• Tidak ada hasil yang ditemukan

Maylita Hasyim Dosen STKIP PGRI Tulungagung

N/A
N/A
Protected

Academic year: 2021

Membagikan "Maylita Hasyim Dosen STKIP PGRI Tulungagung"

Copied!
16
0
0

Teks penuh

(1)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

100

PENDEKATAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) DENGAN BINARY RESPONSE UNTUK MENGANALISIS FAKTOR-FAKTOR YANG BERPENGARUH

TERHADAP NILAI UN SMA

Maylita Hasyim

Dosen STKIP PGRI Tulungagung

ABSTRACT: In order to actualize the aim of national education, the government must do evaluation system of education, namely The Graduated Competence Standard. In accordance with The Graduated Competence Standard measured by score of national examination, so it is needed to know influenced-factors to the score of national examination significantly, include student’s external and internal factors. Therefore, the aim of this research to analyze the factors that influence the score of national examination of Senior High School X in Maluku province by using Multivariate Adaptive Regression Spline (MARS) approach with binary response. Multivariate Adaptive Regression Spline chosen because there are many research before that conclude this methode is better than the others. The response variable of this research is categorized into two categories, there are score of national examination ≤ 6,5 is categorized 1(minus) and score of national examination > 6,5 is categorized 2 (good).

The result of MARS models are five variables that influence the score of national examination of Senior High School. There are the score of national examination’s mean of Junior High School, score of school examination’s mean, score of tryout examination’s mean, score of raport’s mean, and parent’s income. The correct of classification over all is 96.72 percent with GCV 0,0742 and value of R

2

is 89.4 percent.

Keyword: score of national examination, MARS, binary response

PENDAHULUAN

Suatu bangsa akan maju apabila didukung oleh Sumber Daya Manusia (SDM) yang produktif dan berkualitas.

Menurut Mulyasa (2011: 3) bangsa Indonesia saat ini sedang dihadapkan pada fenomena rendahnya daya saing, sebagai indikator bahwa pendidikan di Indonesia belum mampu menghasilkan SDM yang berkualitas. Oleh karena itu, upaya untuk meningkatkan SDM yang

berkualitas dan berdaya saing tinggi adalah melalui peningkatan kualitas pendidikan. Menurut Arifin (2011: 39)

”pendidikan merupakan suatu usaha

yang dilakukan untuk mengembangkan

kemampuan dan kepribadian individual

melalui proses tertentu, melalui pe-

ngajaran serta interaksi individu dengan

lingkungannya untuk mencapai manusia

seutuhnya”.

(2)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

101 Dalam rangka mewujudkan tujuan

pendidikan nasional, pemerintah telah berupaya untuk meningkatkan kualitas pendidikan yaitu dengan mengeluarkan PP No.19 Tahun 2005, tentang Standar Nasional Pendidikan (SNP) diantaranya yaitu sistem evaluasi, dimana yang dimaksud yaitu evaluasi hasil belajar.

Sedangkan definisi hasil belajar adalah perubahan perilaku yang terjadi setelah mengikuti proses belajar mengajar sesuai dengan tujuan pendidikan (Purwanto, 2011: 54). Evaluasi hasil belajar ini dilakukan oleh pendidik, satuan pendidikan dan pemerintah. Evaluasi yang dilakukan oleh pemerintah men- cakup pencapaian Standar Kompetensi Lulusan (SKL).

Pencapaian Standar Kompetensi Lulusan (SKL) dapat diukur dengan nilai Ujian Nasional (UN). Berdasarkan Peraturan Menteri Pendidikan Nomor 34 Tahun 2007 bahwa “ujian nasional adalah kegiatan pengukuran dan penilaian kompetensi peserta didik secara nasional untuk jenjang pendidikan dasar dan menengah yang bertujuan untuk menilai pencapaian kompetensi lulusan secara nasional pada mata pelajaran yang ditentukan dari kelompok mata pelajaran ilmu pengetahuan dan

teknologi, dalam rangka pencapaian standar nasional”.

