• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
10
0
0

Teks penuh

(1)

Characterization of Dual Extensions in

the Category of Banach Spaces

Caracterizaci´

on de Extensiones Duales en la

Categor´ıa de Espacios de Banach

Antonio A. Pulgar´ın (

aapulgar@unex.es

)

Universidad de Extremadura

Departamento de Matem´aticas Badajoz, Spain

Abstract

The first part of this paper studies extensions in the category of Ba-nach spaces (natural equivalence of functors). The second part proves a result which characterizes the duality of extensions.

Key words and phrases: Extensions and liftings, twisted sums, quasi-linear maps.

Resumen

La primera parte de este art´ıculo estudia las extensiones en la cate-gor´ıa de los espacios de Banach (equivalencia natural de funtores). La segunda parte prueba un resultado que caracteriza la dualidad de tales extensiones.

Palabras y frases clave:Extensiones y subidas, sumas torcidas, apli-caciones casi-lineales.

Introduction

A short exact sequence in the category of Banach spaces is a diagram

0→Y →X →Z→0

where the image of each arrow is the kernel of the following.

(2)

The open mapping theorem ensures that Y is a subspace of X andZ is the corresponding quotient.

Given Banach spacesY and Z we define theextensions ofY byZ as the set

Ext(Y, Z) ={[X] : 0→Y →X →Z →0 is exact}

where [X1] = [X2] ⇔ there exists a bounded linear operatorT : X1 →X2 such that

0→Y →X1→Z→0

k T ↓ k

0→Y →X2→Z→0

is commutative.

A mapF :Z →Y is quasi-linear if it is homogeneous and there exists a constantK >0 such that for all z1, z2∈Z

kF(z1+z2)−(F z1+F z2)k ≤K(kz1k+kz2k).

Given a quasi-linear map F : Z →Y, the F-twisted sum of Y and Z is defined as the quasi-Banach space

Y ⊕FZ ={(y, z)∈Y ×Z :k(y, z)kF =ky−F zk+kzk<+∞}

Before beginning we shall define

Lin(Z, Y) ={F :Z→Y linear}

B(Z, Y) ={F:Z→Y bounded}

L(Z, Y) ={F :Z→Y bounded and linear}.

1

Three approaches

Definition 1.1. LetY, Z be two Banach spaces. We define

Q(Y, Z) ={[F] :F :Z→Y quasi-linear}

such that [F1] = [F2]⇔d(F1−F2, Lin(Z, Y))<+∞.

(3)

Proof. If

0→Y −→j X −→p Z →0

is an extension ofY byZthen we can consider a linear selectionL∈Lin(Z, X) and a bounded homogeneous selectionB ∈B(Z, X) because the quotient map is open. ThenF =B−L∈ Q(Y, Z) sincep(B−L) = 0,F is homogeneous and

kF(z1+z2)−(F z1+F z2)k=kB(z1+z2)−(Bz1+Bz2)k ≤ kB(z1+z2)k+kBz1k+kBz2k ≤ kBkkz1+z2k+kBk(kz1k+kz2k) ≤ kBk(kz1k+kz2k) +kBk(kz1k+kz2k) ≤2kBk(kz1k+kz2k).

To complete the proof let us show that

[Y ⊕F1Z] = [Y ⊕F2Z]⇔d(F1−F2, Lin(Z, Y))<+∞.

If [Y ⊕F1 Z] = [Y ⊕F2 Z], there exists a bounded linear operator T :

Y ⊕F1Z→Y ⊕F2Z such that

0→Y →Y ⊕F1Z →Z→0

k T ↓ k

0→Y →Y ⊕F2Z →Z→0

is commutative. In these conditions T must have the form T(y, z) = (y+

Lz, z), whereL∈Lin(Z, Y). Hence

kF1z−F2z+Lzk=k(F1z+Lz)−F2zk ≤ k(F1z+Lz, z)kF2

=kT(F1z, z)kF2≤ kTkk(F1z, z)kF1=kTkkzk.

