• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
10
0
0

Teks penuh

(1)

Characterization of Dual Extensions in

the Category of Banach Spaces

Caracterizaci´

on de Extensiones Duales en la

Categor´ıa de Espacios de Banach

Antonio A. Pulgar´ın (

[email protected]

)

Universidad de Extremadura

Departamento de Matem´aticas Badajoz, Spain

Abstract

The first part of this paper studies extensions in the category of Ba-nach spaces (natural equivalence of functors). The second part proves a result which characterizes the duality of extensions.

Key words and phrases: Extensions and liftings, twisted sums, quasi-linear maps.

Resumen

La primera parte de este art´ıculo estudia las extensiones en la cate-gor´ıa de los espacios de Banach (equivalencia natural de funtores). La segunda parte prueba un resultado que caracteriza la dualidad de tales extensiones.

Palabras y frases clave:Extensiones y subidas, sumas torcidas, apli-caciones casi-lineales.

Introduction

A short exact sequence in the category of Banach spaces is a diagram

0→Y →X →Z→0

where the image of each arrow is the kernel of the following.

(2)

The open mapping theorem ensures that Y is a subspace of X andZ is the corresponding quotient.

Given Banach spacesY and Z we define theextensions ofY byZ as the set

Ext(Y, Z) ={[X] : 0→Y →X →Z →0 is exact}

where [X1] = [X2] ⇔ there exists a bounded linear operatorT : X1 →X2 such that

0→Y →X1→Z→0

k T ↓ k

0→Y →X2→Z→0

is commutative.

A mapF :Z →Y is quasi-linear if it is homogeneous and there exists a constantK >0 such that for all z1, z2∈Z

kF(z1+z2)−(F z1+F z2)k ≤K(kz1k+kz2k).

Given a quasi-linear map F : Z →Y, the F-twisted sum of Y and Z is defined as the quasi-Banach space

Y ⊕FZ ={(y, z)∈Y ×Z :k(y, z)kF =ky−F zk+kzk<+∞}

Before beginning we shall define

Lin(Z, Y) ={F :Z→Y linear}

B(Z, Y) ={F:Z→Y bounded}

L(Z, Y) ={F :Z→Y bounded and linear}.

1

Three approaches

Definition 1.1. LetY, Z be two Banach spaces. We define

Q(Y, Z) ={[F] :F :Z→Y quasi-linear}

such that [F1] = [F2]⇔d(F1−F2, Lin(Z, Y))<+∞.

(3)

Proof. If

0→Y −→j X −→p Z →0

is an extension ofY byZthen we can consider a linear selectionL∈Lin(Z, X) and a bounded homogeneous selectionB ∈B(Z, X) because the quotient map is open. ThenF =B−L∈ Q(Y, Z) sincep(B−L) = 0,F is homogeneous and

kF(z1+z2)−(F z1+F z2)k=kB(z1+z2)−(Bz1+Bz2)k ≤ kB(z1+z2)k+kBz1k+kBz2k ≤ kBkkz1+z2k+kBk(kz1k+kz2k) ≤ kBk(kz1k+kz2k) +kBk(kz1k+kz2k) ≤2kBk(kz1k+kz2k).

To complete the proof let us show that

[Y ⊕F1Z] = [Y ⊕F2Z]⇔d(F1−F2, Lin(Z, Y))<+∞.

If [Y ⊕F1 Z] = [Y ⊕F2 Z], there exists a bounded linear operator T :

Y ⊕F1Z→Y ⊕F2Z such that

0→Y →Y ⊕F1Z →Z→0

k T ↓ k

0→Y →Y ⊕F2Z →Z→0

is commutative. In these conditions T must have the form T(y, z) = (y+

Lz, z), whereL∈Lin(Z, Y). Hence

kF1z−F2z+Lzk=k(F1z+Lz)−F2zk ≤ k(F1z+Lz, z)kF2

=kT(F1z, z)kF2≤ kTkk(F1z, z)kF1=kTkkzk.

