie tetapi AC ini digunakan bukan untuk kepentingan atau kenyamanan manusia melainkan untuk keperluan percetakan dan industri lainnya. Penggunaan AC untuk perumahan baru dikembangkan pada tahun 1927 dan pertama dipakai disbuah rumah di Mineapolis, Minnesota. Saat ini AC sudah digunakan disemua sektor, tidak hanya industri saja tetapi juga sudah di perkantoran dan perumahan dengan berbagai macam bentuk dari mulai yang besar hingga yang kecil.semuanya masih berfungsi sama yaitu untuk mendinginkan suhu ruangan agar orang merasa nyaman.

1.2 Rumusan Masalah

Maka dirumuskan permasalahan sebagai berikut :

1. Apa pengertian dan aplikasi hukum kedua termodinamika ?

2. Bagaimana Prinsip kerja dari beberapa mesin menurut hukum 2 Termodinamika?

1.3 Tujuan

Adapun tujuan dari penyusunan makalah ini, antara lain:

1. Memberikan tambahan pengetahuan kepada pembaca tentang Hukum 2 Termodinamika.

2. Memberikan pengetahuan kepada pembaca mengenai cara kerja dari reservoir energi panas, mesin kalor, mesin pendingin, dan pompa panas..

1. 4. Metode Penulisan

Penulisan makalah ini melalui prosedur studi pustaka, baik media buku maupun internet. Semua informasi dan gagasan yang telah diperoleh dalam makalah ini, kami gabungkan menjadi satu kesatuan dan menyeluruh, untuk menjelaskan makalah kami tentang hukum termodinamika kedua dan aplikasinya, sehingga kami dapat menarik kesimpulan dari intisari pembahasan makalah ini.

(3)

BAB II PEMBAHASAN

2.1 Hukum II Termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah. Dengan kata lain, tidak semua proses di alam adalah reversibel (arahnya dapat dibalik). Hukum kedua termodinamika menyatakan bahwa kalor mengalir secara spontan dari benda bersuhu tinggi ke benda bersuhu rendah dan tidak pernah mengalir secara spontan dalam arah kebalikannya. Misalnya, jika sebuah kubus kecil dicelupkan ke dalam secangkir air kopi panas, kalor akan mengalir dari air kopi panas ke kubus es sampai suhu keduanya sama.

Hukum pertama termodinamika tidak dapat menjelaskan apakah suatu proses mungkin terjadi ataukah tak mungkin terjadi. Oleh karena itu, muncullah hukum kedua termodinamika yang disusun tidak lepas dari usaha untuk mencari sifat atau besaran sistem yang merupakan fungsi keadaan. Ternyata orang yang menemukannya adalah Clausius dan besaran itu disebut entropi. Hukum kedua ini dapat dirumuskan sebagai berikut:

“Proses suatu sistem terisolasi yang disertai dengan penurunan entropi tidak mungkin terjadi. Dalam setiap proses yang terjadi pada sistem terisolasi, maka entropi sistem tersebut selalu naik atau tetap tidak berubah.”

Hukum kedua termodinamika memberikan batasan dasar pada efisiensi sebuah mesin atau pembangkit daya. Hukum ini juga memberikan batasan energi masukan minimum yang dibutuhkan untuk menjalankan sebuah sistem pendingin. Hukum kedua termodinamika juga dapat dinyatakan dalam konsep entropi yaitu sebuah ukuran kuantitatif derajat ketidakaturan atau keacakan sebuah sistem.

Dari hasil percobaan para ahli menyimpulkan bahwa mustahil untuk membuat sebuah mesin kalor yang mengubah panas seluruhnya menjadi kerja, yaitu mesin dengan efisiensi

(4)

termal 100%. Kemustahilan ini adalah dasar dari satu pernyataan hukum kedua termodinamika sebagai berikut :

“Adalah mustahil bagi sistem manapun untuk mengalami sebuah proses di mana sistem menyerap panas dari reservoir pada suhu tunggal dan mengubah panas seluruhnya menjadi kerja mekanik, dengan sistem berakhir pada keadaan yang sama seperti keadaan awalnya”.

Pernyataan ini dikenal dengan sebutan pernyataan ―mesin‖ dari hukum kedua termodinamika.

Dasar dari hukum kedua termodinamika terletak pada perbedaaan antara sifat alami energi dalam dan energi mekanik makroskopik. Dalam benda yang bergerak, molekul memiliki gerakan acak, tetapi diatas semua itu terdapat gerakan terkoordinasi dari setiap molekul pada arah yang sesuai dengan kecepatan benda tersebut. Energi kinetik dan energi potensial yang berkaitan dengan gerakan acak menghasilkan energi dalam.

Jika hukum kedua tidak berlaku, seseorang dapat menggerakkan mobil atau pembangkit daya dengan mendinginkan udara sekitarnya. Kedua kemustahilan ini tidak melanggar hukum pertama termodinamika. Oleh karena itu, hukum kedua termodinamika bukanlah penyimpulan dari hukum pertama, tetapi berdiri sendiri sebagai hukum alam yang terpisah. Hukum pertama mengabaikan kemungkinan penciptaan atau pemusnahan energi. Sedangkan hukum kedua termodinamika membatasi ketersediaan energi dan cara penggunaan serta pengubahannya.

Panas mengalir secara spontan dari benda panas ke benda yang lebih dingin, tidak pernah sebaliknya. Sebuah pendingin mengambil panas dari benda dingin ke benda yang lebih panas, tetapi operasinya membutuhkan masukan energi mekanik atau kerja. Hal umum mengenai pengamatan ini dinyatakan sebagai berikut :

“Adalah mustahil bagi proses mana pun untuk bekerja sendiri dan menghasilkan perpindahan panas dari benda dingin ke benda yang lebih panas.”

Pernyataan ini dikenal dengan sebutan pernyataan ―pendingin‖ dari hukum kedua termodinamika.

Pernyataan ―pendingin‖ ini mungkin tidak tampak berkaitan sangat dekat dengan pernyataan ―mesin‖. Tetapi pada kenyataannya, kedua pernyataan ini seutuhnya setara. Sebagai contoh, jika seseorang dapat membuat pendingin tanpa kerja, yang melanggar pernyataan ―pendingin‖ dari hukum kedua, seseorang dapat mengabungkannya dengan sebuah

(5)

mesin kalor, memompa kalor yang terbuang oleh mesin kembali ke reservoir panas untuk dipakai kembali. Meski gabungan ini akan melanggar pernyataan ―mesin‖ dari hukum kedua, karena selisih efeknya akan menarik selisih panas sejumlah dari reservoir panas dan mengubah seutuhnya menjadi kerja W.

