• Tidak ada hasil yang ditemukan

2.1. Fungsi Tetapan - 2 Fungsi Linier

N/A
N/A
Protected

Academic year: 2018

Membagikan "2.1. Fungsi Tetapan - 2 Fungsi Linier"

Copied!
8
0
0

Teks penuh

(1)

1/8

2. Fungsi Linier

2.1. Fungsi Tetapan

Fungsi tetapan bernilai tetap untuk rentang nilai x dari −∞ sampai +∞. Kita tuliskan

k

y= [2.1]

dengan k bilangan-nyata. Kurva fungsi ini terlihat pada Gb.2.1. berupa garis lurus mendatar sejajar sumbu-x, dalam rentang nilai x dari −∞ sampai +∞.

-4 0 5

-5 0 x 5

y

y = 4

y = −3,5

Gb.2.1. Fungsi tetapan (konstan):

4

=

y dan y=−3,5.

2.2. Fungsi Linier - Persamaan Garis Lurus

Persamaan (2.1) adalah satu contoh persamaan garis lurus yang merupakan garis mendatar sejajar sumbu-x, dengan kurva seperti terlihat pada Gb.2.1. Kurva yang juga merupakan garis lurus tetapi tidak sejajar sumbu-x adalah kurva yang memiliki kemiringan tertentu. Kemiringan garis ini adalah perbandingan antara perubahan y terhadap perubahan

x, atau kita tuliskan

   

 

∆ ∆ = =

" delta "

" delta " : dibaca , kemiringan

x y x

y

m (2.2)

Dalam hal garis lurus, rasio

x y

memberikan hasil yang sama di titik manapun kita

(2)

2/8 Sudaryatno Sudirham, Fungsi Linier

Gb.2.2. Empat contoh kurva garis lurus y=mx.

Secara umum, persamaan garis lurus yang melalui titik-asal [0,0] adalah

mx

y= (2.3)

dengan m menunjukkan kemiringan garis; makin besar nilai m garis akan semakin miring. Jika m bernilai positif, garis miring ke atas (naik). Jika m bernilai negatif, garis akan miring ke bawah (menurun).

2.3. Pergeseran Kurva dan Persamaan Garis

Bagaimanakah persamaan garis lurus jika ia tidak melalui titik-asal [0,0] melainkan memotong sumbu-y misalnya di titik [0,2]? Misalkan garis ini memiliki kemiringan 2. Setiap nilai y pada garis ini untuk suatu nilai x, sama dengan nilai y pada garis yang melalui [0,0], yaitu y = 2x, ditambah 2. Oleh karena itu kita dapat menuliskan persamaa garis ini sebagai

2 2 +

= x

y . Perhatikan Gb.2.3.

Gb.2.3. Garis lurus melalui titik [0,2], kemiringan 2.

Secara umum, persamaan garis dengan kemiringan m dan memotong sumbu-y di [0,b] adalah

mx b y− )=

( (2.4)

b bisa positif ataupun negatif. Jika b positif, maka garis tergeser ke arah sumbu-y positif (ke atas) yang berarti garis memotong sumbu-y di atas titik [0,0]. Jika b negatif, garis tergeser kearah sumbu-y negatif (ke bawah); ia memotong sumbu-y di bawah titik [0,0]. Secara singkat, b pada (2.4) menunjukkan pergeseran kurva y sepanjang sumbu-y.

Kita lihat sekarang garis yang memiliki kemiringan 2 dan memotong sumbu-x di titik [a,0], misalnya di titik [1,0]. Lihat Gb.2.4. Dibandingkan dengan garis yang melalui titik [0,0] yaitu garis y=2x, setiap nilai y pada garis ini terjadi pada (x−1) pada garis y=2x; atau dengan kata lain nilai y pada garis ini diperoleh dengan menggantikan nilai x pada garis

x

y=2 dengan (x−1). Contoh: y = 2,8 pada garis ini terjadi pada x = x1 dan hal ini terjadi

pada x=(x1−1) pada kurva y=2x.

