xvii
APPENDIX
Brand Image
Factor Analysis
Notes
Output Created 14-Jul-2011 19:08:00
Comments
Input Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data
File
100 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined
missing values are treated as missing. Cases Used LISTWISE: Statistics are based on
cases with no missing values for any variable used.
Syntax FACTOR
/VARIABLES BI28 BI29 /MISSING LISTWISE /ANALYSIS BI28 BI29
/PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC
EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
xviii
Resources Processor Time 00 00:00:00.156
Elapsed Time 00 00:00:00.218
Maximum Memory Required 1192 (1.164K) bytes Variables Created FAC1_4 Component score 1
[DataSet0]
Correlation Matrixa
BI28 BI29 Correlation BI28 1.000 .380
BI29 .380 1.000 Sig. (1-tailed) BI28 .000
BI29 .000 a. Determinant = .856
Inverse of Correlation Matrix
BI28 BI29 BI28 1.169 -.444 BI29 -.444 1.169
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .500 Bartlett's Test of Sphericity Approx. Chi-Square 15.208
df 1
Sig. .000
Anti-image Matrices
xix
Anti-image Covariance BI28 .856 -.325 BI29 -.325 .856 Anti-image Correlation BI28 .500a -.380 BI29 -.380 .500a a. Measures of Sampling Adequacy(MSA)
Communalities
Initial Extraction BI28 1.000 .690 BI29 1.000 .690 Extraction Method: Principal Component Analysis.
Total Variance Explained
Component
Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %
1 1.380 69.002 69.002 1.380 69.002 69.002
2 .620 30.998 100.000
Extraction Method: Principal Component Analysis.
Component Matrixa Component 1 BI28 .831 BI29 .831 Extraction Method: Principal Component Analysis. a. 1 components extracted.
xx
Reproduced CorrelationsBI28 BI29 Reproduced Correlation BI28 .690a .690
BI29 .690 .690a
Residualb BI28 -.310
BI29 -.310 Extraction Method: Principal Component Analysis. a. Reproduced communalities
b. Residuals are computed between observed and reproduced correlations. There are 1 (100.0%) nonredundant residuals with absolute values greater than 0.05.
Karakteristik Produk
Factor Analysis
Notes
Output Created 14-Jul-2011 19:02:38
Comments
Input Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data
File
100 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined
missing values are treated as missing. Cases Used LISTWISE: Statistics are based on
cases with no missing values for any variable used.
xxi
Syntax FACTOR
/VARIABLES KP17 KP18 /MISSING LISTWISE /ANALYSIS KP17 KP18
/PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC
EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources Processor Time 00 00:00:00.296
Elapsed Time 00 00:00:00.406
Maximum Memory Required 1192 (1.164K) bytes Variables Created FAC1_4 Component score 1
[DataSet0]
Correlation Matrixa KP17 KP18 Correlation KP17 1.000 .263 KP18 .263 1.000 Sig. (1-tailed) KP17 .004 KP18 .004 a. Determinant = .931Inverse of Correlation Matrix
KP17 KP18 KP17 1.074 -.282 KP18 -.282 1.074
xxii
KMO and Bartlett's TestKaiser-Meyer-Olkin Measure of Sampling Adequacy. .500 Bartlett's Test of Sphericity Approx. Chi-Square 6.963
df 1 Sig. .008 Anti-image Matrices KP17 KP18 Anti-image Covariance KP17 .931 -.244 KP18 -.244 .931 Anti-image Correlation KP17 .500a -.263 KP18 -.263 .500a a. Measures of Sampling Adequacy(MSA)
Communalities
Initial Extraction KP17 1.000 .631 KP18 1.000 .631 Extraction Method: Principal Component Analysis.
Total Variance Explained
Component
Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %
1 1.263 63.127 63.127 1.263 63.127 63.127
2 .737 36.873 100.000
xxiii
Component Matrixa Component 1 KP17 .795 KP18 .795 Extraction Method: Principal Component Analysis. a. 1 components extracted. Reproduced Correlations KP17 KP18 Reproduced Correlation KP17 .631a .631 KP18 .631 .631a Residualb KP17 -.369 KP18 -.369 Extraction Method: Principal Component Analysis. a. Reproduced communalitiesb. Residuals are computed between observed and reproduced correlations. There are 1 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxiv
Life Style
Factor Analysis
Notes
Output Created 14-Jul-2011 19:05:33
Comments
Input Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data
File
100 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined
missing values are treated as missing. Cases Used LISTWISE: Statistics are based on
cases with no missing values for any variable used.