Perubahan kerja menjadi panas, seperti pada gesekan atau aliran fluida kental (viskos) dan aliran panas dari panas ke dingin melewati sejumlah gradien suhu, adalah suatu proses irreversibel. Pernyataan ―mesin‖ dan ―pendingin‖ dari hukum kedua menyatakan bahwa proses ini hanya dapat dibalik sebagian saja. Misalnya, gas selalu mengalami kebocoran secara spontan melalui suatu celah dari daerah bertekanan tinggi ke daerah bertekanan rendah. Gas-gas dan cairan-cairan yang dapat bercampur bila dibiarkan akan selalu tercampur dengan sendirinya dan bukannya terpisah. Hukum kedua termodinamika adalah sebuah pernyataan dari aspek sifat searah dari proses-proses tersebut dan banyak proses ireversibel lainnya. Perubahan energi adalah aspek utama dari seluruh kehidupan tanaman dan hewan serta teknologi manusia, maka hukum kedua termodinamika adalah dasar terpenting dari dunia tempat makhluk hidup tumbuh dan berkembang.

Dua formulasi dari hukum kedua termodinamika yang berguna untuk memahami konversi energi panas ke energi mekanik, yaitu formulasi yang dikemukakan oleh Kelvin-Planck dan Rudolf Clausius. Adapun hukum kedua termodinamika dapat dinyatakan sebagai berikut :

1. Formulasi Kelvin-Planck

“Tidak mungkin untuk membuat sebuah mesin kalor yang bekerja dalam suatu siklus yang semata-mata mengubah energi panas yang diperoleh dari suatu sumber pada suhu tertentu seluruhnya menjadi usaha mekanik.” Dengan kata lain, formulasi kelvin-planck menyatakan bahwa tidak ada cara untuk mengambil energi panas dari lautan dan menggunakan energi ini untuk menjalankan generator listrik tanpa efek lebih lanjut, misalnya pemanasan atmosfer. Oleh karena itu, pada setiap alat atau mesin memiliki nilai efisiensi tertentu. Efisiensi menyatakan nilai perbandingan dari usaha mekanik yang diperoleh dengan energi panas yang diserap dari sumber suhu tinggi.

(6)

2. Formulasi Clausius

“Tidak mungkin untuk membuat sebuah mesin kalor yang bekerja dalam suatu siklus yang semata-mata memindahkan energi panas dari suatu benda dingin ke benda panas”. Dengan kata lain, seseorang tidak dapat mengambil energi dari sumber dingin (suhu rendah) dan memindahkan seluruhnya ke sumber panas (suhu tinggi) tanpa memberikan energi pada pompa untuk melakukan usaha. (Marthen Kanginan, 2007: 249-250)

Berbeda dari hukum pertama, hukum kedua ini mempunyai berbagai perumusan. Kelvin mengetengahkan suatu permasalahan dan Planck mengetengahkan perumusan lain. Karena pada hakekatnya perumusan kedua orang ini mengenai hal yang sama maka perumusan itu digabung dan disebut perumusan Kelvin-Planck bagi hukum kedua termodinamika. Perumusan ini diungkapkan demikian :

“Tidak mungkin membuat pesawat yang kerjanya semata-mata menyerap kalor dari sebuah reservoir dan mengubahnya menjadi usaha”

Oleh Clausius, hukum kedua termodinamika dirumuskan dengan ungkapan :

“Tidak mungkin membuat pesawat yang kerjanya hanya menyerap kalor dari reservoir bertemperatur rendah dan memindahkan kalor ini ke reservoir yang bertemperatur tinggi, tanpa disertai perubahan lain”.

APLIKASI HUKUM TERMODINAMIKA II

2.2 Reservoir Energi Panas (Thermal Energy Reservoir)

Thermal Energy Reservoir atau lebih umum disebut dengan reservoir energi panas adalah suatu benda atau zat yang mempunyai kapasitas energi panas yang besar. Artinya reservoir dapat menyerap atau menyuplai sejumlah energi panas yang tidak terbatas tanpa mengalami perubahan temperatur. Contoh dari benda atau zat besar yang disebut reservoir adalah samudera, danau, dan sungai untuk benda besar yang berwujud air dan atmosfer untuk benda berwujud besar di udara. Sistem dua fasa juga dapat dimodelkan sebagau suatu reservoir, karena sistem dua fasa dapat menyerap dan melepaskan panas tanpa mengalami perubahan temperatur. Dalam prakteknya, ukuran sebuah reservoir menjadi relatif. Misalnya sebuah ruangan dapat disebut sebagai sebuah reservoir dalam suatu analisa panas yang dilepaskan oleh sebuah televisi.

(7)

Reservoir yang menyuplai energi disebut dengan saurce dan reservoir yang menyerap energi disebut dengan sink.

2.3 Mesin Kalor (Heat Engines)

Mesin kalor adalah sebutan untuk alat yang berfungsi mengubah energi panas menjadi energi mekanik.

Sebuah mesin kalor dapat di karakteristikkan sebagai berikut:

1. Mesin kalor menerima panas dari source bertemperatur tinggi (energi matahari, bahan bakar, reaktor nuklir, dll)

2. Mesin kalor mengkonvensi sebagian panas menjadi kerja (umumnya dalam bentuk poros yang berputar.

3. Mesin kalor membuang sisa panas ke sink bertemperatur rendah. 4. Mesin kalor beroperasi dalam sebuah siklus.

Sebuah alat produksi kerja yang paling tepat mewakili definisi dari mesin kalor adalah pembangkit listrik tenaga air, yang merupakan mesin pembakaran luar dimana fluida kerja mengalami siklus termodinamika yang lengkap.

Mesin kalor, sebagai contoh seperti motor bakar atau mesin letup pada mobil, adalah suatu alat/sistem yang berfungsi untuk mengubah energi kalor/energi panas menjadi energi usaha/energi mekanik.

. Ciri utama mesin kalor atau mesin panas adalah sebagai berikut: 1. Berlangsung secara berulang (siklus),

2. Hasil yang diharapkan dari siklus mesin ini adalah usaha mekanik,

3. Usaha ini merupakan hasil konversi dari kalor yang diserap dari reservoar panas, Tidak semua kalor yang keluar dan terambil dari reservoar panas dapat dikonversikan menjadi usaha mekanik. Ada yang dibuang ke reservoar dingin dalam bentuk kalor pada suhu rendah.

(8)

Pernyataan Kelvin-Plank Untuk Mesin Kalor

Melihat karaktristik dari sebuah mesin kalor, maka tidak ada sebuah mesin kalor yang dapat mengubah semua panas yang diterima kemudian mengubahnya semua menjadi kerja. Pernyataan tersebut dimuat sebuah pernyataan oleh Kelvin-Plank yang berbunyi;

―Adalah tidak mungkin untuk sebuah alat atau mesin yang beroperasi dalam sebuah siklus yang menerima panas dari sebuah reservoir tunggal dan memproduksi sejumlah kerja bersih.”