-6 -4 -2 0 2 4 6 8

-1 0 1 2 3 x 4

y

y = 0,5x y = x y = 2x

y = -1,5 x

y = 2x y = 2x + 2

-4 -2 0 2 4 6 8 10

(3)

3/8 Gb.2.4. Garis lurus melalui titik [1,0].

Secara umum persamaan garis yang melalui titik [a,0] dengan kemiringan m kita peroleh dengan menggantikan x pada persamaan y=mx dengan (xa). Persamaan garis ini adalah

) (x a m

y= − (2.5)

Pada persamaan (2.5), jika a positif garis y====mx tergeser ke arah sumbu-x positif (ke kanan); dan jika a negatif garis itu tergeser ke arah sumbu-x negatif (ke kiri). Secara singkat a pada (2.5) menunjukkan pergeseran kurva y sejajar sumbu-x.

Pada contoh di atas, dengan tergesernya kurva ke arah kanan dan memotong sumbu-x di titik [1,0] ia memotong sumbu-y di titik [0,-2]. Suatu garis yang titik perpotongannya dengan kedua sumbu diketahui, pastilah kemiringannya diketahui. Dalam contoh di atas, kemiringannya adalah

2 1 2 1

) 2 (

0−−−− −−−− ==== ====

==== ====

x y m

∆ ∆

dan persamaan garis adalah

2 2 −

= x

y (2.6)

Bandingkanlah persamaan ini dengan persamaan (2.4), dengan memberikan m = 2 dan b = −2.

Secara umum, persamaan garis yang memotong sumbu-sumbu koordinat di [a,0] dan [0,b] adalah

a b m b

mx

y= + dengan =− (2.7)

Contoh:

Bagaimanakah persamaan garis lurus yang tidak terlihat perpotongannya dengan sumbu-sumbu koordinat? Persamaan garis demikian ini dapat dicari jika diketahui koordinat dua titik yang ada pada garis tersebut. Lihat Gb.2.5.

Pada Gb.2.5. kemiringan garis dengan mudah kita peroleh, yaitu

x1 x1−1

y = 2x

-4 -2 2 4 6 8

-1 0 1 2 3 x 4

y

0

y =2(x–1)

-4 -2

2 4 6 8

-1 0 1 2 3 x 4

y

0

garis memotong sumbu x di 2, dan memotong sumbu y di 4

Persamaan garis: 4 2 4 2

4

+ − = + −

= x x

(4)

4/8 Sudaryatno Sudirham, Fungsi Linier

Gb.2.5. Garis lurus melalui dua titik.

Persamaan (2.8) ini harus berlaku untuk semua garis yang melalui dua titik yang diketahui koordinatnya. Jadi secara umum harus berlaku

1

Dengan demikian maka persamaan garis yang memiliki kemiringan ini adalah

)

Contoh: Carilah persamaan garis yang melalui dua titik P(5,7) dan Q(1,2).

Kemiringan garis ini adalah 1,25

1

Kemiringan garis ini memberikan persamaan garis yang melalui titik asal y=1,25x.

Persamaan garis dengan kemiringan ini dan melalui titik P(5,7) adalah

75

Kita bisa melihat secara umum, bahwa kurva suatu fungsi

)

(5)

5/8 Contoh:

Contoh:

Kita kembali pada contoh sebelumnya, yaitu persamaan garis yang melalui titik P(5,7) dan Q(1,2). Persamaan garis dengan kemiringan 1,25 dan melalui titik asal adalah

x

y=1,25 . Garis ini harus kita geser menjadi (yb)=1,25(xa)agar melalui titik P dan Q.

Nilai a dan b dapat kita peroleh jika kita masukkan koordinat titik yang diketahui, P(5,7) dan Q(1,2). Dengan memasukkan koordinat titik ini kita dapatkan persamaan

)

2.4. Perpotongan Garis

Dua garis lurus

1 1 1 a x b

y = + dan y2 =a2x+b2

berpotongan di titik P sehingga koordinatP memenuhi y1= y2

2

Jadi titik potong adalah P[(5,5),14]. Perhatikan Gb.2.6. berikut ini.