Supposing that F1−F2 = B−L with B bounded and L linear then

T(y, z) = (y+Lz−Bz, z) is a linear operator fromY ⊕F1Z toY⊕F2Z. Let

us prove thatT is bounded:

(4)

Corollary 1.3. Let Y, Z be two Banach spaces and [F]∈ Q(Y, Z). The fol-lowing relationships are equivalent:

(i) 0→Y →Y ⊕FZ→Z →0 splits

(ii) [Y ⊕FZ] = [Y ⊕Z]

(iii) d(F, Lin(Z, Y))<+∞.

Definition 1.4. Let 0→ Y −→j X −→p Z → 0 be a short exact sequence. A bounded linear operatorhfromY to a Banach spaceEhas anextensiononto

X if there is a bounded linear operator ˆhfromX toE such that ˆhj=h.

0→Y −→j X −→p Z →0

h↓ ւˆh E

A bounded linear operator h from a Banach space E to Z has a lifting

intoX if there is a bounded linear operator ˆhfromE toX such thatpˆh=h.

0→Y −→j X −→p Z →0 ˆ

hտ ↑h E

Further information about extensions and liftings of operators can be found in [2].

Lemma 1.5. Let X be a Banach space. There exists an index setIsuch that

(i) 0→Ker p→l1(I)

p

−→X →0is exact. (Projective representation).

(ii) 0→X −→j l∞(I)→l∞(I)/X→0 is exact. (Injective representation).

Proof. LetI be such that (xi)i∈I =BX. Then

(i) p(y) =P

i∈Iy(i)xi is surjective.

(ii) Let (x∗

i)i∈I ⊂ X∗ be such that x∗i(xi) = kxik ∀i ∈ I then j(x) =

(x∗i(x))i∈I is injective.

(5)

Definition 1.6. LetY, Z be two Banach spaces. We define

E(Y, Z) ={[h] :h∈ L(K, Y)}

such that [h1] = [h2] if and only ifh1−h2 has an extension ontol1, and

L(Y, Z) ={[h] :h∈ L(Z, l∞/Y)}

such that [h1] = [h2] if and only ifh1−h2 has a lifting intol∞.

The following Lemma is frequently used in homological algebra (see [1]), and here it will allow us to prove the next theorem.

Lemma 1.7. (Push-Out and Pull-Back universal properties.)

(i) Leth1:X →X1, h2:X →X2 be two operators. Then

P O(h1, h2) =:X1×X2/{(h1x,h2x) : x∈X}

represents the covariant functor

E∈Ban {(α, β) :X −→h1 X

1 is commutative.}

h2   y α

  y

X2

β

−→E

(ii) Let h1:X1→X, h2:X2→X be two operators. Then

P B(h1, h2) =:{(x1, x2)∈X1×X2:h1x1=h2x2}

represents the contravariant functor

E∈Ban {(α, β) :X1

h1

−→X is commutative.}

αx  h2

x  

E−→β X2

Theorem 1.8. Let Y, Z be two Banach spaces. There exists a bijection be-tween E(Y, Z),L(Y, Z)and Ext(Y, Z).

Proof. We shall prove that there exists a bijection betweenE(Y, Z) andExt(Y, Z).

(6)

On the one hand, we have that [l1]∈Ext(K, Z). Hence using Theorem 1.2

Now we have the following commutative diagram.

0→K−−−→j l1 therefore there exists a bounded linear operators :Z →Y ⊕F Z such that

sp=H−ˆh. Henceqsp=qH−qˆh=qH=p, i.e. qs=IZ. Thus Y ⊕FZ =

Y ⊕Z.

On the other hand, let [h] ∈ E(Y, Z) and let us consider the Push-Out

of j and h, where j is the embedding of K in l1. It only remains to prove that there exists a bounded linear operatorT :P O→Y ⊕FZ such that the

(7)

Letbbe a bounded selection ofq. Hence we have a bounded linear operator

P :x∈l1→bpx∈Y ⊕F Z, and the following diagram is commutative:

K−−−→j l1

h↓ ↓P Y −→i Y ⊕FZ.

Using the Push-Out universal property, there exists a unique bounded linear operator t : P O → K such that the third diagram is commutative. ConsideringT =ith, thenT is the operator sought.

