Dasar - Dasar Penarikan
Contoh (Sampling)
▸ Baca selengkapnya: contoh catatan tubuh
(2)Apa Itu Sampling?
• Pendugaan karakteristik suatu populasi
berdasarkan contoh (
sample
) yang diambil
dari populasi tersebut
• pengukuran hanya dilakukan pada sebagian
elemen dari populasi: tidak semua elemen
dalam populasi diukur
• Digunakan untuk memperoleh nilai dugaan
dari populasi yang sedang dipelajari
Apa itu sampling…(2)
• Perumpamaan:
“seorang koki yang
mencicipi satu sendok
sup untuk mengatakan
bahwa satu panci sup
yang dimasaknya
Bandingkan…!
Populasi & contoh…(2)
• Ukuran populasi:
– banyaknya unit populasi di dalam populasinya dinotasikan: N
• Ukuran contoh:
– banyaknya unit populasi yang terambil sbg contoh dinotasikan: n
• Intensitas sampling (IS):
– Proporsi ukuran contoh terhadap ukuran populasi:
Populasi & contoh…(3)
• Parameter:
nilai yang mencerminkan karakteristik populasi • Statistik: nilai mencerminkan karakteristik contoh Misalnya: – Rata-rata/nilai tengah (mean) – Ragam (variance)
Studi Kasus
• Misalkan dalam kelas Anda ini: Apabila akan dipilih 10 orang wakil:
– Apakah populasinya? – Berapakah ukuran
populasinya?
– Apakah wujud unit populasinya?
– Apakah sampling frame-nya? – Berapakah ukuran
contoh-nya?
– Berapakah intensitas sampling-nya?
Mengapa Sampling?
Keuntungan sampling:
– Menghemat sumberdaya: biaya, waktu, tenaga – Kecepatan mendapatkan informasi (up to date) – Ruang lingkup (cakupan) lebih luas
– Data/informasi yang diperoleh lebih teliti dan mendalam
– Pekerjaan lapangan lebih mudah dibanding cara sensus
Mengapa Sampling ?
Sampling lebih disukai dibanding
inspeksi
100%
bilamana
– inspeksi bersifat destruktif.
– inspeksi butuh biaya yang mahal
– inspeksi 100% tidak layak untuk
dijalankan
Kesalahan dalam Sampling
Jenis kesalahan:
A. Kesalahan non-sampling:
• Kesalahan yang bukan berasal dari pengambilan
contoh, muncul karena:
– kesalahan pengukuran (measurement error) – kesalahan alat (instrumental error)
– Kesalahan karena faktor pengukur (human error) – Kesalahan karena faktor lingkungan
(environmental error)
• Besarnya kesalahan jenis ini sulit dihitung secara
pasti
Kesalahan dalam sampling…(2)
B.Kesalahan sampling (
sampling error,
SE
):
– Kesalahan yang disebabkan oleh
pengambilan contoh (
sampling
) yang
dilakukan secara tidak tepat
– Besarnya kesalahan dapat dihitung dengan
formula berikut:
Ukuran contoh yang paling optimal adalah satu titik dimana banyaknya unit populasi yang terambil sebagai contoh akan menghasilkan total error yang paling minimal
Teliti, Akurat, Bias
• Dalam sampling:
Contoh (
sample
) digunakan untuk
memperoleh nilai dugaan (
estimate
) yang
akurat/tepat bagi parameter populasi
Teliti, Akurat, Bias
Teliti, akurat, bias
Ketelitian (precision):
– Derajat kesesuaian (degree of agreement) dari suatu rangkaian pengukuran
– Dalam sampling : Penyimpangan nilai-nilai pengukuran (dari contoh) thdp nilai rata-ratanya sendiri {Ditunjukan oleh nilai simpangan baku (s)}
Keakuratan/ketepatan (accuracy):
– Derajat kedekatan suatu nilai pengukuran terhadap nilai sebenarnya
– Dalam sampling : Besarnya penyimpangan nilai-nilai dugaan dari contoh thdp nilai parameter populasinya (Catatan:
Teliti, akurat, bias
Bias
kesalahan sistematis yg dapat disebabkan oleh : kesalahan dlm prosedur pengukuran, alat, prosedur sampling, perhitungan, pencatatan, …dsb…
Hubungan ketiganya:
(A=akurasi, B=bias, P=presisi)
Dua Metoda Pengambilan Contoh
1. Pengambilan contoh secara acak (random sampling): Sampel diambil tanpa mengikuti satu pola tertentu,
setiap unit populasi punya peluang yang sama untuk terambil dan menjadi bagian dari contoh
Dua Metoda Pengambilan Contoh
2. Pengambilan contoh secara sistematik (systematic sampling):
• Unit contoh diambil dengan pola ttt, keteratutan ttt (sistematis)
• Tidak memiliki penduga ragam yang sah:
– Dalam penerapannya, sering dimodifikasi menjadi
Acceptance Sampling
• Another area of quality control and improvement • Closely connected with inspection and testing of
product
• Inspection can occur at many points in a process
The inspection and classification of a sample of nits selected at random from a larger batch or lot and ultimate decision about disposition of the lot –
Acceptance Sampling
• Berhubungan dengan keputusan untuk
menerima atau menolak lot produk
• Acceptance sampling dari lot ke lot
adalah suatu proses pengambilan
keputusan
• Suatu keputusan yang didasarkan pada
sample yang diambil dari unit - unit yang
terdapat dalam lot produk
Acceptance Sampling
A batch (lot) of items has been produced.
– Before shipment, the producer tests the lot
for outgoing quality,
or
– After receiving shipment, the consumer
tests the lot for incoming
Persyaratan Suatu Lot
Lots should be
homogeneous
:
– produced on the same machines, by same operators, from common raw materials, at
approximately the same time period (come from a single source)
– units should be as similar to each other as possible.
