• Tidak ada hasil yang ditemukan

The Effect of Operation 24 Hours on Reducing Collision in the City of Edmonton - Scientific Repository

N/A
N/A
Protected

Academic year: 2019

Membagikan "The Effect of Operation 24 Hours on Reducing Collision in the City of Edmonton - Scientific Repository"

Copied!
12
0
0

Teks penuh

(1)
(2)
(3)
(4)

ContentslistsavailableatSciVerseScienceDirect

Accident

Analysis

and

Prevention

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a a p

The

effect

of

Operation

24

Hours

on

reducing

collision

in

the

City

of

Edmonton

Siana

Halim

a,∗

,

Heming

Jiang

b,1

aIndustrialEngineeringDepartment,PetraChristianUniversity,Jl.Siwalankerto21-131,Surabaya,Indonesia

bCityofEdmontonOfficeofTrafficSafety,930441Ave,EdmontonT6E6G8,Alberta,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21February2013

Receivedinrevisedform21April2013 Accepted25April2013

Keywords:

Negativebinomialtimeseries Segmentedregression Changepoint

a

b

s

t

r

a

c

t

IntheCityofEdmonton,inordertoreducetheprevalenceofcollisions,theOperation24Hoursprogram (OPS24)wasdevelopedbyusingexistingpoliceandtransportationservicesresources.Theprogramuses traditionalmannedpolicespeedenforcementmethod,whicharesupplementedbytrafficsafetymessages displayedonpermanentandmobiledynamicmessagingsigns(DMS).Inthispaper,collisiondataanalysis wasperformedbylookingatthedailynumberofcollisionsfrom2008to2011thatcovers28Operation 24Hours(OPS24)events.Theobjectiveofthecollisiondataanalysisistoanalyzeifthereisareduction incollisionfrequenciesafterOPS24washeldandexaminedhowlongthecollisionreductioneffectlast. Weatherfactorssuchastemperature,thicknessofsnow,andwindgusthavebeenconsideredbymanyas agreatinfluenceoncollisionoccurrences,especiallyinacitywithlongandcoldwintersuchasEdmonton. Therefore,collisionmodelingwasperformedbyconsideringtheseexternalweatherfactors.Toanalyze thelinearandperiodictrendofdifferentcollisiontypes(injury,fatal,andpropertydamageonly(PDO)) andexaminetheinfluenceofweatherfactorsoncollisions,negativebinomialtimeseriesmodelthat accountsforseasonalityandweatherfactorswasusedtomodeldailycollisiondata.Themodelingalso consideredcollisionproportiontoaccountformissingtrafficvolumedata;theGaussiantimeseriesmodel thataccountsforseasonalityandweatherfactorswasusedtomodelcollisionproportion.Toestimatethe collisiontrendandtestforchangesincollisionlevelsbefore/afterOPS24,interruptedtimeseriesmodel withsegmentedregressionwasused.WhileforestimatinghowlongtheeffectoftheOPS24last,change pointmethodwasapplied.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Manyresearchershaveconsideredweatherfactorsasagreat influenceoncollisionoccurrences.Poorweather-relateddriving conditionsare associated with7000 fatalities, 800,000 injuries, and more than 1.5million vehicular collisions annually in the UnitedStates(NationalResearchCouncil,2004).Adverseweather ispresent in 28%of total collisionsand nearly20% ofhighway fatalities(WeatherandHighways,2004).Analystsestimatethe eco-nomictollofweather-relatedcollisionsat$42billion(Lombardo, 2000).InCanada,weather-relatedcollisionshavebeenestimatedto costCanadiansanaverageofapproximatelyCDN$1billionperyear

(Andreyetal.,2001;Usmanetal.,2011).Understandingtheeffects

ofadverseweather onmotor vehiclecollisionsmattersbecause expertshaveidentifiedanumberofcommunicationsand

engineer-∗Correspondingauthor.Tel.:+62312983425.

E-mailaddresses:halim@peter.petra.ac.id,sianahalim@yahoo.com(S.Halim), heming.jiang@edmonton.ca(H.Jiang).

1 Tel.:+17804959906.

inginnovations(largelytechnologiestocollectandcommunicate realtimeroadconditioninformation,suchassensorsanddynamic messagesigns)that couldsignificantlyreducethecollision and injuryrates,butatapotentiallysubstantialcost(NationalResearch

Council,2004;WeatherandHighways,2004).

Itisa knownfactthatcollisionscanbeinfluencedby exter-nalenvironmentalvariablessuchastemperature,snowfalllevel, andwindgust.Previousstudieshaveassociatedprecipitationwith markedlyincreasedcollisionsrates(Eisenberg,2004;Brodskyand

Hakkert,1988; AndreyandYagar, 1993;Fridstrometal.,1995).

Recentworkalsoshowsthattheriskposedbyprecipitationrises dramatically with the time since last precipitation (Eisenberg, 2004).Therehasnotbeenanystudyontheeffectofsnowfall.

Numberofcollisionsisnotinevitablyhigherinsnowyweather thanindryweather.Ontheonehand,snowmakesdrivingmore dangerous;byreducingtireadherenceandimpairingvisibility.On theotherhand,experienceddriverstypicallydrivemoreslowly andcarefullyinsnowyweather,andmanypeopleavoidor post-poneunnecessarytravel.Perhapsasareflectionoftheseoffsetting factors,thehandfulofpublishedstudiesaddressingthecollision consequencesofsnowhasproducedsomeconflictingresults.The

0001-4575/$–seefrontmatter© 2013 Elsevier Ltd. All rights reserved.

(5)

S.Halim,H.Jiang/AccidentAnalysisandPrevention58 (2013) 106–114 107

Table1

2008–2011OPS24schedules.

2008 2009 2010 2011

Thursday,January29 Wednesday,January20 Wednesday,January19 Tuesday,March10 Friday,February05 Friday,February04 Tuesday,April07 Monday,March29 Monday,March28 Tuesday,May12 Tuesday,April13 Thursday,April21 Tuesday,June09 Monday,June28 Thursday,May19 Friday,June26 Tuesday,June07 Monday,September15 Tuesday,September29 Monday,September13

Tuesday,October21 Friday,October16 Monday,November15 Tuesday,November15 Tuesday,December16 Tuesday,December15 Tuesday,December14 Friday,December16

weightoftheevidencesuggeststhatless severecollisions(e.g., thoseproducingonlypropertydamage)increaseduringsnowfall, whilemoreseverecollisions(thoseresultinginmajorinjuriesor fatalities)decrease.