Corollary 1.9.

(i) LetZ be a Banach space and let us consider its projective representation. Then K represents the covariant functor Y ∈Ban Ext(Y, Z).

(ii) LetY be a Banach space and let us consider its injective representation. Thenl∞/Y represents the contravariant functorZ∈Ban Ext(Y, Z).

2

Main Result

Lemma 2.1. LetY, Z be two Banach spaces. Then

Ext(Y, Z) ={[Y ⊕Z]} ⇒Ext(Y1, Z1) ={[Y1⊕Z1]}

for all Y1 complemented in Y, and for allZ1 complemented inZ.

(8)

Ifr =φRΠ thenri =φRΠi=φRIπ=φπ =IY1. Hence, there is also a

section S of Q. Thus s=P Sj is such that qs=qP Sj =pQSj=pj =IZ1.

ThereforeExt(Y1, Z1) ={[Y1⊕Z1]}.

Theorem 2.2. LetY, Z be two Banach spaces, then

Ext(Y, Z) ={[Y ⊕Z]} ⇒Ext(Z∗, Y) ={[ZY]}

Proof. Let us consider the projective representation ofZ

0→K−→j l1 The following diagram is commutative:

0→K∗∗−−→j∗∗ l∗∗

If we consider now the following commutative diagram:

(9)

In general the reciprocal is not true. For instance, the Lindenstrauss lifting principle ([3], Proposition 2.1.) states that Ext(l2, l1) ={[l2⊕l1]}.

If JL denotes the Johnson-Lindenstrauss space thenc0is a subspace of JL and JL/c0=l2 thus [JL]∈Ext(c0, l2) and [JL]6= [c0⊕l2] becausec0 is not complemented in JL.

Adding a condition the reciprocal is true.

Theorem 2.3. Let Y, Z be two Banach spaces such thatY is complemented in its bidual. Then

1, and we have the following commutative diagram:

0→Z∗−→p∗ l

Finally, using Lemma 2.1 the proof is complete.

Corollary 2.4. Let Y, Z be two Banach spaces such that Y is complemented in its bidual and [F] ∈ Q(Z, Y). If F∗ :Y Zis such that Fy(z) =: y∗(F z), then[F]∈ Q(Y, Z)andd(F, Lin(Z, Y)) =d(F, Lin(Y, Z)).

References

(10)

[2] Domanski, P.Extensions and Liftings of Linear Operators, thesis, Poznan 1987.

[3] Kalton, N.J., Pelczynski, A. Kernels of Surjections from L1-spaces with

Referensi

Dokumen terkait

En este art´ıculo se presenta una exposici´on nueva de la teor´ıa que com- bina los enfoques de Sarason y Adamjam-Arov-Krein, que se basa en el Teo- rema de Nehari, y aclara

En este art´ıculo de divulgaci´on, repasamos el estado de arte de las superficies CMC con borde circular y, de forma m´as general, cuando la curva frontera es una curva plana,

Arqu´ımedes, el m´ as famoso de los matem´ aticos de la antig¨ uedad, conoc´ıa las f´ ormulas de ´ area y longitud para el caso de pol´ıgonos y se propuso conocer f´ ormulas

Los resultados de este trabajo son los siguientes: 1) Se determina que el m´ınimo orden de un grafo completo orientado sim´etricamente que garantiza la existencia de t

En este sentido, la Teor´ıa de Juegos estudia los conflictos entre seres racionales que desconf´ıan uno del otro, y Von Neumann la presenta como un an´alisis matem´atico riguroso

y se muestra que el mismo es un grupo topol´ ogico compacto y de Hausdorff, para lo cual presentamos una prueba usando la teor´ıa de los l´ımites proyectivos.. Al final del trabajo

inductiva, la suma de los inradios de los tri´angulos pertenecientes a cualquier triangulaci´on de este pol´ıgono es constante, lo que sumado al inradio del tri´angulo A 1 A 2 A 3

Todos aquellos puntos mencionados a lo largo de la primera parte del marco teórico, cómo incorporar las voces de todos los agentes de la comunidad en el