Syntax FACTOR
/VARIABLES LF22 LF23 LF25 /MISSING LISTWISE
/ANALYSIS LF22 LF23 LF25 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC
EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources Processor Time 00 00:00:00.405
Elapsed Time 00 00:00:00.484
Maximum Memory Required 2028 (1.980K) bytes Variables Created FAC1_3 Component score 1
xxv
[DataSet0]
Correlation Matrixa LF22 LF23 LF25 Correlation LF22 1.000 .539 .363 LF23 .539 1.000 .444 LF25 .363 .444 1.000 Sig. (1-tailed) LF22 .000 .000 LF23 .000 .000 LF25 .000 .000 a. Determinant = .555Inverse of Correlation Matrix
LF22 LF23 LF25 LF22 1.448 -.682 -.223 LF23 -.682 1.566 -.447 LF25 -.223 -.447 1.279
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .651 Bartlett's Test of Sphericity Approx. Chi-Square 57.265
df 3
Sig. .000
Anti-image Matrices
LF22 LF23 LF25 Anti-image Covariance LF22 .691 -.301 -.120
xxvi
LF23 -.301 .639 -.223 LF25 -.120 -.223 .782 Anti-image Correlation LF22 .646a -.453 -.164 LF23 -.453 .615a -.316 LF25 -.164 -.316 .721a a. Measures of Sampling Adequacy(MSA)Communalities
Initial Extraction LF22 1.000 .643 LF23 1.000 .712 LF25 1.000 .545 Extraction Method: Principal Component Analysis.
Total Variance Explained
Component
Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %
1 1.901 63.355 63.355 1.901 63.355 63.355
2 .651 21.706 85.061
3 .448 14.939 100.000
Extraction Method: Principal Component Analysis.
Component Matrixa Component 1 LF22 .802 LF23 .844 LF25 .738
xxvii
Extraction Method: Principal Component Analysis. a. 1 components extracted. Reproduced Correlations LF22 LF23 LF25 Reproduced Correlation LF22 .643a .677 .592 LF23 .677 .712a .623 LF25 .592 .623 .545a Residualb LF22 -.138 -.230 LF23 -.138 -.179 LF25 -.230 -.179 Extraction Method: Principal Component Analysis.a. Reproduced communalities
b. Residuals are computed between observed and reproduced correlations. There are 3 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxviii
Price
Factor Analysis
Notes
Output Created 14-Jul-2011 18:58:21
Comments
Input Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data
File
100 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined
missing values are treated as missing. Cases Used LISTWISE: Statistics are based on
cases with no missing values for any variable used.
Syntax FACTOR
/VARIABLES P11 P14 P15 /MISSING LISTWISE /ANALYSIS P11 P14 P15
/PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC
EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources Processor Time 00 00:00:03.229
Elapsed Time 00 00:00:03.791
Maximum Memory Required 2028 (1.980K) bytes Variables Created FAC1_3 Component score 1
xxix
[DataSet0]
Correlation Matrixa P11 P14 P15 Correlation P11 1.000 .507 .532 P14 .507 1.000 .576 P15 .532 .576 1.000 Sig. (1-tailed) P11 .000 .000 P14 .000 .000 P15 .000 .000 a. Determinant = .439Inverse of Correlation Matrix
P11 P14 P15 P11 1.523 -.457 -.547 P14 -.457 1.633 -.697 P15 -.547 -.697 1.692
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .699 Bartlett's Test of Sphericity Approx. Chi-Square 79.986
df 3
Sig. .000
Anti-image Matrices
P11 P14 P15 Anti-image Covariance P11 .657 -.184 -.212
xxx
P14 -.184 .612 -.252 P15 -.212 -.252 .591 Anti-image Correlation P11 .730a -.290 -.341 P14 -.290 .694a -.419 P15 -.341 -.419 .678a a. Measures of Sampling Adequacy(MSA)Communalities
Initial Extraction P11 1.000 .660 P14 1.000 .698 P15 1.000 .719 Extraction Method: Principal Component Analysis.
Total Variance Explained
Component
Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %
1 2.077 69.234 69.234 2.077 69.234 69.234
2 .502 16.717 85.951
3 .421 14.049 100.000
Extraction Method: Principal Component Analysis.