Significantlyincreasedcollisionrateshavebeendocumentedin snowymonthsinCanada(AndreescuandFrost,1998),onsnowy daysintheUnitedKingdom(Perryetal.,1991),andduring snow-storms in Iowa, UnitedStates (Knappet al., 2000).Perryet al.

(1991)foundincreasedratesofcollisionsinvolvinginjuries and

fatalitiesonsnowydaysintheUnitedKingdom,butBrownand

Baass(1997)notedfewercollisionsinvolvinginjuriesinthewinter

monthsinCanada,asdidFridstrometal.(1995)insnowymonths inDenmarkandFinland.Eisenberg(2004)founddecreasedrates offatal collisionsonsnowydaysintheUnitedStates,afinding echoedinanalysisofwintermonthsinCanada(BrownandBaass, 1997)andsnowymonthsinScandinavia.Todate,onlytwoprevious studieshaveexaminedtheeffectsofthefirstsnowfallofthe sea-son.Definingfirstsnowfallasthefirstsnowinamonthfollowing amonthwithoutsnow,FridstromandIngebrigtsen(1991)found significantincreasesinbothinjuryandfatalcollisionsinNorway. Subsequently,however,researchbyFridstrometal.(1995) pro-ducedmixedfindings:Injurycollisionsrosesignificantlyduring thewinter’sfirstmonthwithsnow(comparedwithothermonths withsnow)inDenmarkbutnotineitherFinlandorNorway. Fatal-ityrateswerenodifferentinthefirstsnowymonththaninother snowymonths.

1.1. TheOperation24Hours

IntheCityofEdmonton,inordertoreducetheprevalenceof speedrelatedcollisions,theOperation24Hoursprogram(OPS24) wasdevelopedbyusingexistingpoliceandtransportationservices resources.Theprogramusestraditionalpolicespeedenforcement methodssuchasmannedenforcement,whicharesupplemented by traffic safety messages displayed onpermanent and mobile dynamicmessagingsigns(DMS).Theprogramutilizesan alternat-ingtwo-messageapproach“BigTicketEvent–Don’tSpeed”.The messageswererunconsecutivelyforfourdayspriortothe opera-tiondayandalsoduringtheoperationday(thefifthday).During theOPS24,theentireCityofEdmontonbecameanenforcement zone. Twenty-eight OPS24events have been conducted during 2008–2011(seeTable1).

TheobjectivesofthisstudyaretoexaminetheimpactofOPS24 oncollisionsingeneralaswellasondifferentcollisiontypes(injury, fatal,andpropertydamageonly(PDO)).Thecollisionanalysisdid not limitto speed related collisionssince theEdmontonPolice

Service collected speed information of vehicles involved in a collision only starting from2011 and only ifthe police visited thecollisionscene.Thecollectedspeedinformationis alsoonly categorical: unsafe speed, no unsafe speed, unknown, and not applicable.Generalcollisiontrendandtheinfluenceofweather fac-torssuchastemperature,thicknessofsnow,andwindgustwere alsoinvestigated.Inaddition,weaimtofindhowlongthecollision reductionlasts.TheimpactofOPS24onvehiclespeeddistribution isbeyondthescopeofthispaperandcanbefoundinHalimetal.

(2012).

2. Data

Thisstudyused3 yearsand4monthsofdailycollisiondata rangingfromSeptember2008toDecember2011.Thecollisiondata usedinthis analysiswasobtainedfromtheCityofEdmonton’s MotorVehicleCollisionInformationSystem(MVCIS),adatabaseof motorvehiclecollisionsthatoccuronpublicroadsintheCityof Edmonton.Theinformationinthedatabaseiscollectedfromthe provincialCollisionReportForm,whichiscompletedbymembers oftheEdmontonPoliceService(EPS)eitheronpaperatthesceneof thecollisionorelectronicallyatthefrontcounterofadivisionalor communitypolicestation.Thecollisionreportsreceivedfromthe EPSwerereviewedandcorrectedifnecessary(inconsultationwith theEPS)beforeenteredintoMVCIS.

Thetotalnumberofcollisionswas109,459duringthisperiod. Thedailycollisiondatasetcontainscollisionfrequencies,collision types(injury,fatal,andPDO),collisionlocations,roadwayportions, andcollisioncauses.Wecombinedfatalandinjurycollisionsand namedit‘severecollisions’whichcontributes14.6%tothetotal col-lisions.ThestatisticalsummaryofthedataispresentedinTable2.

2.1. Weatherdata

Theweather data usedinthis analysisincludes 3years and 4 months of dailyweather dataof the Cityof Edmonton from EnvironmentCanadawithdatesrangingfromSeptember2008to December2011.Thedailyweatherdatacontainsvariablessuchas dailymaximum,minimumandmeantemperaturesindegree Cel-sius,thethicknessofsnowontheground(incm),andthespeed ofmaximumwindgustduringtheday(inkm/h).Thestatistical summaryoftheweatherdataisshowninTable3.

BothMVCISandEnvironmentCanadaprovidereliabledatafor purposeofthisstudy.Thecompletenessandaccuracyofdataare significantlyhigh,forexample,nounknowninformationaboutthe

Table2

Summaryofcollisiondata.

Minimum Maximum Mean Stddeviation Numberofcollisionsperday 13 305 75.13 35.24

Severecollisionsperday 1 36 10.98 4.69

(6)

Table3

Summaryofweatherdata.

Minimum Maximum Mean Stddeviation Mintemperature(◦C) 46.1 14.3 5.49 11.99

Maxtemperature(◦C) 33.2 34.0 8.46 13.21

Meantemperature(◦C) 39.7 22.8 1.48 12.34

Groundsnow(depth,cm) 0 52 7.52 12.31

Speedofmaxgust(km/h) 4 95 37.88 10.95

collisiontypeandthepercentageofunknowncollisioncausesis onlylessthan1%.