(6)

6/8 Sudaryatno Sudirham, Fungsi Linier

Gb.2.6. Perpotongan dua garis.

Jika kedua garis memiliki kemiringan yang sama sudah barang tentu kita tak akan memperoleh titik potong karena mereka sejajar; dikatakan juga mereka berpotongan di ∞.

Contoh: Dua garis 4 3 dan 4 8 2

1= x+ y = x

y adalah sejajar.

2.5. Pembagian Skala Pada Sumbu Koordinat

Pada penggambaran kurva-kurva di atas, panjang per skala kedua sumbu koordinat tidak sama. Apabila panjang per skala dibuat sama kita akan memiliki kemiringan garis

θ =tan

m (2.13)

dengan θ adalah sudut yang dibentuk oleh garis lurus dengan sumbu-x atau dengan garis mendatar, seperti pada Gb.2.7.

Gb.2.7. Panjang per skala sama di sumbu-x dan y.

Sesungguhnya formulasi (2.13) berlaku umum, baik untuk pembagian skala di kedua sumbu koordinat sama besar ataupun tidak. Namun jika pembagian skala tersebut sama besar, sudut θ yang terlihat dalam grafik menunjukkan kemiringan garis sebenarnya; jika pembagian tidak sama besar sudut θ yang terlihat pada grafik bukanlah sudut sebenarnya sehingga sudut θ sebenarnya harus dihitung dari formula (2.13) dan bukan dilihat dari grafik.

2.6. Domain, Kekontinyuan, Simetri

Pada fungsi linier y=m(xa)+b, peubah y akan selalu memiliki nilai, berapapun x. Peubah x

bisa bernilai dari −∞ sampai +∞. Fungsi ini juga kontinyu dalam rentang tersebut.

Kurva fungsi y=mx simetris terhadap titik asal [0,0] karena fungsi ini tak berubah jika y

diganti dengan −y dan x diganti dengan −x.

-30 -20 -10 0 10 20 30

-10 -5 0 5 10

y

x

P ⇒ Koordinat P memenuhi persamaan y1 maupun y2.

y2 y1

−5

y

x

| |

5 5

θ

=tan

(7)

7/8

2.7. Contoh-Contoh Fungsi Linier

Contoh-contoh fungsi linier berikut ini mamberikan gambaran bahwa fungsi linier dengan kurva yang kita gambarkan berbentuk garis lurus, merupakan bentuk fungsi yang biasa kita jumpai dalam praktik rekayasa.

1). Suatu benda dengan massa m yang mendapat gaya F akan memperoleh percepatan.

ma

F= ; a adalah percepatan

Jika tidak ada gaya lain yang melawan F, maka dengan percepatan a benda akan memiliki kecepatan sebagai fungsi waktu sebagai

at v t

v()= 0+

v kecepatan gerak benda, v0 kecepatan awal, t waktu. Jika kecepatan awal adalah nol

maka kecepatan gerak benda pada waktu t adalah

at t v()=

2) Dalam tabung katoda, jika beda tegangan antara anoda dan katoda adalah V , dan jarak antara anoda dan katoda adalah l maka antara anoda dan katoda terdapat medan listrik sebesar

l V

E=

Elektron yang muncul di permukaan katoda akan mendapat percepatan dari adanya medan listrik sebesar

eE

a=

a adalah percepatan yang dialami elektron, e

muatan elektron, E medan listrik. Jika kecepatan awal elektron adalah nol, dan waktu tempuh dari anoda ke katoda adalah t, maka kecepatan elektron pada waktu mencapai katoda adalah

at vk =

3) Suatu pegas, jika ditarik kemudian dilepaskan akan kembali pada posisi semula jika tarikan yang dilakukan masih dalam batas elastisitas pegas. Gaya yang diperlukan untuk menarik pegas sepanjang x merupakan fungsi linier dari x.

kx

F=

dengan k adalah konstanta pegas.