Nilai Ujian Nasional (UN) dapat digunakan untuk berbagai kepentingan, baik bagi peserta didik, pengajar maupun satuan pendidikan terkait, yaitu sebagai salah satu pertimbangan bagi satuan pendidikan dalam menentukan ke- lulusan, seleksi masuk jenjang pen- didikan berikutnya, akreditasi satuan pendidikan, penilaian produktivitas kinerja pengajar. Keseluruhan kepen- tingan tersebut di atas semata-mata dalam upaya peningkatan kualitas pendidikan di Indonesia.

Mengingat pentingnya pencapaian Standar Kompetensi Lulusan (SKL) yang diukur dengan nilai Ujian Nasional (UN), maka sangat perlu untuk mengetahui faktor-faktor yang signifikan mempengaruhi nilai Ujian Nasional (UN), baik faktor internal siswa maupun faktor eksternal (lingkungan) demi upaya mewujudkan tujuan pendidikan nasional.

Penelitian ini mengkaji faktor-faktor

yang berpengaruh secara signifikan

terhadap nilai UN siswa SMA X yang

berlokasi di provinsi Maluku dengan

menggunakan metode Multivariate

Adaptive Regression Spline (MARS)

sebagai pendekatan regresi non-

parametrik multivariat. Dalam kasus ini,

(3)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

102 nilai UN siswa akan dikategorikan

menjadi dua, yaitu kategori kurang dan baik sehingga variabel respon akan memiliki dua kategori atau biasa disebut binary response.

Pemodelan data dengan meng- gunakan metode parametrik sesuai untuk data yang sudah diketahui bentuk model dasarnya dan terikat oleh asumsi terkait struktur data, namun seringkali pe- langgaran asumsi terjadi sehingga pen- dekatan nonparametrik sering dijadikan alternatif oleh para peneliti. Salah satu metode nonparameterik yang sering digunakan yaitu Multivariate Adaptive Regression Spline (MARS). Hidayat (2003) menyatakan bahwa MARS merupakan salah satu metode alternatif untuk pemodelan bagi data berdimensi tinggi, memiliki variabel banyak, serta ukuran sampel yang besar.

Dari penelitian ini diharapkan mampu menambah wawasan keilmuan terkait pengembangan metode pen- dekatan MARS khususnya dalam bidang pendidikan. Sedangkan manfaat bagi siswa, pengajar, dan satuan pendidikan yaitu dapat memberikan gambaran mengenai upaya-upaya peningkatan nilai UN yang harus dilakukan untuk ke depannya. Selain itu, hasil penelitian ini diharapkan mampu menjadi bahan

masukan bagi pemerintah khususnya Kemendikbud dalam meningkatkan kualitas pendidikan di Indonesia.

MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS)

Pada tahun 1991, Jerome H.

Friedman yang selanjutnya akan ditulis Friedman telah memperkenalkan metode MARS sebagai suatu metode baru yang mengotomatiskan pembangunan model- model prediktif akurat untuk variabel- variabel respon yang kontinu dan biner.

Model MARS ini berguna untuk mengatasi permasalahan data yang berdimensi tinggi, diskontiouitas pada data serta untuk menghasilkan prediksi variabel respon yang akurat. Selain itu, MARS merupakan pengembangan dari pendekatan Recursive Partition Regression (RPR) yang masih memiliki kelemahan dimana model yang dihasilkan tidak kontinu pada knot.

Teknik MARS menjadi populer

karena tidak mengasumsikan dan tidak

menentukan tipe khusus seperti pada

hubungan (linier, kuadratik, kubik)

diantara variabel prediktor dan respon

(Otok, dkk., 2006) sehingga pendekatan

MARS tergolong metode nonparametrik

multivariat. Selain itu, proses pem-

(4)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

103 bentukan model pada MARS tidak

memerlukan asumsi.

Menurut Friedman (1991), model umum persamaan MARS sebagai berikut.