Supposing that F1−F2 = B−L with B bounded and L linear then

T(y, z) = (y+Lz−Bz, z) is a linear operator fromY ⊕F1Z toY⊕F2Z. Let

us prove thatT is bounded:

(4)

Corollary 1.3. Let Y, Z be two Banach spaces and [F]∈ Q(Y, Z). The fol-lowing relationships are equivalent:

(i) 0→Y →Y ⊕FZ→Z →0 splits

(ii) [Y ⊕FZ] = [Y ⊕Z]

(iii) d(F, Lin(Z, Y))<+∞.

Definition 1.4. Let 0→ Y −→j X −→p Z → 0 be a short exact sequence. A bounded linear operatorhfromY to a Banach spaceEhas anextensiononto

X if there is a bounded linear operator ˆhfromX toE such that ˆhj=h.

0→Y −→j X −→p Z →0

h↓ ւˆh E

A bounded linear operator h from a Banach space E to Z has a lifting

intoX if there is a bounded linear operator ˆhfromE toX such thatpˆh=h.

0→Y −→j X −→p Z →0 ˆ

hտ ↑h E

Further information about extensions and liftings of operators can be found in [2].

Lemma 1.5. Let X be a Banach space. There exists an index setIsuch that

(i) 0→Ker p→l1(I)

p

−→X →0is exact. (Projective representation).

(ii) 0→X −→j l∞(I)→l∞(I)/X→0 is exact. (Injective representation).

Proof. LetI be such that (xi)i∈I =BX. Then

(i) p(y) =P

i∈Iy(i)xi is surjective.

(ii) Let (x∗

i)i∈I ⊂ X∗ be such that x∗i(xi) = kxik ∀i ∈ I then j(x) =

(x∗i(x))i∈I is injective.

(5)

Definition 1.6. LetY, Z be two Banach spaces. We define

E(Y, Z) ={[h] :h∈ L(K, Y)}

such that [h1] = [h2] if and only ifh1−h2 has an extension ontol1, and

L(Y, Z) ={[h] :h∈ L(Z, l∞/Y)}

such that [h1] = [h2] if and only ifh1−h2 has a lifting intol∞.

The following Lemma is frequently used in homological algebra (see [1]), and here it will allow us to prove the next theorem.

Lemma 1.7. (Push-Out and Pull-Back universal properties.)

(i) Leth1:X →X1, h2:X →X2 be two operators. Then

P O(h1, h2) =:X1×X2/{(h1x,h2x) : x∈X}

represents the covariant functor

E∈Ban {(α, β) :X −→h1 X

1 is commutative.}

h2   y α

  y

X2

β

−→E

(ii) Let h1:X1→X, h2:X2→X be two operators. Then

P B(h1, h2) =:{(x1, x2)∈X1×X2:h1x1=h2x2}

represents the contravariant functor

E∈Ban {(α, β) :X1

h1

−→X is commutative.}

αx  h2

x  

E−→β X2

Theorem 1.8. Let Y, Z be two Banach spaces. There exists a bijection be-tween E(Y, Z),L(Y, Z)and Ext(Y, Z).

Proof. We shall prove that there exists a bijection betweenE(Y, Z) andExt(Y, Z).

(6)

On the one hand, we have that [l1]∈Ext(K, Z). Hence using Theorem 1.2

Now we have the following commutative diagram.

0→K−−−→j l1 therefore there exists a bounded linear operators :Z →Y ⊕F Z such that

sp=H−ˆh. Henceqsp=qH−qˆh=qH=p, i.e. qs=IZ. Thus Y ⊕FZ =

Y ⊕Z.

On the other hand, let [h] ∈ E(Y, Z) and let us consider the Push-Out

of j and h, where j is the embedding of K in l1. It only remains to prove that there exists a bounded linear operatorT :P O→Y ⊕FZ such that the

(7)

Letbbe a bounded selection ofq. Hence we have a bounded linear operator

P :x∈l1→bpx∈Y ⊕F Z, and the following diagram is commutative:

K−−−→j l1

h↓ ↓P Y −→i Y ⊕FZ.