Fig.1showsseasonalvariationofcollisionsandtheir relation-shiptoweather.Thecollisionsinautumnandwinterarehigher thaninspringandsummer,ithadaperiodictrend.Wecanalsosee thatwhenthemeantemperaturewaslow,thecollisionswerehigh andviceversa.Fig.1alsoshowsthatwhenthesnowontheground waslow,thecollisionswerelow.Therewasnoclearrelationship betweenthespeedofmaximumwindgustandthecollisions.

3. Methods

Wedividedcollisionandweatherdataanalysisintothree sec-tions.First,wemodeledthecollisiontrendsandanalyzedtheeffects ofenvironmentalvariablessuchastemperature,thicknessofsnow, andspeed of maximumwind gust oncollision frequencies and collisionproportions.Forthecollisionfrequencies,weused neg-ativebinomialtimeseriesmodel.Sincetrafficvolumedatawere notavailable,wealsolookedattheproportionsofdailyinjuryand fatalorPDOcollisions.Thoseareexpectedtobeindependentof thetrafficvolume.For thesecollision proportions,we usedthe Gaussiantimeseriesmodelthatwasdesignedtohandlecontinuous dependentvariables.

Somemodelsfor collisions have beenconstructed basedon timeseriesanalysis.Vanlaaretal.(2011)modeledthelog trans-formof monthlycollisionsfrom1994–2008at 48 intersections usingARIMA(p,d,q)models.Quddus(2008)modeledtraffic col-lisionsinGreatBritainusingclassofINARmodelsfortimeseries. Heusedtwosetsofdatatotesthismodels,thatis,annualtraffic collisionsinGreatBritainfrom1950to2005andmonthlytraffic collisioncasualtieswithintheLondoncongestion-chargingzone betweenJanuary1991andOctober2005.Anotherapproach pro-posedbyCastroetal.(2012)wasbasedonpartitioningofasingle latentcontinuousvariableintomutuallyexclusiveintervals.Bythis

way,Castro et al.(2012) reformulateddailycount modelsas a

specialcaseofgeneralizedordered-responsemodels.Thismodel wasappliedtopredictcollisionfrequenciesaturbanintersections inArlington,Texas.ModelsofferedbyVanlaaretal.(2008)and

Quddus(2008)areonlyforunivariatedataandthemodelfittings

inthesepaperswereappliedonlyforshortseriesoraggregated series,whereasCastroetal.(2012)introducedspatialandtemporal

dependenciesthroughthelatentcontinuousvariables. Areview andassessmentofmethodologiesinthestatisticalanalysisof colli-sionsisgivenbyLordandMannering(2010).Thenegativebinomial modelwasalsochosenoverthetimeseriesanalysismodelssince itisamultivariatemodelratherthanaunivariateone.

Moreover,thenegativebinomialtimeseriesischosensincefor timeseriesconsistingofcounts,classicalGaussianmodelsare inap-propriate.Countdataarenon-negative,integer-valuedandoften overdispersed,i.e.,thevarianceislargerthanthemean.Poisson modelsarenotrobustformodelingcountdata,since theyhave over dispersion problems (Cameron and Trivedi, 1998). There-fore,manyresearchersusedoverdispersedPoissonandbinomial regressionmodeltohandlethisproblem.Asanaturalextensionof Poissondistribution,itiswellknownthatnegativebinomial dis-tributionismoreflexibleandallowsforoverdispersion(Davisand

Wu,2009).El-BasyounyandKwon(2012)modeledthetimeand

weathereffects oncollisionfrequenciesusingCityofEdmonton data from 2000to 2010 by using multivariatePoisson lognor-malmodels.ThismodelismorerobustthenthePoissonmodels. However,thePoisson-lognormal haslimitations,i.e., themodel estimationismorecomplexbecausethePoisson-lognormal dis-tributiondoesnothaveaclosedform.Therefore,manyresearchers usedtheMarkovChainMonteCarlosimulationforestimatingthe parametersofthosemodels,sincetheclassicalestimationofthose parameterscannotbecalculatedinastraightforwardway. More-over,thePoisson-lognormalcanstillbeadverselyaffectedbysmall samplesizesand low sample meanvalues (Miaouand Mallick, 2003).Thenegativebinomialtimeseriescanbesolvedusing clas-sicalestimation(DavisandWu,2009).

Secondly, we estimated the collision trend and tested for changesincollisionlevelsbefore/afterOPS24byusinginterrupted timeserieswithsegmentedregression(Perrin,2009).

Finally,wemeasuredthestatisticalproperties,i.e.,asequenceof collisionmeansafterOPS24endedandestimatedapointatwhich thestatisticalpropertyofthatsequenceischanged.Thatpointis calledachangepoint(Killicketal.,2011).Fromthelengthofdays betweentheendsof OPS24tothatchangepoint, wecan mea-surehowlongthebehaviorlastsintermofcollisionsreduction. Moreover,thechangepointdetectionmodelsareusuallyusedin thestatisticalprocesscontrolfordetectingachangeinthe distri-butionfromthetargetintheprocess(HawkinsandDeng,2010).

(7)

S.Halim,H.Jiang/AccidentAnalysisandPrevention58 (2013) 106–114 109

Thedetectionofasinglechangepointcanbasicallyberegardedas ahypothesistest;withnullhypothesisbeingthereisnochange pointversusthealternativehypothesisbeingthereexistsachange point. Somemodelsthat assume normalityin theobservations aregivenbyHawkinsetal.(2003),whichdetectedthechangein mean,andHawkinsandZamba(2005),whichdetectedchangein meanandvariance.Here,weappliedtheHawkinsandDeng(2010)

nonparametricchangepointdetectionmodel.Thenon-parametric approachwaschosenbecausewedonotneedtoassumeany dis-tributionofthedatasetasinaparametricmodel.