 

0

,

1 1

ˆ

(1)

Km

M

m km v k m km

m k

f x a a s x t

 

      

dengan,

a

0

= fungsi basis induk

a

m

= koefisien dari fungsi basis ke-m M = maksimum fungsi basis

(nonconstant basis fungsi) K

m

= derajat interaksi

s

km

= nilainya 1 atau -1 jika data berada di sebelah kanan titik knot atau kiri titik knot.

x

v(k,m)

= variabel prediktor t

km

= nilai knots dari variabel

prediktor x

v(k,m)

Ada beberapa hal yang perlu diperhatikan dalam membangun model MARS menurut Nash dan Bradford (2001) adalah (1) Knot, yaitu akhir dari sebuah region dan awal dari sebuah region yang lain. Di setiap titik knot, diharapkan adanya kontinuitas dari fungsi basis antar satu region dengan region lainnya. (2) Basis Function, yaitu kumpulan dari fungsi yang digunakan untuk mewakili informasi. Fungsi basis terdiri dari satu atau lebih variabel.

Fungsi basis ini merupakan fungsi parametrik yang didefinisikan pada tiap region. Pada umumnya fungsi basis yang dipilih adalah berbentuk polinomial dengan turunan yang kontinu pada setiap titik knot.

Friedman (1991) menyarankan jumlah maksimum fungsi basis (BF) adalah 2 sampai dengan 4 kali jumlah variabel prediktornya. Sedangkan untuk jumlah maksimum interaksi (MI) adalah 1, 2 dan 3 dengan pertimbangan jika lebih dari 3 akan menghasilkan bentuk model yang semakin kompleks.

Minimum jarak antara knots atau minimum observasi antara knots sebesar 0, 1, 2 dan 3.

Penentuan knot pada MARS menggunakan algoritma forward stepwise dan backward stepwise.

Pemilihan model dengan menggunakan

forward stepwise dilakukan untuk

mendapatkan jumlah fungsi basis dengan

kriteria pemilihan fungsi basis adalah

meminimumkan Average Sum of Square

Residual (ASR). Untuk memenuhi

konsep parsimoni (model yang

sederhana) dilakukan backward stepwise

yaitu membuang fungsi basis yang

memiliki kontribusi kecil terhadap

respon dari forward stepwise dengan

meminimumkan nilai Generalized Cross

(5)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

104 Validation (GCV) (Friedman dan

Silverman, 1989). Pada MARS, pemilihan model terbaik berdasarkan nilai GCV paling rendah (minimum).

Fungsi GCV minimum didefi- nisikan sebagai berikut,

   

 

 

2

1

2 2

1 ˆ

ˆ ˆ

1 1

(2)

n

i M i

i

y f x

ASR n

GCV M

C M C M

n n

  

 

 

   

     

   

   

dengan,

y

i

= variabel respon = nilai taksiran variabel

respon pada M fungsi basis n = banyaknya pengamatan =

= Trace [B(B

T

B)

-1

B

T

]+1 = nilai ketika setiap fungsi basis

mencapai optimasi

UJI SIGNIFIKANSI FUNGSI BASIS MODEL MARS

Pada model MARS dilakukan uji signifikansi fungsi basis yang meliputi uji serentak dan uji individu. Uji signifikansi yang dilakukan secara bersamaan/serentak terhadap fungsi basis-fungsi basis yang terdapat dalam model MARS ini bertujuan untuk mengetahui apakah secara umum model MARS terpilih merupakan model yang sesuai dan menunjukkan hubungan yang

tepat antara variabel prediktor dengan variabel respon.

Hipotesis yang digunakan sebagai berikut.

H

0

: 

1

 

2

 ...  

m

 0

H

1

: Paling tidak ada satu 

j

 0 ,

j = 1,2,…,m

Nilai F

hitung

yang didapatkan dari tabel ordinary least squares results (output pengolahan software MARS) dibandingkan F

 (V1,V2)

dengan tingkat signifikansi  serta derajat bebas V

1

dan V

2

yang merupakan nilai MDF dan NDF yang juga berasal dari dari tabel ordinary least squares results. Daerah kritis yaitu Tolak H

0

jika F

hitung

 F

 (V1,V2)

, artinya paling sedikit ada satu 

j

yang tidak sama dengan nol.