4) Dalam sebatang logam sepanjang l, akan mengalir arus listrik sebesar i jika antara ujung-ujung logam diberi perbedaan tegangan sebesar V. Arus yang mengalir merupakan fungsi linier dari tegangan dengan relasi

R V GV

i= = , dengan

R

G= 1

G adalah tetapan yang disebut konduktansi listrik dan R disebut resistansi listrik.Persamaan ini juga bisa dituliskan

iR

V =

yang dikenal sebagai relasi hukum Ohm dalam kelistrikan. ]]]]

anoda katoda

(8)

8/8 Sudaryatno Sudirham, Fungsi Linier

Jika penampang logam adalah A dan rata sepanjang logam, maka resistansi dapat dinyatakan dengan

A l

R

ρ disebut resistivitas bahan logam.

Kerapatan arus dalam logam adalah

A i

j= dan dari persamaan di atas kita peroleh

E l V RA

V A i

j

ρ = =

= 1

dengan E=V/l adalah kuat medan listrik dalam logam, σ=1/ρ adalah konduktivitas

bahan logam.

Secara infinitisimal kuat medan listrik adalah gradien potensial atau gradien dari V yang

kita tuliskan dx dV

E= . Mengenai pengertian gradien akan kita pelajari di Bab-9.

5). Peristiwa difusi. Secara thermodinamis, faktor pendorong untuk terjadinya difusi, yaitu penyebaran materi menembus materi lain, adalah adanya perbedaan konsentrasi. Situasi ini analog dengan peristiwa aliran muatan listrik di mana faktor pendorong untuk terjadinya aliran muatan adalah perbedaan tegangan.

Analog dengan peristiwa listrik, fluksi materi yang berdifusi dapat kita tuliskan sebagai

dx dC D Jx=−

D adalah koefisien difusi, dC/dx adalah variasi konsentrasi dalam keadaan mantap di mana C0 dan Cx bernilai konstan. Relasi ini disebut Hukum Fick Pertama yang secara

formal menyatakan bahwa fluksi dari materi yang berdifusi sebanding dengan gradien konsentrasi; dengan kata lain fluksi materi yang berdifusi merupakan fungsi linier dari gradien konsentrasi.

xa x

Ca

Cx

materi masuk di xa

materi keluar di x

Referensi

Dokumen terkait

Selain itu, tahap kemahiran memahami kronologi, kemahiran meneroka bukti, kemahiran membuat interpretasi, kemahiran membuat imaginasi dan kemahiran membuat

stroke, banyak didapatkan pada hasil penelitian baik pada pasien rawat inap.. maupun rawat jalan, sehingga meningkatkan kejadian

untuk akuisisi dan untuk akuisisi dan pengeluaran kas guna pengeluaran kas guna memenuhi tujuan audit yang memenuhi tujuan audit yang berkaitan dengan transaksi berkaitan

Hasil ujian analisis regrasi yang dijalankan pula mendapati bahawa faktor kepimpinan mempunyai hubungan signifikan 0.000<0.050 yang positif, dengan nilai beta 0.440 yang

Berdasarkan uraian pertimbangan tersebut, walaupun Terdakwa Syarif Muda Siregar, S.E., M.M., bersalah melakukan perbuatan yang didakwakan kepadanya dalam dakwaan Primair

Susut berat bahan dalam penyimpanan dapat terjadi karena bahan dasar gaplek belum cukup tua (kandungan patinya maksimal) Kerusakan ini dapat menjadi sumber kerusakan gaplek yang

Kalo potu juga orang kita Tamil di Kampung Madras masih pake potu yang dijidat itu kalo masalah warna sekarang ini sudah sama aja.. Yang penting itukan identitas kita sebagai orang

Oleh karena itu pembinaan moral dan agama dalam keluarga penting sekali bagi remaja untuk menyelamatkan mereka dari kenakalan dan merupakan cara untuk mempersiapkan hari depan