Pernyataan diatas hanya diperuntukkan pada mesin kalor, dapat diartikan sebagai tidak ada sebuah mesin/alat yang bekerja dalam sebuah siklus menerima panas dari reservoir bertemperatur tinggi dan mengubah panas tersebut seluruhnya menjadi kerja bersih. Atau dengan kata lain tidak ada sebuah mesin kalor yang mempunyai efisiensi 100%.

2.2.1 Mesin Diesel

Mesin diesel adalah sejenis mesin pembakaran dalam lebih spesifik lagi, sebuah mesin pemicu kompresi (pemberi tekanan yang tinggi ), dimana bahan bakar dinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi).

Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang (lihat biodiesel). Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering. II. SIKLUS DIESEL

Berbeda dengan mesin bensin(Otto), pembakaran gas dilakukan dengan memberikan kompresi hingga tekanannya tinggi. Untuk perbandingan tekanan yang sama , mesin Otto mempunyai efisiensi yang lebih besar dibandingkan dengan mesin Diesel karena itu diesel bekerja pada perbandingan tekanan yang tinggi untuk mencapai efisiensi yang tinggi.

(9)

Prinsip Kerja Mesin Diesel

Prinsip kerja mesin diesel adalah merubah energi kimia menjadi energi mekanis. Energi kimia di dapatkan melalui proses reakasi kimia (pembakaran) dari bahan bakar (solar) dan oksidiser (udara) di dalam silinder (ruang bakar).Pada mesin diesel ruang bakarnya bisa terdiri dari satu atau lebih tergantung pada penggunaannya dan dalam satu silinder dapat terdiri dari satu atau dua torak. Pada umumnya dalam satu silinder motor diesel hanya memiliki satu torak.

Tekanan gas hasil pembakaran bahan bakar dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.

Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel.

Pada mesin Diesel, dibuat ‖ruangan‖ sedemikian rupa sehigga pada ruang itu akan terjadi peningkatan suhu hingga mencapai ‖titik nyala‖ yang sanggup ‖membakar‖ minyak

(10)

bahan bakar. Pemampatan yang biasanya digunakan hingga mencapai kondisi ‖terbakar‖ itu biasanya 18 hingga 25 kali dari volume ruangan normal. Sementara suhunya bisa naik mencapai 500°C .

Cara kerjanya mudah, minyak solar yang sudah dicampur udara disemprotkan ke dalam ruangan yang telah ‖mampat‖ dan bersuhu tinggi, sehingga dapat langsung membuat ‖kabut solar‖ tadi meledak dan mendorong ‖piston‖ yang kemudian akan menggerakkan poros-poros roda, singkatnya menjadi TENAGA. Kejadian ini berulang-ulang dan tenaga yang muncul pun dapat dimanfaatkan untuk menggerakkan mobil, generator listrik, dan sebagainya.

Siklus Mesin Diesel

Gambar 1. Siklus Mesin diesel

Diagram ini menunjukkan siklus diesel ideal. Mula-mula udara ditekan secara adiabatik (Penekanan secara adiabatik menyebabkan suhu dan tekanan udara meningkat) (a-b), lalu dipanaskan pada tekanan konstan – penyuntik alias injector menyemprotkan solar dan terjadilah pembakaran (Karena suhu dan tekanan udara sudah sangat tinggi maka ketika solar disemprotkan ke dalam silinder, solar langsung terbakar Tidak perlu pakai busi lagi) (b-c), gas yang terbakar mengalami pemuaian adiabatik (c-d), pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan udara yang baru, masuk ke silinder v (d-a) Dari grafik ini, tampak bahwa untuk proses yang terjadi secara terus menerus (siklus), selalu ada kalor yang terbuang. Hal ini sesuai dengan penyataan Kelvin-Planck.

(11)

Dapat disimpulkan bahwa setiap mesin kalor pada dasarnya memiliki zat kerja tertentu. Zat kerja untuk mesin diesel adalah udara dan solar. Zat kerja biasanya menyerap kalor pada suhu yang tinggi (QH), melakukan usaha alias kerja (W), lalu membuang kalor sisa pada suhu yang lebih rendah (QL). Karena si energi kekal, maka QH = W + QL.

Karena efisiensi 100 % tidak bisa dicapai oleh mesin maka kita bisa menyimpulkan bahwa tidak mungkin semua kalor masukan (QH) digunakan untuk melakukan kerja. Pasti ada kalor yang terbuang (QL). Hal ini sesuai dengan hukum kedua termodinamika yaitu : Tidak mungkin ada mesin kalor (yang bekerja dalam suatu siklus) yang dapat mengubah semua kalor alias panas menjadi kerja seluruhnya (Hukum kedua termodinamika – pernyataan Kelvin-Planck). Aplikasi yang menggunakan mesin diesel yaitu mesin genset, kendaraan bermotor seperti bus, mobil serta alat transportasi lainnya. Mesin diesel juga dipakai untuk pembangkit listrik yang menghsilkan tegangan dalam jumlah besar.

2.2.2 Mesin Bensin

Mesin dua tak adalah mesin yang memerlukan dua kali gerakan piston naik turun untuk sekali pembakaran (agar diperoleh tenaga). Mesin tersebut banyak digunakan pada motor-motor kecil. Mesin dua tak menghasilkan asap sebagai sisa pembakaran dari oli pelumas. Mesin empat tak memerlukan empat kali gerakan piston untuk sekali pembakaran. Pada motor-motor besar biasa menggunakan mesin empat tak. Akan tetapi, sekarang banyak motor-motor kecil bermesin empat tak. Mesin jenis ini sedikit menghasilkan sisa pembakaran karena bahan bakarnya hanya bensin murni.

Sistem-sistem dalam mesin bensin mencakup : * Sistem bahan bakar (fuel system). * Sistem pengapian (ignition system).

* Sistem pemasukan udara dalam ruang bakar (intake system). * Sistem pembuangan udara hasil pembakaran (exhaust system). * Sistem katup (valve mechanism)

* Sistem pelumasan (lubricating system) * Sistem pendinginan (cooling system). * Sistem penyalaan (starting system).

(12)

Gambar 2. Siklus Mesin Bensin (Siklus Otto)

Campuran udara dan uap bensin masuk ke dalam silinder (a). Selanjutnya campuran udara dan uap bensin ditekan secara adiabatik (a-b). Perhatikan bahwa volume silinder berkurang… Campuran udara dan uap bensin dipanaskan pada volume konstan – campuran dibakar (b-c). Gas yang terbakar mengalami pemuaian adiabatik (c-d). Pendinginan pada volume konstan – gas yang terbakar dibuang ke pipa pembuangan dan campuran udara + uap bensin yang baru, masuk ke silinder (d-a).