Selanjutnya, uji yang dilakukan secara parsial/individu bertujuan untuk mengetahui apakah fungsi basis yang terbentuk mempunyai pengaruh secara signifikan terhadap model. Selain itu juga ingin diketahui pula apakah model yang memuat parameter tersebut telah mampu menggambarkan keadaan data yang sebenarnya.

Hipotesisnya adalah, H

0

:

j 0

H

1

: 

j

0 , j = 1,2,…m

(6)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

105 Nilai t

hitung

yang didapatkan dari

output pengolahan software MARS dibandingkan dengan nilai tabel distribusi t dengan derajat bebas (V) dan tingkat signifikansi . Daerah kritis yaitu

hitung

t  t

(/2, V)

, maka H

0

ditolak, artinya ada pengaruh variabel prediktor dengan variabel respon pada fungsi basis di dalam model.

KLASIFIKASI PADA MARS

Pada model MARS, klasifikasi didasarkan pada pendekatan analisis regresi. Jika variabel respon terdiri dari dua nilai, maka dikatakan sebagai regresi dengan binary response (Cox dan Snell, 1989) sehingga dapat digunakan model probabilitas dengan persamaan sebagai berikut :

 

ˆ ˆ 

 

ˆ 

dan 1 1

1 1

f x

f x f x

x e x

e e

   

 

   

   

   

dengan ˆ logit

prob 1 dan

prob 2 1

f x x

Y x

Y x

 

  

Oleh karena Y merupakan variabel respon biner (dengan 2 kategori yaitu 1 dan 2) dengan m banyaknya variabel prediktor x  ( ,..., ), maka model x

1

x

m

MARS untuk klasifikasi dapat di- nyatakan sebagai berikut (Otok, 2008):

   

 

 

0 ,

1 1

logit ln

1

(3)

Km M

m km v k m km

m k

x x

x

a a s x t

 

 

   

 

 

 

  

Pada prinsipnya, pengklasifikasian ini dilakukan untuk melihat seberapa besar ketepatan dalam mengelompokkan sekumpulan data untuk digolongkan dengan tepat pada kelompoknya.

Menurut Agresti (1990), metode klasifikasi yang baik akan menghasilkan sedikit kesalahan klasifikasi atau akan menghasilkan peluang kesalahan klasifikasi (alokasi) yang kecil.

APER (Apparent Error Rate) adalah

suatu prosedur evaluasi yang digunakan

untuk melihat peluang kesalahan

klasifikasi yang dilakukan oleh suatu

fungsi klasifikasi. Nilai APER ini

menyatakan nilai proporsi sampel yang

salah diklasifikasikan oleh fungsi

klasifikasi. Sedangkan Press’s Q adalah

statistik uji yang digunakan untuk

mengetahui kestabilan dalam ketepatan

pengelompokkan (sampai sejauh mana

kelompok-kelompok tersebut dapat

dipisahkan dengan menggunakan

variabel-variabel yang ada). Uji statistik

(7)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

106 Press’s Q dapat diformulasikan sebagai :

( )

2

Pr ' (4) ( 1)

N nK ess s Q

N K

 

dengan,

N = jumlah total sampel

n = jumlah individu yang tepat diklasifikasikan

K = jumlah kelompok

Nilai dari Press’s Q ini mem- bandingkan antara jumlah ketepatan klasifikasi dengan total sampel dan jumlah kelompok. Jika nilai Press’s Q >

, maka klasifikasi dapat dianggap sudah stabil dan konsisten secara statistik (Hair, 2006).