Larger lots are more preferable
than smaller
lots
Dasar Penentuan Suatu
Acceptance Sampling Plans
1. By
Attributes
– each sampled item is inspected and
classified
as conforming or nonconforming
(defective).
– Or, the number of defects or
nonconformities is counted for each item.
– Large numbers of nonconforming or
2. By
Variables
– some
quantitative
quality characteristic is
measured
for each sampled item.
– the sample mean of the measurements is
computed.
– if the sample mean lies outside an
acceptable range, the lot is rejected.
Dasar Penentuan Suatu
Beberapa Skema
Acceptance Sampling Plan
Sampling Plan for Attributes Sampling Plan for Variables
• Single-Sampling Attributes plans • Dodge-Romig Plans
• Double Sampling Plans • MIL-STD-105E
• Sequential Sampling
Single-Sampling Attributes Plans
• Inspected units should be selected at
random
• each combination of n items has an
equal chance of comprising the sample.
• Inspected units should represent all
items in the lot
• eliminates bias
Single-Sampling Attributes Plans
• A lot of size N has been submitted for inspection
• A simple random sample is selected from a lot for inspection. – n = sample size.
– c = acceptance number.
• If there are more than c nonconforming items in the sample, then the lot is rejected.
N = 10,000 n = 89 Example N = 10,000 n= 89 c = 2
Contoh
A manufacturer of silicon chips produces lots
of 1000 chips for shipment. A single-sampling
plan with
n = 65 and c = 2
is used to test for
bad outgoing lots.
– In one sample, 4 defective chips are discovered. Since 4 > 2, the lot is rejected and not shipped. The source of the defective chips should be found and eliminated.
– In a random sample of 65 chips taken from
another lot, 2 defective chips are discovered. This
Fungsi Operating Characteristic (OC)
Sebuah fungsi untuk mengukur performa design
suatu sampling plan
– Probabilitas diterimanya suatu lot dihitung
berdasar fungsi OC berikut:
The OC Curve
Plot of OC Function
Curve plots the probability of accepting the lot (Pa)
Latihan
1. A single sampling plan has parameters n = 2
and c = 0.
– What is the OC function for such a plan?
– How much the probability of accepting a lot with 5% defective ?
– How much the probability of acceptance of a lot with 20% defective ?
2. What is the OC function for a plan having
n = 2 and c = 1?
3. What is the OC function for a plan with
n = 10 and c = 2?
Latihan
4. An apple producer has 500 baskets of
apples, containing 20 each. A buyer wants
to inspect 10 of the apples before accepting
the lot (if 2 or less are bruised).
– How many n , N, and c ?
– Suppose 20% of the apples in the lot are bruised, What is the probability of accepting such a lot? – If 50 % of the apples are bruised, then the
Contoh
Suatu sampling plan dengan:
n1 = 10 n2 = 20 ac1 = 0 ac2= 3 re1 = re2 = 3 N = 1000 D = 50
Example B:
Consider a double sampling plan with n1 = 100, c1 = 2, r1 = 6, n2 = 200, c2 = 5. Find that the probability of
Military Standard 105E
Procedure
Choose the AQL
Choose the inspection level
Determine the lot size
Fine the appropriate sample size code letter (from Table 14-4)
Determine the appropriate type of sampling plan to use (single)
Enter the appropriate table to find the type of plan to be used
Determine the corresponding normal and reduced inspection plans to be used when required
Acceptable quality level (AQL)
• The poorest quality level for the supplier’s process that a consumer would consider to be acceptable
• A property of the supplier’s manufacturing process, not a property of the sampling plan
• This is the maximum proportion of defectives allowed. The producer requires that the probability of acceptance at this level be fairly high. i.e. Pa(AQL) should be large, typically this should be near 0.99 or 0.95.
• Type I error probability:
Lot tolerance percent defective (LTPD)
• or consumer’s quality level
• The protection obtained for individual lots of poor quality • This is a numerical definition of an unacceptable lot. The
consumer requires that this kind of lot be rejected with
high probability. In other words Pa(LTPD) should be small, typically this is chosen to be 0.1
• Pa(LTPD) is often referred to as , the probability of Type II error.
• Also called rejectable quality level (RQL) and the
Latihan
1. Suppose MIL STD 105E is used, lots
of 15000 are to be examined, and
AQL is .4 %.
a. If double sampling is used. How many n and c we need
b. Now, suppose single sampling is used. Calculate n and c we need
Latihan
c. Suppose that the following sequence of rejected (R) and accepted (A) lots with the number of
defectives D occur: 0 0 1 0 1 0 1 2 0 1 12 0 0 14 0 D A A A A A A A A A A R A A R A A/R 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Lot
MENDISAIN
Mendesign Suatu Acceptance
Sampling plan
How can we decide
1. how many items n to sample, and
2. how many nonconforming items c in
that sample are enough to convince us
that the lot is unacceptable
Optimal Plans
• The ideal OC curve places high probability on
accepting good lots (p close to 0), and low probability on accepting bad lots.
• The producer wants all good lots to be accepted.
(minimize type I error probability = producer’s risk). In other words, if p is small, then the producer wants
Pa(p) to be close to 1
• The consumer wants all bad lots to be rejected.
(minimize type II error probability = consumer’s risk). If p is large, then the consumer wants Pa(p) close to 0.
Finding a Plan
,
given
α
,
β
,
LTPD and AQL
To construct sampling plan such that
for n and c, where p1 = AQL and p2 = LTPD.
To solve these equations, we could use a binomial nomograph OR
Binomial Nomograph