Proses pembakaran pada tekanan yang tinggi akan menghasilkan suhu dan tekanan (P = F/A) yang sangat besar. Akibatnya gaya dorong (F = PA) yang dihasilkan selama proses

(13)

pemuaian menjadi sangat besar. Mesin motor atau mobil menjadi lebih bertenaga. Walaupun tidak ditekan, campuran udara dan uap bensin bisa terbakar ketika busi memercikkan bunga api. Tapi suhu dan tekanan gas yang terbakar tidak terlalu tinggi sehingga gaya dorong yang dihasilkan juga kecil. Akibatnya mesin menjadi kurang bertenaga. Proses perubahan bentuk energi dan perpindahan energi pada mesin pembakaran dalam empat langkah di atas bisa dijelaskan seperti ini : Ketika terjadi proses pembakaran, energi potensial kimia dalam bensin + energi dalam udara berubah menjadi kalor alias panas. Sebagian kalor berubah menjadi energi mekanik batang piston dan poros engkol, sebagian kalor dibuang melalui pipa pembuangan (knalpot). Sebagian besar energi mekanik batang piston dan poros engkol berubah menjadi energi mekanik kendaraan (kendaraan bergerak), sebagian kecil berubah menjadi kalor alias panas sedangkan panas timbul akibat adanya gesekan. Secara termodinamika, siklus Otto memiliki 4 buah proses termodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap).

2.3.1 Pompa Kalor

Pompa kalor (heat pump) adalah mesin yang memindahkan panas dari satu lokasi (atau sumber) ke lokasi lainnya menggunakan kerja mekanis. Sebagian besar teknologi pompa kalor memindahkan panas dari sumber panas yang bertemperatur rendah ke lokasi bertemperatur lebih tinggi. Contoh yang paling umum adalah lemari es, freezer, pendingin ruangan, dan sebagainya. Contoh lain adalah dalam mesin pembangkit tenaga listrik. Pada banyak penggunaan, untuk mesin yang sama dapat dipakai sebagai refrigerator dan juga sebagai pompa kalor. Pada beberapa situasi, baik efek pendinginan pada satu tingkat temperatur maupun efek pemanasan pada temperatur lain bisa saja dinginkan, dan dengan demikian sistem akan beroperasi serentak sebagai mesin refrigerasi dan sebagai pompa kalor.

Pompa panas pada dasarnya adalah sebuah refrigerator yang digunakan untuk memompa energi termal dari tandon dingin (udara dingin) ke tandon panas (udara panas). Tandon panas merupakan sistem ideal dengan kapasitor panas yang demikian besar sehingga dapat menyerap atau memberikan panas tanpa perubahan temperatur yang berarti.

Sistem pompa kalor itu tidak hanya berfungsi untuk mendinginkan atau mempertahankan temperatur sumber kalor yang rendah. Tetapi juga dapat mengalirkan energi kalor ke suatu

(14)

benda atau penyerap kalor untuk menaikkan temperatur atau mempertahankan temperaturnya pada tingkat yang tinggi secara baik. Dalam ilmu termodinamika, refrigerator dan pompa kalor (heat pump) relatif sama.

Gambar 3. Perbedaan Cara Kerja Mesin Pemanas dan Refrigerator

Perhatikan pada gambar 6(a), Q1 adalah total kalor yang diambil dari reservoar panas selama satu siklus, bertanda positif karena kalor masuk kedalam sistem (siklus). Sedangkan W adalah usaha yang dilakukan oleh sistem selama satu siklus, bertanda negatif karena sistem melakukan usaha terhadap lingkungan. Selanjutnya kalor Q adalah kalor yang mengalir dari sistem ke reservoar dingin.

Untuk mesin pendingin, prinsip kerjanya adalah merupakan kebalikan dari mesin pemanas, seperti ditunjukkan pada gambar 6(b). Tanda Q2 dan W pada gambar ini adalah kebalikan dari gambar 6(a).

Hukum Termodinamika II Pernyataan Clausius Untuk Pompa Kalor

Terdapat dua pernyataan dari hukum termodinamika kedua pernyataan kelvin-plank yang diperuntukkan untuk mesin kalor, dan pernyataan clausius yang diperuntukkan untuk mesin pendingin/pompa kalor. Pernyataan clausis dapat diungkapkan sebagai berikut:

(15)

“Adalah tidak mungkin membuat sebuah alat yang beroperasi dalam sebuah siklus tanpa adanya efek dari luar untuk mentransfer panas dari media bertemperatur rendah kemedia bertemperatur tinggi.”

Telah kita ketahui bahwa panas akan berpindah dari media bertemperatur tinggi kemedia bertemperatur rendah. Pernyataan clausis tidak mengimplikasikan bahwa membuat sebuah alat siklus yang dapat memindahkan panas dari terperatur rendah ke media bertemperatur tinggi adalah tidak mungkin dibuat. Hal tersebut dapat terjadi asalkan ada efek luar yang dalam kasus tersebut dilakukan kompresor yang mendapat energi dari energi listrik.

2.3.1 Air Conditioner (Gambar Siklus, Penjelasan prosesnya a ke b ke c), alat yang terlibat

Air Conditioner (AC) merupakan sebuah alat yang digunakan untuk pengkondisian udara didalam ruangan. Berikut adalah prinsip kerja Air Conditioner (AC) yang sebenarnya punya prinsip sama dengan Lemari Es yang Anda punya di rumah.

Prinsip kerja AC mirip seperti lemari es, AC beroperasi untuk mentransfer kalor keluar dari lingkungan yang sejuk kelingkungan yang hangat. Meskipun mirip namun perincian perancangan sebenarnya berbeda karena penyejuk udara mengambil kalor QL dari dalam ruangan atau gedung pada temperatur rendah , dan membuang kalor Qh keluar lingkungan pada temperatur yang tinggi.

Alat pada AC itu terdiri dari pompa compressor, evaporator, penukar panas, dan katup pemuaian dan prinsip kerja siklus pendinginan udara dapat dilihat pada gambar.

(16)

Secara garis besar prinsip kerja air conditioner adalah sebagai berikut:

1. Udara di dalam ruangan dihisap oleh kipas sentrifugal yang ada dalam evaporator dan udara bersentuhan dengan pipa coil yang berisi cairan refrigerant. Dalam hal ini refrigerant akan menyerap panas udara sehingga udara menjadi dingin dan refrigerant akan menguap dan dikumpulkan dalam penampung uap.

2. Tekanan uap yang berasal dari evaporator disirkulasikan menuju kondensor, selama proses kompresi berlangsung, temperatur dan tekanan uap refrigerant menjadi naik dan ditekan masuk ke dalam kondensor.

3. Untuk menurunkan tekanan cairan refrigerant yang bertekanan tinggi digunakan katup ekspansi untuk mengatur laju aliran refrigerant yang masuk dalam evaporator.

4. Pada saat udara keluar dari condensor udara menjadi panas. Uap refrigerant memberikan panas kepada udara pendingin dalam condensor menjadi embun pada pipa kapiler. Dalam mengeluarkan panas pada condensor, dibantu oleh kipas propeller.

5. Pada sirkulasi udara dingin terus-menerus dalam ruangan, maka perlu adanya thermostat untuk mengatur suhu dalam ruangan atau sesuai dengan keinginan.