HASIL BELAJAR

Menurut Hamalik (2004: 28-29)

“Belajar merupakan suatu proses perubahan tingkah laku individu melalui interaksi dengan lingkungan. Belajar bukan suatu tujuan tetapi merupakan suatu proses untuk mencapai tujuan”.

Belajar merupakan suatu proses usaha yang dilakukan seseorang untuk memperoleh suatu perubahan tingkah laku yang baru secara keseluruhan, sebagai hasil pengalamannya sendiri dalam interaksi dengan lingkungannya (Slameto, 2010: 2)

Menurut Winkel (1991) belajar merupakan suatu proses perubahan dari

belum mampu kearah sudah mampu dan terjadi dalam kurun waktu tertentu.

Sedangkan menurut ahli psikologis belajar merupakan aktifitas mental atau psikis yang berlangsung dalam interaksi aktif dengan lingkungan, yang menghasilkan perubahan dalam pengetahuan, pemahaman, ketrampilan dan nilai sikap. Perubahan itu bersifat relatif dan konstan membekas.

Cara belajar bisa bermacam- macam dan diharapkan pemilihan cara belajar harus sesuai dengan kondisi dan tujuan, agar mampu meningkatkan kualitas proses belajar mengajar.

Menurut Skinner yang dikutip oleh Dimyati dan Mudjiono (1999) bahwa belajar merupakan hubungan antara stimulus dan respons yang tercipta melalui proses tingkah laku.

Berdasarkan pengertian tersebut

maka dapat disintesiskan bahwa belajar

adalah perubahan serta peningkatan

kualitas dan kuantitas tingkah laku

seseorang diberbagai bidang yang terjadi

akibat melakukan interaksi terus

menerus dengan lingkungannya. Jika di

dalam proses belajar tidak mendapatkan

peningkatan kualitas dan kuantitas

kemampuan, dapat dikatakan bahwa

orang tersebut mengalami kegagalan di

dalam proses belajar

(8)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

107 Sedangkan hasil belajar merupakan

hal yang dapat dipandang dari dua sisi yaitu sisi siswa dan dari sisi guru (Dimyati dan Mudjiono, 1999). Dari sisi siswa, hasil belajar merupakan tingkat perkembangan mental yang lebih baik bila dibandingkan pada saat sebelum belajar. Tingkat perkembangan mental tersebut terwujud pada jenis-jenis ranah kognitif, afektif, dan psikomotor.

Sedangkan dari sisi guru, hasil belajar merupakan saat terselesikannya bahan pelajaran. Menurut Hamalik (2004)

“Hasil belajar adalah bila seseorang telah belajar akan terjadi perubahan tingkah laku pada orang tersebut, misalnya dari tidak tahu menjadi tahu, dan dari tidak mengerti menjadi mengerti”.

Berdasarkan teori Taksonomi Bloom, hasil belajar dalam rangka studi dicapai melalui tiga kategori ranah antara lain kognitif, afektif, psikomotor.

Perinciannya adalah sebagai berikut:

1. Ranah Kognitif

Berkenaan dengan hasil belajar intelektual yang terdiri dari 6 aspek yaitu pengetahuan, pemahaman, penerapan, analisis, sintesis dan penilaian.

2. Ranah Afektif

Berkenaan dengan sikap dan nilai.

Ranah afektif meliputi lima jenjang

kemampuan yaitu menerima, menjawab atau reaksi, menilai, organisasi dan karakterisasi dengan suatu nilai atau kompleks nilai.

3. Ranah Psikomotor

Meliputi keterampilan motorik, manipulasi benda-benda, koordinasi neuromuscular (menghubungkan, mengamati).

Tipe hasil belajar kognitif lebih dominan daripada afektif dan psikomotor karena lebih menonjol, namun hasil belajar psikomotor dan afektif juga harus menjadi bagian dari hasil penilaian dalam proses pembelajaran di sekolah.

Hasil belajar adalah kemampuan- kemampuan yang dimiliki siswa setelah ia menerima pengalaman belajarnya.