3.1. Negativebinomialmodel(DavisandWu,2009)

Let Yt be a time series of counts and Xt

be an observed l-dimensional covariate, Xt=

1,t N,cos

2t

360

,sin

2t

360

,Tempt,Snowt,Gustt

, t is the

dis-crete time, s is the seasonal term, and the link function is:

log

r(1−pt) pt

=xT

tˇ+˛t (1)

where{˛t}latentprocesswithGaussianinnovations.Hereˇisthe vectorofregressioncoefficients.Theusedofharmonicfunctions inthecovariateXtisforcapturingtheseasonaleffectsinthedata

(Davisetal.,2000).

TheconditionaldensityfunctionofYtis

p(Yt=yt|˛t)=

yt+r−1

r−1

prt(1−pt)yt (2)

Foryt=0,1,...Lettheprocess{εt=e˛t},whichisastrictly

sta-tionarynonnegative timeserieswhen {˛t} isstrictlystationary,

center{˛t}suchthat{εt}hasmeanone.Theconditionalmeanof Ytcanbewrittenintermsofεt,

E(Yt|˛t)= r

(1−pt)

pt

=rexp

xTtˇ+˛t

=rexp(xTtˇ)εt∞ (3)

withE(εt)=1,wehaveE(Yt)=rexp(xTtˇ)theformforapure

gen-eralizedlinearmodelinthenegativebinomialcase.When{˛t}is,

inordertosatisfytheconditionofE(e˛t)=1,itisrequiredthat

˛t∼N(−˛2/2,˛2).Astandardnegativebinomialgeneralizedlinear

modelwasfittedtothedata.Theestimate ˆrwasdeterminedbythe rvaluethatyieldedthesmallestAIC.The{˛t}wasestimatedfrom

theresidualsof(3).Whenthe{˛t}wasastationaryGaussian lin-earprocesswithinnovationsZtwhichareindependentidentically

distributedN(0,2)variables.Thenthe2wasestimatedusingthe

methodofmoments.

var(Yt)=t+2t

(r+1)2

ε+1

r (4)

andtheestimateofˆ2

ε andˆε(k) wereobtainedusinganordinary

leastsquaretypeestimators(BrännäsandJohansson,1994)

ˆ 2ε=

1 ˆ r+1

ˆ r

t=1

n ˆ

2

t

(Yt−ˆt)2−ˆt

t=1

n ˆ4t

−1

(5)

ˆ ε(k)=

ˆ ε−2

t=k+1

n ˆtˆt−k(Yt−ˆt)(Yt−k−ˆt−k)

t=k+1

n ˆ2tˆ2t−k

(6)

Thelatentprocessmodels’parameterscanbeestimatedusing

(6)andthestandardmethodsas,YuleWalkerEstimate,algorithm forestimatingmovingaverageparameters(seeBoxandJenkins, 1970).Togetthesolutionofthismodelforpredictingthecollisions inEdmonton,weusedR-programming(CRAN,2012).

3.2. Gaussiantimeseriesmodel

Toaccountformissingtrafficvolumedata,themodelingalso consideredcollisionproportions.SincetheNegativeBinomialtime seriesmodelisdesignedforcountdependentvariables,itwillnot beappropriatetohandlethedailyinjuryandfatalorPDOcollision proportions.Therefore,wechangedthelinkfunctiontoGaussian, whichisappropriatetohandlecontinuousdependentvariables.

3.3. Interruptedtimeserieswithsegmentedregressionmodel

Studyofinterruptedtimeserieshasbeenappliedinmanytraffic conditions;Hamedetal.(1999)usedadiffusionmodelwithjumps toinvestigatetheeffectofGulfcrisistotrafficcollisionsinJordan. Here,weusedasegmentedregression(Perrin,2009)forestimating thetrendandlevelofcollisionsbefore/afterOPS24.Thismodelis moreclassicalthanthediffusionmodel.However,itcanbeusedto examinetheimpactofexternalvariables,suchastemperatureand snowonthegroundtothechangeoftrendandlevelofcollisions before/afterOPS24.Thediffusionmodelisappropriateformodeling aunivariatevariable.Thesegmentedregressioncanbeformulated asfollow:

Yt=b0+b1T+b2D+b3P+b4Tempt+b5Snowt+et, (7)

whereYtistheproportionofinjuryandfatalcollisions;Tistime,

Disadummyvariableforpreorpostintervention,Pistimeafter theintervention,etistherandomvariationattimetnotexplained

bythemodel.Temptisthemeanoftemperatureattheobservation

timet,bi,i=0,...,5arecoefficientsthatshouldbeestimated.

3.4. Changepointdetectionmodel

Hawkins and Deng developed non-parametric approach of changepointmodels,byassumingY1,Y2,...,Y,Y+1,...,Ynas

independent,continuousrandomvariableswithstatistical distri-bution

Yi∼F(y)fori=1,2,...,

Yi∼F

y−

fori=+1,...,n,

(8)

whereisashiftinlocationoccurringafterthechangepointand nisthenumberofdailyspeeddataforagivenlocation.Inthiscase, YiisthenumberofcollisionsstartedaftertheOPS24.

Inthenon-parametricapproach,thelikelihoodratiotestforthe nullhypothesisthat;H0:1=2(themeanofbeforeandafterthe

changepointisthesame)isthetwo-samplet-statistic.Itisdefined as:

Tk,n=

Uk,n

k(n−k)(n+1)/3

; (9)

withUk,n=2

k

i=1Ri−k(n+1);1≤k≤n−1andRiistherankof

YiwithinY1,...,Yn,Inthenullcase,weareassumingconstant

vari-ance,theTk,nfollowsat-distributionwithn−2degreesoffreedom.

TheisgivenbyfindingTmax,n,themaximumof

Tk,n

acrossall

possiblekvalues.

4. Results

(8)

Table4

Parametersofnegativebinomialmodel.

Allcollisions Injuryandfatalcollisions PDO

Explanatoryvariables Coeff. Pr(>|t|) Coeff Pr(>|t|) Coeff Pr(>|t|) Intercep 4.3131 <2e-16* 2.4201 <2e-16* 8.473e-01 <2e-16*

Slope −0.2159 2.39e-13* 0.2252 1.55e-11* 7.777e-04 0.8489

Cosinus 0.1709 9.22e-10* 0.1844 7.95e-09* 8.535e-03 0.027+

Sinus 0.0448 0.0240+ 0.0354 0.11713 3.286e-03 0.2361

Temperature -0.018 <2e-16* 0.0037 0.05635# 1.623e-03 3.13e-11*

Snow 0.0054 2.13e-05* 0.0045 0.00212.966e-05 0.8682

Gust 0.0022 0.0226+ 0.0009 0.40756 1.265e-04 0.3461

Nulldeviance 1842.5 1331.9 3.7317

Residualdeviance 1238.5 1228.9 2.9317

AIC 11179 6893.6 −3867.