Component Matrixa Component 1 P11 .812 P14 .836 P15 .848
xxxi
Extraction Method: Principal Component Analysis. a. 1 components extracted. Reproduced Correlations P11 P14 P15 Reproduced Correlation P11 .660a .679 .689 P14 .679 .698a .709 P15 .689 .709 .719a Residualb P11 -.172 -.157 P14 -.172 -.133 P15 -.157 -.133 Extraction Method: Principal Component Analysis.a. Reproduced communalities
b. Residuals are computed between observed and reproduced correlations. There are 3 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxxii
Motivation
Factor Analysis
Notes
Output Created 14-Jul-2011 19:09:53
Comments
Input Active Dataset DataSet0 Filter <none> Weight <none> Split File <none> N of Rows in Working Data
File
100 Missing Value Handling Definition of Missing MISSING=EXCLUDE: User-defined
missing values are treated as missing. Cases Used LISTWISE: Statistics are based on
cases with no missing values for any variable used.
Syntax FACTOR
/VARIABLES M31 M32 M33 M34 /MISSING LISTWISE
/ANALYSIS M31 M32 M33 M34 /PRINT INITIAL CORRELATION SIG DET KMO INV REPR AIC
EXTRACTION /CRITERIA MINEIGEN(1) ITERATE(25) /EXTRACTION PC /ROTATION NOROTATE /SAVE REG(ALL) /METHOD=CORRELATION.
Resources Processor Time 00 00:00:00.280
Elapsed Time 00 00:00:00.390
Maximum Memory Required 3096 (3.023K) bytes Variables Created FAC1_2 Component score 1
xxxiii
[DataSet0]
Correlation Matrixa M31 M32 M33 M34 Correlation M31 1.000 .393 .435 .402 M32 .393 1.000 .421 .504 M33 .435 .421 1.000 .569 M34 .402 .504 .569 1.000 Sig. (1-tailed) M31 .000 .000 .000 M32 .000 .000 .000 M33 .000 .000 .000 M34 .000 .000 .000 a. Determinant = .362Inverse of Correlation Matrix
M31 M32 M33 M34
M31 1.344 -.278 -.355 -.199 M32 -.278 1.448 -.203 -.502 M33 -.355 -.203 1.627 -.680 M34 -.199 -.502 -.680 1.720
KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .760 Bartlett's Test of Sphericity Approx. Chi-Square 98.364
df 6
xxxiv
Anti-image Matrices M31 M32 M33 M34 Anti-image Covariance M31 .744 -.143 -.162 -.086 M32 -.143 .691 -.086 -.202 M33 -.162 -.086 .615 -.243 M34 -.086 -.202 -.243 .581 Anti-image Correlation M31 .815a -.200 -.240 -.131 M32 -.200 .787a -.132 -.318 M33 -.240 -.132 .742a -.407 M34 -.131 -.318 -.407 .723a a. Measures of Sampling Adequacy(MSA)Communalities Initial Extraction M31 1.000 .503 M32 1.000 .563 M33 1.000 .635 M34 1.000 .667 Extraction Method: Principal Component Analysis.
Total Variance Explained
Component
Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative %
1 2.367 59.185 59.185 2.367 59.185 59.185
2 .637 15.928 75.113
3 .585 14.633 89.746
4 .410 10.254 100.000
Extraction Method: Principal Component Analysis.
xxxv
Component 1 M31 .709 M32 .750 M33 .797 M34 .817 Extraction Method: Principal Component Analysis. a. 1 components extracted. Reproduced Correlations M31 M32 M33 M34 Reproduced Correlation M31 .503a .532 .565 .579 M32 .532 .563a .598 .613 M33 .565 .598 .635a .650 M34 .579 .613 .650 .667a Residualb M31 -.139 -.130 -.177 M32 -.139 -.176 -.109 M33 -.130 -.176 -.082 M34 -.177 -.109 -.082 Extraction Method: Principal Component Analysis.a. Reproduced communalities
b. Residuals are computed between observed and reproduced correlations. There are 6 (100.0%) nonredundant residuals with absolute values greater than 0.05.
xxxvi
xxxvii
xxxviii
xxxix
KUESIONER MOTIVASI KONSUMEN DALAM MEMBELI
PAKAIAN DI MANGO
No
:
Nama
: (optional,
tidak
harus
diisi)
Telepon : (optional,
tidak
harus
diisi)
KUESIONER
Kuesioner ini digunakan untuk keperluan penelitian dalam rangka menyusun
Tesis dengan judul “Pengaruh Persepsi Harga, Karakteristik Produk, Gaya
Hidup, dan Citra Merk”. Untuk itu mohon kiranya saudara-I dapat membantu
penulis dalam menjawab kuisioner ini dengan sejujur-jujurnya. Hal ini demi
keobjektivitasan penelitian yang sedang penulis lakukan. Atas bantuan dan
kesediaanya penulis ucapkan banyak terima kasih.