(17)

6. Udara dalam ruang menjadi lebih dingin dibanding diluar ruangan sebab udara di dalam ruangan dihisap oleh sentrifugal yang terdapat pada evaporator kemudian terjadi udara bersentuhan dengan pipa/coill evaporator yang didalamnya terdapat gas pendingin (freon). Di sini terjadi perpindahan panas sehingga suhu udara dalam ruangan relatif dingin dari sebelumnya.

7. Suhu di luar ruangan lebih panas dibanding di dalam ruangan, sebab udara yang di dalam ruangan yang dihisap oleh kipas sentrifugal dan bersentuhan dengan evaporator, serta dibantu dengan komponen AC lainnya, kemudian udara dalam ruangan dikeluarkan oleh kipas udara kondensor. Dalam hal ini udara di luar ruangan dapat dihisap oleh kipas sentrifugal dan masuknya udara melalui kisi-kisi yang terdapat pada AC.

8. Gas refrigerant bersuhu tinggi saat akhir kompresi di condensor dengan mudah dicairkan dengan udara pendingin pada sistem air cooled atau uap refrigerant menyerap panas udara pendingin dalam condensor sehingga mengembun dan menjadi cairan di luar pipa evaporator.

9. Karena air atau udara pendingin menyerap panas dari refrigerant, maka air atau udara tersebut menjadi panas pada waktu keluar dari kondensor. Uap refrigerant yang sudah menjadi cair ini, kemudian dialirkan ke dalam pipa evaporator melalui katup ekspansi. Kejadian ini akan berulang kembali seperti di atas.

10. Dan sebagai cairan yang bersifat sebagai penghantar dari kalor yang terdapat pada udara adalah freon (diantaranya CCl2F2). Pada gambar diatas di sebelah kiri mengandung freon yang bersuhu rendah dan tekanan rendah sedangkan sisi kanan mengandung suhu yang tinggi dan tekanan tinggi.

Jadi intinya prinsip pendinginan udara pada AC melibatkan siklus refrigerasi, yakni udara didinginkan oleh refrigerant/pendingin (biasanya freon), lalu freon ditekan menggunakan kompresor sampai tekanan dan suhunya naik, kemudian didinginkan oleh udara lingkungan sehingga mencair. Proses tersebut diatas berjalan berulang-ulang sehingga menjadi suatu siklus yang disebut siklus pendinginan pada udara yang berfungsi mengambil kalor dari udara dan membebaskan kalor ini ke tempat lain semisal di luar ruangan.

(18)

Kalor secara alami mengalir dari temperatur tinggi ke temperatur rendah. Penyejuk udara melakukan kerja untuk melakukan yang sebaliknya (membuat kalor mengalir dari dingin ke panas). Kita bisa mengatakan bahwa penyejuk udara ―memompa‖ kalor dari daerah dingin kedaerah yang lebih panas, melawan kecenderungan alami kalor untuk mengalir dari panas ke dingin, sebagaimana air dapat di pompa menaiki bukit, melawan kecenderungan alami untuk mengalir ke bawah bukit.

Prinsip Kerja AC

Prinsip kerja AC dapat dibagi 3 bagian :

1. Kerja bahan pendingin, Setelah ke dalam kompresor diisi gas freon , maka gas itu dapat dikeluarkan kembali dari silinder oleh kompresor untuk diteruskan ke kondensor, setelah itu menuju saringan, setelah itu menuju ke pipa kapiler dan akan mengalami penahanan. Adanya penahanan ini akan menimbulkan suatu tekanan di dalam pipa kondensor. Sebagai akibatnya gas tersebut menjadi cairan di dalam pipa kondensor.Dari pipa kapiler cairan tersebut terus ke evaporator dan terus menguap untuk menyerap panas.Setelah menjadi gas terus dihisap lagi ke kompresor.Demilian siklus kembali terulang.

2. Kerja Aliran Udara, kerja aliran udara ada 2 bagian yang terpisah yaitu : bagian muka atau bagian depan dan bagian belakang atau bagian yang panas. Bagian depan bagian dari evaporator merupakan bagian dingin, dimana fan menghembuskan udara meniup evaporator sehingga udara yang keluar dari bagian depan udara dingin. Sedangkan bagian belakang fan meniup kondensor untuk mendinginkan sehingga udara yang keluar udara panas dari kondensor.

3. Kerja Alat-alat Listrik, Alat-alat listrik dari AC adalah bagian-bagian yang paling banyak variasinya dan paling banyak menimbulkan gangguan-gangguan. Pada prinsipnya dapat dibagi dalam 2 bagian : fan motor dan kompresor dengan alat-alat pengaman dan pengaturnya.

2.3.2. Kulkas (Gambar Siklus, Penjelasan prosesnya a ke b ke c), alat yang terlibat Lemari Es merupakan kebalikan mesin kalor. Lemari Es beroperasi untuk mentransfer kalor keluar dari lingkungan yang sejuk kelingkungn yang hangat.Dengan melakukan kerja W, kalor diambil dari daerah temperatur rendah TL (katakanlah, di dalam

(19)

lemari Es), dan kalor yang jumlahnya lebih besar dikeluarkan pada temperatur tinggi Th (ruangan).

Sistem lemari Es yang khas, motor kompresor memaksa gas pada temperatur tinggi melalui penukar kalor (kondensor) di dinding luar lemari Es dimana Qh dikeluarkan dan gas mendingin untuk menjadi cair. Cairan lewat dari daerah yang bertekanan tinggi , melalui katup, ke tabung tekanan rendah di dinding dalam lemari es, cairan tersebut menguap pada tekanan yang lebih rendah ini dan kemudian menyerap kalor (QL) dari bagian dalam lemari es. Fluida kembali ke kompresor dimana siklus dimulai kembali.

Lemari Es yang sempurna (yang tidak membutuhkan kerja untuk mengambil kalor dari daerah temperatur rendah ke temperatur tinggi) tidak mungkina ada.Ini merupakan pernyataan Clausius mengenai hukum Termodinamika kedua.Kalor tidak mengalir secara spontan dari benda dingin ke benda panas.Dengan demikian tidak aka nada lemari Es yang sempurna.

(20)

Penjelasan Siklus Refrigerasi:

 A-B : Un-useful superheat (kenaikan temperatur yang menambah beban kompresor). Sebisa mungkin dihindari kontak langsung antara pipa dan udara sekitarnya dengan cara menginsulasi pipa suction.

 B-C : proses kompresi (gas refrigerant bertekanan dan temperatur rendah dinaikkan tekanannya sehingga temperaturnya lebih tinggi dari media pendingin di kondenser. Pada proses kompresi ini refrigerant mengalami superheat yang sangat tinggi.