Signif.codes: * <0.01. +0.01.<0.05. #<0.10.

4.1. Generalcollisiontrendandweatherinfluenceanalysis

Firstly,wefittedthecollisiondatausinga standardnegative binomialgeneralizedlinearmodelandthe ˆrwasdeterminedbythe rvaluethatyieldedthesmallestAIC.AICstandsfor‘Akaike Infor-mationCriterion’,itisameasureoftherelativegoodnessoffitof astatisticalmodel.TheAICisgroundedintheconceptof informa-tionentropy,ineffectofferingarelativemeasureoftheinformation lostwhenagivenmodelisusedtodescribereality.Itcanbesaid todescribethetradeoffbetweenbiasandvarianceinmodel con-struction,orlooselyspeakingbetweenaccuracyand complexity ofthemodel.AICvaluesprovideameansformodelselection.The smallertheAICvalue,thebetterthemodelfit.Theparametersfrom thismodelweresummarizedinTable4.

FromTable4,wecanseethatforalldailycollisions,therewas

asignificantdecliningannualtrend;theperiodictrendfolloweda cosinefunction,meaningthatcollisionsdecreasedfromJanuaryto June,andincreasedtoDecember;therewasasignificantinverse relationshipwithmeantemperature;significantpositive relation-shipwiththicknessofsnowandwindgust.Fordailyinjuryand fatalcollisions,therewasalsoasignificantdecliningannualtrend; theperiodictrendalsofollowsacosinefunction;non-significant inverserelationshipwithmeantemperature;significantpositive relationshipwiththicknessofsnow;andnon-significantpositive relationshipwithwindgust.PDOcollisionsdidnothaveatrend; italsofollowedacosinefunction.Ithadasignificantinverse rela-tionshipwiththemeantemperature,sowecansaythatthePDO collisionsincreaseduringthewintertime.Therelationshipwiththe thicknessofsnowandwindgustwaspositivebutnotstatistically significant.

Now,usingtheaboveparameters,wethencalculatedthelatent process ˛t using Eqs.(7) and (8). Since thelatent processis a

randomseries,wedidaMonteCarlosimulationforthelatent pro-cessbygeneratingthatprocessB=1000times.Further,wefitted themeanoftheestimatedseries,i.e., ˆYt intothedataand

con-structedtheconfidenceintervalbytakingthe2.5%and97.5%of theorderedestimatedseries.Thefittedvaluesandtheconfidence

intervalsfordaily,injuryandfatalandPDOcollisionsaredepicted inFig.2(a–c)respectively.Fromthosefigureswecanseethatthe modelsfollowedtheseasonalitytrend.ExceptfortheInjuryand Fatalcollisions,theconfidenceintervalofthefittedvaluecovered thedatawell.

Thefittedmodelmeasurementsaregiveninfivetypes,i.e.,mean squareerror(MSE),rootmeansquareerror(RMSE),meanof abso-lutedeviation(MAD),symmetricmeanabsolutepercentageerror (SMAPE)andTheil’sU1.SMAPEisanaccuracymeasurebasedon percentageerrors.SMAPEcanbeformulatedas

N

t=1|Yt−Yˆt|/(Yt+

ˆ

Yt),whereYtisthetruevalueofcollisionsand ˆYtistheestimated

oneattimet.TheTheil’sU1statisticisboundbetween0and1, withvaluescloserto0indicatinggreaterforecastingaccuracy.The Theil’sUstatisticsmeasurewhetherthemodelbeingusedis pro-vidingvaluableinformation.

Thesummaryofthosemeasurementsforthemeanofthe esti-matedseriesisgiveninTable5.InwhichwecanseethattheSMAPE oftheinjuryandfatalcollisionsonlyreach15.9%,whileforthedaily collisionsandPDOcollisionsitcanreach13.5%and14.2%, respec-tively.SincetheTheil’sU1statisticiscloserto0,wecandeducethat themodelsareprovidingvaluableinformation.Amongfour mea-surements,i.e.,MSE,RMSE,MAD,SMAPE,thesmallerthevalue, thebetterthefittedmodel.However,MSE,RMSE,and MADare notrobusttotheoutliersinthedata.SMAPEismorerobusttothe outliersthanthoseotherthreemeasurements(Flores,1986).

4.2. Collisionproportionanalysis

Toanalyzethedailyproportionofinjuryandfatalcollisionsor PDOcollisionstototalcollisions,weusedtheGLMwithGaussian densityfunctionasthelinkfunctionsincethedependentvariableis continuous.AsshowninTable6,fordailyPDOandinjuryandfatal collisionproportions,therewasanon-significantdecliningannual trend;fairlysignificantcosineperiodictrend;significantnegative relationshipwithmeantemperature;andnon-significantpositive relationshipwiththicknessofsnowandwindgust.Thefittedmodel

Table5

Thefittedmodelmeasurements.

Negativebinomialtimeseries

Measurement Dailycollision Injuryandfatalcollision PDO

MSE 824.6126 17.9288 689.3258

RMSE 28.7161 4.2343 26.2550

SMAPE 13.505 15.87 14.15

MAD 20.3815 3.3675 18.1344

(9)

S.Halim,H.Jiang/AccidentAnalysisandPrevention58 (2013) 106–114 111

Fig.2. Fittedmodelintothedatafor(a)dailycollisions,(b)injuryandfatalcollisions,(c)PDOcollisions.

totheactualproportionoftheinjuryandfatalcollisionproportions andthePDOcollisionproportionsaredepictedinFig.3.Inthose figureswecanseethatthe95%confidenceintervalofbothfitted modelscancovertheactualproportions.