Petunjuk pengisian :
Berilah jawaban pertanyaan berikut sesuai dengan pendapat anda, dengan cara
memberikan tanda (√) pada kolom yang tersedia.
1. Bacalah terlebih dahulu dan jawablah semua pertanyaan dengan benar.
2. Berilah tanda (√) pada kolom jawaban anda.
xl
Apakah anda pernah menggunakan pakaian merk Mango (Jika Ya, isilah
pertanyaan dibawah ini)
Ya
Tidak
1. KARAKTERISTIK RESPONDEN
a. Jenis Kelamin :
Pria
Wanita
b. Usia anda saat ini :
< 20 tahun 35- 50 tahun
21-35 tahun >50 tahun
c. Pendidikan terakhir anda :
SMA S1 S2
d. Pekerjaan anda :
Mahasiswa/ Pelajar Ibu rumah tangga
Wirausaha Pegawai negeri / swasta
Lainnya, Sebutkan : ……….
xli
e. Pengeluaran per bulan anda :
< Rp. 2.000.0000 Rp. 5.000.000 –Rp. 10.000.000
Rp. 2.000.000 – Rp. 5.000.000 > Rp. 10.000.000
f. Frekuensi anda melakukan pembelanjan per bulan :
1 – 2 kali 3 – 5 kali > 6 kali
g. Berikan tanda (√) pada merk pakaian yang Anda sering gunakan:
Mango Zara GAP
Top Shop Giordano Muji
Lainnya, Sebutkan ………..
h. Bagaimana Anda pertama kali mengetahui produk Mango? (Pilih satu ):
Teman Website Koran / Majalah
Brosur Banner
xlii
2. KUESIONER
Anda sebagai pelanggan “ MANGO” diharapkan menjawab pertanyaan dibawah ini
sesuai dengan tingkat kesetujuan anda dan berilah tanda silang (X) pada kolom
jawaban yang telah disediakan.
Keterangan :
Kategori Bobot
Nilai
STS = Sangat Tidak Setuju
1
TS = Tidak Setuju
2
S = Setuju
3
SS = Sangat Setuju
4
No Harga
(Price)
ST
S
TS S SS
1
Harga pakaian ini sudah memuaskan bila dibandingkan
dengan merk sejenis
2
Harga pakaian mahal
3
Harga sesuai dengan kualitasnya produknya
4
Harga sesuai dengan apa yg diharapkan
5
Harga sesuai dengan manfaat yang saya peroleh
xliii
No
GAYA HIDUP
STS
TS
S
SS
1
Saya memakai pakaian ini untuk tampil fashionable
2
Untuk memenuhi kebutuhan sosial saya
3
Merubah Penampilan
4
Saya tertarik untuk memakai pakaian ini
5
Saya memakai pakaian ini agar tidak ketinggalan zaman
No
Citra Merek ( Brand image)
STS
TS
S
SS
1
Mango adalah pakaian yang dapat digunakan untuk
No
Karakteristik Produk
STS
TS
S
SS
1
Dapat dipakai sehari‐hari
2
Bahan pakaiannya nyaman
3
Rapi pengemasannya
4
Desain menarik
5
Cara mencuci mudah
xliv
sehari‐hari
2
Mango adalah pakaian dengan harga yang mahal
3
Mango lebih baik dibandingkan pesaingnya
4
Mango menjual pakaian yang berkualitas
5
Mango sudah mempunyai reputasi
No
Motivasi untuk membeli / Minat Beli
STS
TS
S
SS
1
Saya tertarik menggunakan pakaian ini karena
kualitasnya
2
Saya berencana membeli pakaian ini di lain waktu
3
Saya berharap dapat menggunakan pakaian merk
MANGO selalu
4
Saya akan merekomendasikan merk pakaian ini kepada
teman saya
5
Saya membutuhkan model pakaian bermerk MANGO
xlv
WAWANCARA
No
:
Nama
:
Pekerjaan
:
Mahasiwa/ Pelajar
Pegawai Negeri / swasta
Pertanyaan :
1. Apakah Anda ingin membeli produk MANGO dilihat dari harganya ?
2. Apakah Anda melihat karakteristik produk pada saat membeli pakaian di
MANGO?