 C-D : Proses de-superheating (temperatur refrigeran mengalami pemurunan, tetapi tidak mengalami perubahan wujud, refrigeran masih dalam bentuk gas)

 D-E : Proses kondensasi (terjadi perubahan wujud refrigeran dari gas menjadi cair tanpa merubah temperaturnya.

 E-F : Proses sub-cooling di kondenser ( refrigeran yang sudah dalam bentuk cair masih membuang kalor ke udara sekitar sehingga mengalami penurunan temperatur). Sangat berguna untuk memastikan refrigeran dalam keadaan cair sempurna.

 F-G : Proses sub-cooling di pipa liquid (Refrigeran cair masih mengalami penurunan temperatur karena temperaturnya masih diatas temperatur udara sekitar). Pipa liquid line tidak diinsulasi, agar terjadi perpindahan kalor ke udara, tujuannya untuk menambah kapasitas refrigerasi. (Note: dalam beberapa kasus pipa liquid harus diinsulasi, nanti dijelaskan dalam pembahasan khusus).

 G-H : Proses ekspansi/penurunan tekanan (Refrigeran dalam bentuk cair diturunkan tekanannya sehingga temperatur saturasinya berada dibawah temperatur ruangan yang didinginkan, tujuannya agar refrigeran cair mudah menguap di evaporator dengan cara menyerap kalor dari udara yang dilewatkan ke evaporator)

 Terjadi perubahan wujud refrigeran dari cair menjadi bubble gas sekitar 23% karena penurunan tekanan ini. Jadi refrigeran yang keluar dari katup ekspansi / masuk ke Evaporator dalam bentuk campuran sekitar 77% cairan dan 23% bubble gas.

 H-I : Proses evaporasi (refrigeran yang bertemperatur rendah menyerap kalor dari udara yang dilewatkan ke evaporator. Terjadi perubahan wujud refrigeran dari cair menjadi gas. Terjadi juga penurunan temperatur udara keluar dari evaporator karena kalor dari udara diserap oleh refrigeran)

(21)

 I-A : Proses superheat di evaporator: Gas refrigeran bertemperatur rendah masih menyerap kalor dari udara karena temperaturnya yang masih dibawah temperatur udara. Temperatur refrigeran mengalami kenaikan). Superheat ini berguna untuk memastikan refrigeran dalam bentuk gas sempurna sebelum masuk ke Kompresor.

Perbandingan Mesin Kalor dan Pompa Kalor

Dalam ilmu termodinamika, refrigerator dan pompa kalor (heat pump) relatif sama. Perbedaannya, terletak hanya pada proses kerjanya. Mesin kalor adalah alat yang berfungsi untuk mengubah energi panas menjadi energi mekanik. Misalnya pada mesin mobil, energi panas hasil pembakaran bahan bakar diubah menjadi energi gerak mobil. Tetapi, dalam semua mesin kalor kita ketahui bahwa pengubahan energi panas ke energi mekanik selalu disertai pengeluaran gas buang, yang membawa sejumlah energi panas. Dengan demikian, hanya sebagian energi panas hasil pembakaran bahan bakar yang

Mesin kalor membuat energi mengalir dari lokasi yang lebih panas ke lokasi yang lebih dingin, menghasilkan fraksi dari proses tersebut sebagai kerja. Kebalikannya, pompa kalor membutuhkan kerja untuk memindahkan energi termal dari lokasi yang lebih dingin ke lokasi yang lebih panas.

Air condtioner pada dasarnya adalah sebuah mesin pendingin tetapi yang didinginkan disini bukan ruang refrigerasi melainkan sebuah ruangan/gedung atau yang lain.

2.4. Mesin Uap (Bolak-Balik)

Terdapat dua jenis mesin uap, yakni mesin uap tipe bolak balik dan mesin uap turbin (turbin uap). Rancangan alatnya sedikit berbeda tetapi kedua jenis mesin uap ini mempunyai kesamaan, yakni menggunakan uap yang dipanaskan oleh pembakaran minyak, gas, batu bara atau menggunakan energi nuklir.

(22)

Air dalam wadah biasanya dipanaskan pada tekanan yang tinggi. Karena dipanaskan pada tekanan yang tinggi maka proses pendidihan air terjadi pada suhu yang tinggi (ingat pembahasan mengenai pendidihan – Teori kinetik gas). Biasanya air mendidih (air mendidih = air berubah menjadi uap) sekitar suhu 500 oC .Suhu berbanding lurus dengan tekanan.

Semakin tinggi suhu uap, semakin besar tekanan uap. Uap bersuhu tinggi atau uap bertekanan

tinggi tersebut bergerak melewati katup masukan dan memuai terhadap piston. Ketika memuai, uap mendorong piston sehingga piston meluncur ke kanan. Dalam hal ini, sebagian kalor alias panas pada uap berubah menjadi energi kinetik (uap melakukan kerja terhadap piston — W = Fs). Pada saat piston bergerak ke kanan, roda yang dihubungkan dengan piston berputar (1). Setelah melakukan setengah putaran, roda menekan piston kembali ke posisinya semula (2). Ketika piston bergerak ke kiri, katup masukan dengan sendirinya tertutup, sebaliknya katup pembuangan dengan sendirinya terbuka. Uap tersebut dikondensasi oleh kondensor sehingga berubah menjadi embun (embun = air yang berasal dari uap). Selanjutnya, air yang ada di dalam kondensor dipompa kembali ke wadah untuk dididihkan lagi. Demikian seterusnya, Karena prosesnya terjadi secara berulang-ulang maka piston bergerak ke kanan dan ke kiri secara terus menerus. Karena piston bergerak ke kanan dan ke kiri secara terus menerus maka roda pun berputar secara terus menerus. Putaran roda biasanya digunakan untuk menggerakan sesuata(roda,dll)

Proses perubahan bentuk energi dan perpindahan energi pada mesin uap tipe bolak balik di atas bisa dijelaskan seperti ini : Bahan bakar fosil (batu bara/minyak/gas) memiliki energi potensial kimia. Ketika bahan bakar fosil dibakar, energi potensial kimia berubah bentuk

(23)

menjadi kalor alias panas. Kalor alias panas yang diperoleh dari hasil pembakaran bahan bakar fosil digunakan untuk memanaskan air (kalor berpindah menuju air dan uap). Selanjutnya sebagian kalor pada uap berubah bentuk menjadi energi kinetik translasi piston, sebagian lagi diubah menjadi energi dalam air. Sebagian besar energi kinetik translasi piston berubah menjadi energi kinetik rotasi roda pemutar, sebagian kecil berubah menjadi kalor alias panas (kalor alias panas timbul akibat adanya gesekan antara piston dengan silinder). Jika digunakan untuk membangkitkan listrik maka energi kinetik rotasi roda pemutar bentuk menjadi energi listrik.