Ingeneral,thePDOcollision frequenciesand theproportion ofPDOshaveasimilarpropertyintermofrelationshipwiththe weather. The collision frequencies and proportion of PDOs are higherinthewintertimethaninthesummertime.However,this relationshipisoppositeforinjuryandfatalcollisionfrequencies andproportions.DuringthesummertimeinEdmonton,drivers tendtospeedmorewhentheroadconditionisgoodandtrafficis notcongested.

4.3. ImpactofOPS24oncollisions

Inthissection,wepresentthegeneralimpactofOPS24on col-lisionsbyperformingtrend,interceptandweatherfactoranalysis usinginterruptedtimeserieswithsegmentedregressionmodel. In2008,theOPS24wereheldduringthewintertime(September, October,andDecember).However,duetotheweatherdata avail-ability,westartedtheanalysisfromOctober2008.

Twoexamples of analysisare discussed here.For OPS24 on October21,2008,Fig.4(left)andTable7showedthattherewasno significantchangeinthelevelofinjuryandfatalcollision propor-tionsafterOPS24,althoughthetrendbecamesignificantlysteeper.

Table6

ParametersofGaussianModels.

Injuryandfatalcollisionsproportion PDOproportion

Explanatoryvariables Coeff Pr(>|t|) Coeff Pr(>|t|) Intercept 1.529e−01 <2e−16* 8.473e01 <2e16*

Slope 1.625e−03 0.6911 −7.777e−04 0.8489

Cosinus 7.635e−03 0.0494− 8.535e03 0.0279#

Sinus −2.843e−03 0.3055 3.286e−03 0.2361

Temperature 1.647e−03 1.62e−11* 1.623e03 3.13e11*

Snow −5.751e−05 0.7478 2.966e−05 0.8682

Gust −1.360e−04 0.3111 1.265e−04 0.3461

Nulldeviance 3.7213 0.7478 3.7317

Residualdeviance 2.9278 2.9317

AIC −3864.5 −3867.1

(10)

Fig.3.Fittedmodelintotheproportionfor(left)injuryandfatalproportion,(right)PDOproportion.

Fig.4.Trendandinterceptbefore/afterOPS24in2008(blue:intercept;green:trend;red:theOPS24date;magenta:thechangepoint).(Forinterpretationofthereferences tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Table7

Trendandinterceptanalysisresults2008–2011.

Date Changepoint Meanbefore Trendbefore Meanafter Trendafter Temperature Snow 10/21/2008 40 0.16842* 0.00027 0.00176 0.00085+ 0.00215 0.00323+

12/16/2008 17 0.15978* 0.00085* 0.04473+ 0.00009 0.00295* 0.00384*

1/29/2009 25 0.12336* 0.00004 0.00303 0.00022 0.00192 0.00292

3/10/2009 8 0.11768* 0.00022 0.01913 0.00176 0.00364 0.00492

4/7/2009 20 0.11185* 0.00162 0.03539 0.00080 0.00201 0.00299

5/12/2009 4 0.12836* 0.00074 0.00339 0.00044 0.00313 0.00541+

6/9/2009 9 0.11946* 0.00015 0.02880 0.00317 0.00466 0.00546

6/26/2009 7 0.14802* 0.00340 0.01317 0.00103* 0.00291 0.00170

9/29/2009 13 0.23054* 0.00024 0.04045 0.00459+ 0.00401 0.00329

10/16/2009 35 0.14672* 0.00212 0.00688 0.00040 0.00067 0.00060

12/15/2009 27 0.13867* 0.00051 0.00881 0.00024 0.00013 0.00141

1/20/2010 13 0.11886* 0.00010 0.04137 0.00486 0.00171 0.00308

2/5/2010 17 0.06027+ 0.00634* 0.06988* 0.00056 0.00217 0.00248

3/29/2010 1 0.12452* 0.00067 0.02840 0.00345 0.00196 0.00272

4/13/2010 6 0.13046* 0.00282 0.01170 0.00008 0.00189 0.00207

6/28/2010 40 0.12986* 0.00034 0.01254 0.00036 0.00076 0.00134

9/13/2010 42 0.14103* 0.00053 0.02260 0.00006 0.00152 0.00119

11/15/2010 26 0.17917* 0.00017 0.05020+ 0.00001 0.00337* 0.00256

12/14/2010 28 0.11547* 0.00013 0.01362 0.00020 0.00186 0.00373*

1/19/2011 12 0.11140* 0.00002 0.02274 0.00203 0.00238 0.00369+

2/4/2011 39 0.09215* 0.00181 0.01366 0.00060 0.00157 0.00231

3/28/2011 21 0.12205* 0.00041 0.05790 0.00110 0.00041 0.00140

4/21/2011 14 0.18725* 0.00144 0.05663 0.00135 0.00008 0.00184

5/19/2011 13 0.21358* 0.00068 0.03262 0.00254 0.00752+ 0.00625

6/7/2011 45 0.22788* 0.00504+ 0.03288 0.00008 0.00239 0.00094

11/15/2011 5 0.13324* 0.00015 0.03703 0.00226* 0.00405* 0.00632*

12/16/2011 13 0.10786* 0.00214+ 0.02011 0.00177 0.00266 0.00458

(11)

S.Halim,H.Jiang/AccidentAnalysisandPrevention58 (2013) 106–114 113

Table8

Summaryofcollisiontrendandweatherinfluenceanalysisresults.

Daily collisions

Dailyinjury andfatal collisions

Dailyinjuryand fatalcollision proportions DailyPDO collisions DailyPDO collision proportions

Lineartrend − − + − −

Periodictrend Cosine Cosine Cosine Cosine Cosine

MeanTemperature − − + − −

Thichnessofsnow + + − + +

Windgust + + − + +

+,statisticallysignificantpositiveassociationbetweendependentandindependentvariable.−,statisticallysignificantnegativeassociationbetweendependentand indepen-dentvariable,+/−,non-statisticallysignificantpositive/negativeassociationbetweendependentandindependentvariable.