3. Apakah Anda membeli produk MANGO sebagai lifestyle ?
Jawab :
Jawab :
Jawab :
xlvi
4. Apakah Anda ingin membeli produk MANGO dilihat dari citra merek pakaian
itu sendiri?
Regression
Notes
Output Created 14-Jul-2011 19:19:54
Comments
Input Data D:\Thesis Ve2\Final\100 Rspd.sav
Active Dataset DataSet0
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 100
Missing Value Handling Definition of Missing User-defined missing values are treated as missing.
Cases Used Statistics are based on cases with no
missing values for any variable used.
Syntax REGRESSION /MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) BCOV R ANOVA COLLIN TOL CHANGE ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN
/DEPENDENT M
/METHOD=ENTER P KP LF BI.
Resources Processor Time 00 00:00:00.140
Elapsed Time 00 00:00:00.312
Memory Required 2788 bytes
Additional Memory Required for Residual Plots
0 bytes
[DataSet0] D:\Thesis Ve2\Final\100 Rspd.sav
Variables Entered/Removedb
Model Variables Entered
Variables Removed Method 1 Brand Image, Characteristic Product, Life Style, PRICE . Enter
a. All requested variables entered. b. Dependent Variable: Motivation
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate Change Statistics
R Square Change F Change df1 df2 Sig. F Change
1 .647a .419 .394 .77831650 .419 17.107 4 95 .000
a. Predictors: (Constant), Brand Image, Characteristic Product, Life Style, PRICE
ANOVAb
Model Sum of Squares df Mean Square F Sig.
1 Regression 41.451 4 10.363 17.107 .000a
Residual 57.549 95 .606
Total 99.000 99
a. Predictors: (Constant), Brand Image, Characteristic Product, Life Style, PRICE b. Dependent Variable: Motivation
Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig.
95.0% Confidence Interval for B Correlations
B Std. Error Beta Lower Bound Upper Bound Zero-order Partial
1 (Constant) 3.618E-16 .078 .000 1.000 -.155 .155
PRICE .131 .086 .131 1.529 .130 -.039 .300 .362 .155
Characteristic Product .100 .082 .100 1.222 .225 -.062 .261 .242 .124
Life Style .169 .083 .169 2.033 .045 .004 .335 .354 .204
Brand Image .484 .086 .484 5.646 .000 .314 .655 .593 .501
a. Dependent Variable: Motivation
Coefficient Correlationsa
Model Brand Image
Charateristic
Produc Life Style PRICE
1 Correlations Brand Image 1.000 -.056 -.203 -.299
Characteristic Product -.056 1.000 -.159 -.152
Life Style -.203 -.159 1.000 -.116
PRICE -.299 -.152 -.116 1.000
Covariances Brand Image .007 .000 -.001 -.002
Characteristic Product .000 .007 -.001 -.001
Life Style -.001 -.001 .007 -.001
PRICE -.002 -.001 -.001 .007
a. Dependent Variable: Motivation
Collinearity Diagnosticsa
Model Dimension Eigenvalue Condition Index
Variance Proportions
(Constant) PRICE
Characteristic
Product Life Style Brand Image
1 1 1.733 1.000 .00 .14 .09 .12 .14 2 1.000 1.316 1.00 .00 .00 .00 .00 3 .864 1.416 .00 .07 .73 .01 .21 4 .776 1.494 .00 .25 .10 .77 .00 5 .627 1.662 .00 .53 .07 .09 .64
xlvii
Collinearity Diagnosticsa
Model Dimension Eigenvalue Condition Index
Variance Proportions
(Constant) PRICE
Characteristic
Product Life Style Brand Image
1 1 1.733 1.000 .00 .14 .09 .12 .14
2 1.000 1.316 1.00 .00 .00 .00 .00
3 .864 1.416 .00 .07 .73 .01 .21
4 .776 1.494 .00 .25 .10 .77 .00
5 .627 1.662 .00 .53 .07 .09 .64
a. Dependent Variable: Motivation