2.5 Turbin Uap

Pada dasarnya prinsip kerja turbin uap sama dengan mesin uap tipe bolak balik. Bedanya mesin uap tipe bolak balik menggunakan piston, sedangkan turbin uap menggunakan turbin. Pada mesin uap tipe bolak balik, kalor diubah terlebih dahulu menjadi energi kinetik translasi piston. Setelah itu energi kinetik translasi piston diubah menjadi energi kinetik rotasi roda pemutar. sedangkan, pada turbin uap, kalor langsung diubah menjadi energi kinetik rotasi turbin.Turbin bisa berputar akibat adanya perbedaan tekanan. Suhu uap sebelah atas bilah jauh lebih besar daripada suhu uap sebelah bawah bilah (bilah tuh lempeng tipis yang ada di tengah turbin). Ingat ya, suhu berbading lurus dengan tekanan. Karena suhu uap pada sebelah atas bilah lebih besar dari suhu uap pada sebelah bawah bilah maka tekanan uap pada sebelah atas bilah lebih besar daripada tekanan uap pada sebelah bawah bilah. Adanya perbedaan tekanan menyebabkan si uap mendorong bilah ke bawah sehingga turbin berputar. Arah putaran turbin tampak seperti gambar di bawah…

Perlu diketahui bahwa prinsip kerja mesin uap didasarkan pada diagram perpindahan energi yang telah dijelaskan di atas. Dalam hal ini, energi mekanik bisa dihasilkan apabila kita

(24)

membiarkan kalor mengalir dari benda atau tempat bersuhu tinggi menuju benda atau tempat bersuhu rendah. Dengan demikian, perbedaan suhusangat diperlukan pada mesin uap.

Apabila diperhatikan cara kerja mesin uap tipe bolak balik, tampak bahwa piston tetap bisa bergerak ke kanan dan ke kiri walaupun tidak ada perbedaan suhu (tidak ada kondensor dan pompa). Piston bisa bergerak ke kanan akibat adanya pemuaian uap bersuhu tinggi atau uap bertekanan tinggi. Dalam hal ini, sebagian kalor pada uap berubah menjadi energi kinetik translasi piston. Energi kinetik translasi piston kemudian berubah menjadi energi kinetik rotasi roda pemutar. Setelah melakukan setengah putaran, roda akan menekan piston kembali ke kiri. Ketika roda menekan piston kembali ke kiri, energi kinetik rotasi roda berubah lagi menjadi energi kinetik translasi piston. Ketika piston bergerak ke kiri, piston mendorong uap yang ada dalam silinder. Pada saat yang sama, katup pembuangan terbuka. Dengan demikian, uap yang didorong piston tadi akan mendorong temannya ada di sebelah bawah katup pembuangan. sedangkan, apabila suhu uap yang berada di sebelah bawah katup pembuangan = suhu uap yang didorong piston, maka semua energi kinetik translasi piston akan berubah lagi menjadi energi dalam uap. Energi dalam berbanding lurus dengan suhu. Jika energi dalam uap bertambah maka suhu uap meningkat. Suhu berbanding lurus dengan tekanan. Jika suhu uap meningkat maka tekanan uap juga meningkat. Dengan demikian, tekanan uap yang dibuang melalui katup pembuangan = tekanan uap yang masuk melalui katup masukan. Piston akan tetap bergerak ke kanan dan ke kiri seterusnya tetapi tidak akan ada energi kinetik total yang bisa dimanfaatkan (tidak ada kerja total yang dihasilkan). Jadi energi kinetik yang diterima oleh piston selama proses pemuaian (piston bergerak ke kanan) akan dikembalikan lagi kepada uap selama proses penekanan (piston bergerak ke kiri).

Siklus Termo Dalam Mesin Uap

Siklus Rankine(siklus dalam mesin uap) adalah siklus termodinamika yang mengubah panas menjadi kerja. Panas disuplai secara eksternal pada aliran tertutup, yang biasanya menggunakan air sebagai fluida yang bergerak. Siklus ini menghasilkan 80% dari seluruh energi listrik yang dihasilkan di seluruh dunia. Siklus ini dinamai untuk mengenang ilmuwan Skotlandia, William John Maqcuorn Rankine.

(25)

Siklus Rankine adalah model operasi mesin uap panas yang secara umum ditemukan di pembangkit listrik. Sumber panas yang utama untuk siklus Rankine adalah batu bara,gas alam, minyak bumi, nuklir, dan panas matahari.

Siklus Rankine terkadang diaplikasikan sebagai siklus Carnot, terutama dalam menghitung efisiensi. Perbedaannya hanyalah siklus ini menggunakan fluida yang bertekanan, bukan gas. Efisiensi siklus Rankine biasanya dibatasi oleh fluidanya. Tanpa tekanan yang mengarah pada keadaansuper kritis, range temperatur akan cukup kecil. Uap memasuki turbin pada temperatur 565 oC (batas ketahananstainless steel) dan kondenser bertemperatur sekitar 30 oC. Hal ini memberikan efisiensi Carnot secara teoritis sebesar 63%, namun kenyataannya efisiensi pada pembangkit listrik tenaga batu bara sebesar 42%.

Fluida pada Siklus Rankine mengikuti aliran tertutup dan digunakan secara konstan. Berbagai jenis fluida dapat digunakan pada siklus ini, namun air dipilih karena berbagai karakteristik fisika dan kimia, seperti tidak beracun, terdapat dalam jumlah besar, dan murah.

Terdapat 4 proses dalam siklus Rankine, setiap siklus mengubah keadaan fluida (tekanan dan/atau wujud).

1. Proses 1 : Fluida dipompa dari bertekanan rendah ke tekanan tinggi dalam bentuk cair. Proses ini membutuhkan sedikit input energi.

2. Proses 2 : Fluida cair bertekanan tinggi masuk ke boilerdi mana fluida dipanaskan hingga menjadi uap pada tekanan konstan menjadi uap jenuh.

3. Proses 3 : Uap jenuh bergerak menuju turbin, menghasilkan energi listrik. Hal ini mengurangi temperatur dan tekanan uap, dan mungkin sedikitkondensasi juga terjadi. 4. Proses 4 : Uap basah memasuki kondenser di mana uap diembunkan dalam tekanan

dan temperatur tetap hingga menjadi cairan jenuh.

Dalam siklus Rankine ideal, pompa dan turbin adalah isentropic, yang berarti pompa dan turbin tidak menghasilkan entropi dan memaksimalkan output kerja. Dalam siklus Rankine yang sebenarnya, kompresi oleh pompa dan ekspansi dalam turbin tidak isentropic. Dengan kata lain, proses ini tidak bolak-balik dan entropi meningkat selama proses. Hal ini meningkatkan tenaga yang dibutuhkan oleh pompa dan mengurangi energi yang dihasilkan oleh turbin. Secara khusus, efisiensi turbin akan dibatasi oleh terbentuknya titik-titik air selama ekspansi ke turbin akibat kondensasi. Titik-titik air ini menyerang turbin,

(26)

menyebabkan erosi dan korosi, mengurangi usia turbin dan efisiensi turbin. Cara termudah dalam menangani hal ini adalah dengan memanaskannya pada temperatur yang sangat tinggi.