Snowonthegroundshowedsignificantinfluenceonthepattern change.Themeanofcollisionsproportionslastedupto40days aftertheOPS24ended.Theanalysisof OPS24onDecember 16, 2008showedtheoppositeresult:Fig.4(right)andTable7showed thatthelevelofinjuryandfatalcollisionproportionsafterOPS24 changedsignificantlybutnotthetrend.Bothmeantemperature andsnowonthegroundsignificantlyinfluencedthefatalandinjury collisionproportions.Themeanofcollisionsproportionslastedup to17daysaftertheOPS24ended.

Overall,OPS24eventsaswellastemperatureandsnowonthe grounddidnotinfluencetheinjuryandfatalcollisionproportions. ThiscouldhappensincemostoftheOPS24swereheldwhensnow waspresent,inwhichdriverstendtoslowdown.Theschedulesof OPS24eventssometimeswereclosetoeachother.Theseschedules weredeterminedbytheEdmontonPoliceServicebasedonseveral factors,includingresourcesavailability.

5. Conclusions

The negative binomial time series model that accounts for seasonalityandweatherfactorsshowedthatthemean tempera-tureisnegativelyassociated(withstatisticalsignificance)withall collisiontypes,i.e.,thehigherthemeantemperature,thelower the number of daily collisions. Thickness of snow is positively associatedwithinjuryandfatalcollisions(withstatistical signifi-cance),butisnotsignificantlyassociatedwithPDOcollisions.Wind gust is not associated witheither injury and fatal collisionsor PDOcollisions.Furthermore,dailycollisions,injuryandfatal col-lisionsshowedadecreasingtrendandtheperiodictrendfollowed thecosine function,which meansthatthecollisionswere high inJanuary(winter),slowlydecreasedtoJune(summer),andthen startedtoincreaseagaininSeptember(autumn).Theresultsfrom thisanalysisweremainlysimilartoEl-BasyounyandKwon(2012)’s paper,althoughoneofresultswascompletelyopposite.The simi-laritiesoccurredinthefollowingterms:inbothstudies,theinjury andfatalcollisionshadasignificantdecliningannualtrend, signif-icantinverserelationshipwithmeantemperature,andsignificant positiverelationshipwiththicknessofsnow.Also,inboth stud-ies,PDOcollisionshadsignificantinverserelationshipwithmean temperatureandpositiverelationshipwiththicknessofsnow.The contradictionoccurredinannual trendofPDO collisions:in

El-BasyounyandKwon(2012)’spaper,PDOcollisionshadsignificant

growingannualtrend,whileinthisstudythePDOcollisionshada significantdecliningannualtrend.Onepossiblereasonisthat El-BasyounyandKwonused2000–2010data,wherethetrendswere notuniformoverthiscourseof11yearsthatcouldbeduetoseveral reasons,includingchangesinpopulation,roadwaystructure,and trafficenforcementstrategies

TheGaussian timeseriesmodelthataccountsforseasonality andweather factorsshowedthatonlymeantemperaturehad a significantpositiveassociationwiththedailyinjuryandfatal colli-sionproportions.Thelineartrendisnotstatisticallysignificantfor thedailyinjuryandfatalcollisionsorPDOcollisionproportions.

Table 8 summarizes the association between collision and

weatherfactors.El-BasyounyandKwon(2012)didnotanalyzethe relationshipbetweentheweatherfactorsandthedailyinjuryand fatalcollisionproportions.

Theinterruptedtimeseriesmodelwithsegmentedregression modelshowedthattherewasnostatisticalevidencethatOPS24 hadimpactoncollisionreduction.Thechangeincollisionpattern afterOPS24wasduetothechangeinweatherfactors.

GiventhefactthattheCityofEdmontonischaracterizedby itssometimesextremewinterweatherwhichtypicallyconstitutes fivetosixmonthoftheyear(El-BasyounyandKwon,2012)and the magnitude of the problemcaused by the adverse weather conditions,itisimperativetohaveasolidunderstandingofthe associationbetweencollisionandweatherfactorstocomeupwith anoptimumproactivetrafficsafetycountermeasures.Detail analy-sisofvariousrelevantcountermeasuresisbeyondthescopeofthis study.However,alistofrelevantcountermeasuresandtheir corre-spondingcollisionmodificationfactors(CMFs)basedonprevious studies,suchasinstallingicycurvewarningsystem(CMF=0.82for totalcollisions)andincreasingpavementfriction(CMF=0.76for totalcollisions)canbereviewedfromCrashModificationFactors Clearinghouse(ClearingHouse,2013).

Acknowledgements

Theauthorsarevery gratefultoDr.StevanusA. Tjandar,Dr. YongshengChenandtwoanonymousrefereesfortheirvaluable commentsandsuggestions,whichcontributedtoimprovethe qual-ityofthepaper.

References

Andreescu,M.,Frost,D.B.,1998. Weather,trafficaccidentsinMontreal,Canada. ClimateResearch9,225–230.

Andrey,J.,Mills,B.,Vandermolen,J.,2001. WeatherInformationandRoadSafety: FinalReport.FinalReportPresentedtotheInstituteforCatastrophicLoss Reduc-tion.

Andrey,J.,Yagar,S.,1993. Atemporalanalysisofrainrelatedcrashrisk.Crash AnalysisandPrevention25,465–472.

Box,G.,Jenkins,G.,1970.TimeSeriesAnalysis:ForecastingandControl.Holden-Day, SanFrancisco.

Brännäs,K.,Johansson,P.,1994.Timeseriescountdataregression.Communications inStatisticsA23,2907–2925.

Brodsky,H.,Hakkert,A.S.,1988. Riskofaroadaccidentinrainyweather.Crash AnalysisandPrevention20,161–176.

Brown,B.,Baass,K.,1997. Seasonalvariationinfrequenciesandratesofhighway accidentsasafunctionofseverity.TransportationResearchRecord1581,59–65. Cameron,A.C.,Trivedi,P.K.,1998. RegressionAnalysisofCountData.Cambridge

UniversityPress.

Castro,M.,Paleti,R.,Bhat,C.R.,2012. Alatentvariablerepresentationofcount datamodelstoaccommodatespatialandtemporaldependence:application topredictingcrashfrequencyatintersection.TransportationResearchPartB: Methodological46(1),253–272.