Using the Push-Out universal property, there exists a unique bounded linear operator t : P O → K such that the third diagram is commutative. ConsideringT =ith, thenT is the operator sought.

Corollary 1.9.

(i) LetZ be a Banach space and let us consider its projective representation. Then K represents the covariant functor Y ∈Ban Ext(Y, Z).

(ii) LetY be a Banach space and let us consider its injective representation. Thenl∞/Y represents the contravariant functorZ∈Ban Ext(Y, Z).

2

Main Result

Lemma 2.1. LetY, Z be two Banach spaces. Then

Ext(Y, Z) ={[Y ⊕Z]} ⇒Ext(Y1, Z1) ={[Y1⊕Z1]}

for all Y1 complemented in Y, and for allZ1 complemented inZ.

(8)

Ifr =φRΠ thenri =φRΠi=φRIπ=φπ =IY1. Hence, there is also a

section S of Q. Thus s=P Sj is such that qs=qP Sj =pQSj=pj =IZ1.

ThereforeExt(Y1, Z1) ={[Y1⊕Z1]}.

Theorem 2.2. LetY, Z be two Banach spaces, then

Ext(Y, Z) ={[Y ⊕Z]} ⇒Ext(Z∗, Y) ={[ZY]}

Proof. Let us consider the projective representation ofZ

0→K−→j l1 The following diagram is commutative:

0→K∗∗−−→j∗∗ l∗∗

If we consider now the following commutative diagram:

(9)

In general the reciprocal is not true. For instance, the Lindenstrauss lifting principle ([3], Proposition 2.1.) states that Ext(l2, l1) ={[l2⊕l1]}.

If JL denotes the Johnson-Lindenstrauss space thenc0is a subspace of JL and JL/c0=l2 thus [JL]∈Ext(c0, l2) and [JL]6= [c0⊕l2] becausec0 is not complemented in JL.

Adding a condition the reciprocal is true.

Theorem 2.3. Let Y, Z be two Banach spaces such thatY is complemented in its bidual. Then

1, and we have the following commutative diagram:

0→Z∗−→p∗ l

Finally, using Lemma 2.1 the proof is complete.

Corollary 2.4. Let Y, Z be two Banach spaces such that Y is complemented in its bidual and [F] ∈ Q(Z, Y). If F∗ :Y Zis such that Fy(z) =: y∗(F z), then[F]∈ Q(Y, Z)andd(F, Lin(Z, Y)) =d(F, Lin(Y, Z)).

References

(10)

[2] Domanski, P.Extensions and Liftings of Linear Operators, thesis, Poznan 1987.

[3] Kalton, N.J., Pelczynski, A. Kernels of Surjections from L1-spaces with

Referensi

Dokumen terkait

[r]

[r]

Selanjutnya kami mohon persetujuan Pejabat Pembuat Komitmen (PPK) Politeknik Kesehatan Kemenkes Palangka Raya untuk menetapkan Pemenang untuk paket Pekerjaan tersebut diatas

Berdasarkan Tabel 4 dapat dijelaskan apabila dilihat dari pengaruh frekuensi pembalikan batang terhadap saat pengurangan panjang sulur, maka untuk perlakuan kontrol

Latar belakang dari penelitian ini ingin mengetahui dan memahami apakah prinsip good governance telah diterapkan dengan baik serta faktor yang memengaruhi optimalisasi

Iman artinya percaya Percaya kepada Allah Yakin dalam hati di ucapkan dengan lisan Dan dibuktikan dengan perbuatan Itulah arti iman yang

Berdasarkan hasil analisis data dalam penelitian ini bisa disimpulkan bahwa sense of community pada karyawan bagian administrasi di UMSIDA tergolong sedang. Jika

Kusrini dan Koniyo Andri, 2007, Tuntunan Praktis Membangun Sistem Informasi Akuntansi dengan Visual Basic Dan Microsoft SQL Server, Edisi.. Pertama,