Efisiensi termodinamika bisa didapatkan dengan meningkatkan temperatur input dari siklus. Terdapat beberapa cara dalam meningkatkan efisiensi siklus Rankine.

Tinjauan Hukum Termodinamika 2 untuk Siklus Rankine

“Berdasarkan Pernyatan Claussius bahwa tidak ada mesin yang menyerap seluruhnya kemudian mampu mengubah seluruh energi yang diserap sepenuhnya menjadi kerja atau usaha.”

(27)

Didalam cylinder mesin uap terdapat piston yang mempunyai piston rod yang dihubungkan dengan cross head yang berada diluar cylinder. Cross head dihubungkan oleh connecting rod dengan crank shaft (tidak tampak pada gambar), sehingga apabila piston bergerak kian kemari maka crank shaft dapat berputar. Slide valve yang mempunyai valve rod digerakkan oleh crank shaft melalui eksentrik, sehingga slide valve dapat bergerak kian kemari sambil membuka dan menutup dua buah lubang uap yang berhubungan dengan cylinder. Valve box dimana slide valve berada mempunyai dua saluran, saluran pemasukan yang dihubungkan dengan boiler untuk menyalurkan uap dengan tekanan tinggi (warna merah), dan saluran pembuangan yang dihubungkan dengan cerobong untuk membuang uap bekas (warna biru).

Pada waktu piston mencapai posisi paling kiri, maka slide valve akan membuka lubang uap cylinder bagian kiri sehingga uap dari boiler dapat masuk kedalam cylinder pada bagian kiri dari piston dan mendorong piston kekanan, sementara itu lubang uap sebelah kanan

(28)

dihubungkan dengan saluran pembuangan sehingga uap bekas dapat terbuang keluar melalui cerobong. Sebelum akhir langkah piston, lubang uap tersebut sudah ditutup oleh slide valve sehingga pasokan uap terhenti namun piston tetap bergerak kekanan karena ekpansi dari uap.

Pada waktu piston mencapai posisi paling kanan, maka slide valve akan membuka lubang uap cylinder bagian kanan sehingga uap dari boiler dapat masuk kedalam cylinder pada bagian kanan piston dan mendorong piston kekiri, sementara itu lubang uap sebelah kiri dihubungkan dengan saluran pembuangan sehingga uap bekas dapat terbuang melalui cerobong. Sebelum akhir langkah piston, lubang uap tersebut sudah ditutup oleh slide valve sehingga pasokan uap terhenti namun piston tetap bergerak kekanan karena ekpansi dari uap. Karena cross head dengan crank shaft dihubungkan oleh connecting rod, maka gerakan kian kemari dari piston tersebut akan diubah menjadi gerakan putaran dari crank shaft. Demikian selama ada pasokan uap dari boiler maka mesin uap akan merubah menjadi tenaga mekanis dengan gerakan putaran dari crank shaft.

Lokomotif uap biasanya mempunyai 2 buah mesin uap yang dipasang dikanan dan kiri lokomotif, gerakan putaran yang dihasilkan oleh kedua buah mesin uap tersebut langsung digunakan untuk memutarkan roda lokomatif sehingga mampu menarik seluruh rangkaian kereta api (lihat gambar dibawa ini).

(29)

BAB III KESIMPULAN

Dari pembahasan sebelumnya, maka dapat ditarik kesimpulan antara lain:

1. Termodinamika adalah ilmu tentang energi, yang secara spesifik membahas tentang hubung anantara energi panas dengan kerja.

2. Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah. Dengan kata lain, tidak semua proses di alam adalah reversibel (arahnya dapat dibalik). Hukum kedua termodinamika menyatakan bahwa kalor mengalir secara spontan dari benda bersuhu tinggi ke benda bersuhu rendah dan tidak pernah mengalir secara spontan dalam arah kebalikannya.

3. Terdapat dua pernyataan dari hukum termodinamika ke-2. Pernyataan kelvin-plank yang diperuntukkan untuk mesin kalor, dan pernyataan clausius yang diperuntukkan untuk mesin pendingin/pompa kalor.

4. Sebuah mesin kalor dapat di karakteristikkan sebagai berikut:

 Mesin kalor menerima panas dari source bertemperatur tinggi (energi matahari, bahan bakar, reaktor nuklir, dll)

 Mesin kalor mengkonvensi sebagian panas menjadi kerja (umumnya dalam bentuk poros yang berputar)

 Mesin kalor membuang sisa panas ke sink bertemperatur rendah.  Mesin kalor beroperasi dalam sebuah siklus.

(30)

DAFTAR PUSTAKA https://bagazz.wordpress.com/2011/03/04/prinsip-kerja-refrigerator-ac-ruangan/ http://citrapelanginusantara.blogspot.com/2011/04/siklus-refrigerasi.html http://harisistanto.wordpress.com/2010/08/06/bagaimana-cara-kerja-mesin-uap/ kk.mercubuana.ac.id/files/13015-3-860358017731.doc www.slideshare.net/tahangpette/penerapan-hukum-2-thermodinamika

Gambar

Gambar 1. Siklus Mesin diesel
Gambar 2. Siklus Mesin Bensin (Siklus Otto)
Gambar 3. Perbedaan Cara Kerja Mesin Pemanas dan Refrigerator

Referensi

Dokumen terkait

cv = kapasitas panas jenis ( kalor jenis ) gas ideal pada volume konstan.. panas jenis gas ideal pada suhu sedang

Pernyataan paling umum dari hukum pertama termodinamika ini berbunyi:“ Kenaikan energi internal dari suatu sistem termodinamika sebanding dengan jumlah energi panas yang

Tidak mungkin membuat mesin yang bekerja dalam suatu siklus mengambil kalor dari.. sebuah reservoir rendah dan memberikan pada reservoir bersuhu tinggi

Sehingga, bila sejumlah energi Q diberikan pada suatu bahan seberat m dan mengalami perubahan suhu sebesar ΔT, maka kalor jenis bahan.

Menurut Hukum 1 Termodinamika, dan dengan tidak adanya perubahan energi dalam, kerja netto “W eng ” yang dilakukan mesin kalor sama dengan energi netto yang ditransfer pada

*etiap mesin yang beroperasi seara reversible di antara dua reser"oir kalor disebut sebagai mesin =arnot& suatu mesin yang beroperasi dengan siklus yang berbeda dari

Berbeda dengan mesin kalor, mesin yang menggunakan sistem refrigerasi Carnot, seperti mesin Air-Blast Freezer, bekerja dengan menyerap energi bersuhu rendah lalu dikeluarkan dengan

Asumsi ini menyatakan bahwa tidak mungkin ada siklus termodinamika yang hanya menghasilkan transfer panas dari suatu objek dengan suhu lebih rendah ke suatu objek dengan suhu lebih