ClearingHouse,ModificationFactorsClearinghouse,http://www.cmfclearinghouse. org/index.cfm(accessed4.413).

CRAN,TheR-ProjectforStatisticalComputing:ComprehensiveRArchiveNetwork, www.r-project.org,2012.

(12)

Davis,R.A.,Wu,R.,2009. Negativebinomialmodelsfortimeseriesofcounts. Biometrika96(3),735–749.

Eisenberg,D.,2004. Themixedeffectsofprecipitationontrafficcrashes.Accident AnalysisandPrevention36,637–647.

El-Basyouny,K.,Kwon,D.,2012. AssessingTimeandWeatherEffectson Colli-sionFrequencybySeverityinEdmontonUsingMultivariateSafetyPerformance Functions.In:Presentedatthe91stAnnualMeetingofTransportationResearch Board.

Flores,B.E.,1986.Apragmaticviewofaccuracymeasurementinforecasting.Omega 14(2),93–98.

Fridstrom,L.,Liver, J.,Ingebrigtsen,S.,Kulmala,R., Thomsen,L.,1995. Mea-suringthecontributionofrandomness, exposure,weather,anddaylightto thevariation in roadaccident counts.Crash Analysis andPrevention 27, 1–20.

Fridstrom, L.,Ingebrigtsen,S., 1991. Anaggregateaccidentmodel basedon pooled, regional time-series data. Accident Analysis and Prevention 23, 363–378.

Halim,Jiang,S.,Speed,H.,2012.CollisionImpactAnalysisofOperation24Hoursin theCityofEdmonton.CityofEdmontonOfficeofTrafficSafety.

Hamed,M.M.,Al-Eideh,B.M.,Al-Sharif,M.M.,1999.Trafficaccidentsundertheeffect ofthegulfcrisis.SafetyScience33,59–68.

Hawkins,D.M.,Qiu,P.,Kang,C.W.,2003. Thechangepointmodelforstatistical processcontrol.JournalofQualityTechnology35,335–365.

Hawkins,D.M.,Zamba,K.D.,2005. StatisticalProcessControlforShiftsinMeanor VarianceUsingaChangepointFormulation47(2),164–173.

Hawkins,D.M.,Deng,Q.,2010.Anonparametricchangepointcontrolchart.Journal ofQualityTechnology42(2),165–173.

Killick,R.,Eckley,I.A.,2011. Changepoint:AnRPackageforChangepointAnalysis. LancasterUniversity.

Knapp,K.,Smithson,L.D.,Khattak,A.J.,2000. Themobilityandsafetyimpactsof winterstormeventsinafreewayenvironment.Mid-ContinentTransportation ResearchSymposium,67–71.

LombardoL.OverviewofUSCrashesandEnvironment.PaperpresentedatSecond WeatherInformationforSurfaceTransportation(WIST)Forum;December4–6, 2000;Rockville,Md.

Lord,D.,Mannering,F.,2010.Thestatisticalanalysisofcrash-frequencydata:a reviewandassessmentofmethodologicalalternatives.TransportationResearch PartA,http://dx.doi.org/101016/j.tra.2010.02.001.

Miaou,S.P.,Mallick,J.J.,2003.Roadwaytrafficcrashmapping:aspacetimemodeling approach.JournalofTransportationandStatistics6(1),33–57.

NationalResearchCouncil,2004. WheretheWeatherMeetstheRoad?National AcademiesPress,Washington,DC.

Perrin,N.A.,2009.AnalysisofInterruptedTimeSerieswithSegmentedRegression. CenterofHealthResearch.

Perry,A.H.,Symons,L.J.,1991. HighwayMeteorology.E&FNSponPress,Swansea, Wales.

Quddus,M.A.,2008. Timeseriescountdatamodels:anempiricalapplicationto trafficaccidents.AccidentAnalysis&Prevention40(5),1732–1741.

Usman,T.,Fu.,L.,Miranda-Moreno,L.F.,2011.Accidentpredictionmodelsforwinter roadsafety:doestemporalaggregationofdatamatter?TransportationResearch Record:JournaloftheTransportationResearchBoard2237,144–151. Vanlaar,W.,Robertson,R.,Marcoux,K.,2008.Theroadsafetymonitor2007:

exces-sivespeeding.TrafficInjuryResearchFoundation.

Vanlaar,W.,Robertson,R.,Marcoux,K.,2011.EvaluationofthePhotoEnforcement SafetyProgramofTheCityofWinnipeg:FinalReport.TrafficInjuryResearch Foundation.

Referensi

Dokumen terkait

Direktorat Jenderal Guru dan Tenaga Kependidikan Kementerian Pendidikan dan Kebudayaan melaksanakan pemilihan calon penerima Tanda Kehormatan Satyalancana Pendidikan

Perubahan Orientasi Mata Pencaharian Pengrajin Logam Desa Cibatu Kecamatan Cisaat Kabupaten Sukabumi.. Universitas Pendidikan Indonesia | repository.upi.edu |

Pada hari ini Senin tanggal bulan tahun telah dilangsungkan Sidang Skripsi Jurusan Teknik Mesin untuk mahasiswa tersebut di bawah ini:..

1 Pasangan Bupati Sleman yang terpilih untuk periode 2005-2010 yaitu Drs.H.Ibnu Subiyanto,Akt dengan. Drs.H.Sri Purnomo/tadi pagi bertempat di gedung DPRD kabupaten

Berdasarkan analisis data dan pengujian hipotesis yang telah dilakukan, maka dapat disimpulkan bahwa terdapat pengaruh yang berbeda pada kemampuan komunikasi matematis

Barat, Tanjung Jabung Timur, Muaro Jambi, Batanghari, Bungo, Tebo, Bungo, Merangin, Sarolangun, Kerinci, dan Sungai Penuh; dan. d) kawasan peternakan yang terdapat di

Kemajuan teknologi telah menyebabkan berkembangnya media penyebaran informasi, contohnya saja penggunaan kamus pada media elektronik sudah semakin digemari. Berdasarkan

Unt uk mem udahkan analisis, sist em pada gam bar di at as ini masih harus dijelaskan lebih lanjut dalam bent uk volume at ur (Cont rol Volume) agar kit a bisa mem buat