Hasil belajar digunakan oleh guru untuk dijadikan ukuran atau kriteria dalam mencapai suatu tujuan pendidikan. Hal ini dapat tercapai apabila siswa sudah memahami belajar dengan diiringi oleh perubahan tingkah laku yang lebih baik lagi.

Berdasarkan pengertian di atas

maka dapat disintesiskan bahwa hasil

belajar adalah suatu penilaian akhir dari

proses dan pengenalan yang telah

dilakukan berulang-ulang. Selain itu

hasil belajar juga akan tersimpan dalam

(9)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

108 jangka waktu lama atau bahkan tidak

akan hilang selama-lamanya, karena hasil belajar turut serta dalam membentuk pribadi individu yang selalu ingin mencapai hasil yang lebih baik lagi sehingga akan merubah cara berpikir serta menghasilkan perilaku kerja yang lebih baik.

FAKTOR-FAKTOR YANG MEM- PENGARUHI HASIL BELAJAR

Faktor-faktor yang mempe- ngaruhi hasil belajar diklasifikasikan menjadi faktor eksternal atau faktor yang berasal dari luar dan faktor internal atau faktor yang berasal dari dalam diri siswa. Faktor eskternal terdiri dari faktor non sosial dan faktor sosial sedangkan faktor internal terdiri dari faktor fisiologis dan faktor psikologis.

Faktor nonsosial adalah lingkungan sekitar misalnya keadaan cuaca, suhu, tempat tinggal, alat-alat belajar dan benda-benda yang membantu dalam proses belajar. Faktor-faktor sosial adalah kelakuan dan sikap manusia di sekitar siswa yang ikut memberikan pengaruh terhadap proses belajar dan prestasi-prestasi belajar siswa.

Faktor fisiologis dalam belajar dapat dibedakan menjadi dua macam yaitu keadaan jasmani pada umumnya dan keadaan fungsi-fungsi fisiologis tertentu. Keadaan jasmani pada umumnya adalah kecukupan nutrisi berpengaruh terhadap kesegaran dan konsentrasi. Kurangnya pasokan nutrisi ke dalam tubuh akan mengakibatkan kelesuan, lekas mengantuk, cepat lelah dan semacamnya yang tentunya menurunkan penyerapan pelajaran.

Keadaan fungsi-fungsi fisiologis tertentu adalah fungsi-fungsi pancaindera.

Faktor-faktor psikologis dalam

belajar adalah hal-hal yang mendorong

aktivitas belajar, beberapa hal tersebut

diantaranya adanya sifat ingin tahu dan

ingin menyelidiki dunia yang lebih luas,

adanya sifat kreatif yang ada pada

manusia dan keinginan untuk selalu

maju, adanya keinginan untuk

mendapatkan simpati dari orang tua,

guru dan teman-teman, adanya keinginan

untuk memperbaiki kegagalan yang lalu

dengan usaha yang baru, baik dengan

koperasi maupun dengan kompetisi,

adanya keinginan untuk mendapatkan

rasa aman bila menguasai pelajaran,

adanya ganjaran atau hukuman sebagai

akhir daripada belajar.

(10)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

109 METODOLOGI PENELITIAN

Data yang digunakan dalam penelitian ini adalah data sekunder yang diambil dari SMA X yang berlokasi di provinsi Maluku yaitu berupa data hasil Ujian Nasional (UN) siswa SMA X pada tahun pelajaran 2011/2012 yang terdiri dari nilai UN, nilai UN SMP, nilai tryout, nilai ujian sekolah, nilai rapor semester, penghasilan orang tua dan jumlah saudara. Jumlah keseluruhan lulusan SMA X pada tahun pembelajaran 2011/2012 adalah sebanyak 61 orang yang terdiri dari:

1. Jurusan Ilmu Pengetahuan Alam (IPA) sebanyak 19 orang

2. Jurusan Ilmu Pengetahuan Sosial (IPS) sebanyak 42 orang

Variabel Respon (Y) sebagai variabel yang dipengaruhi adalah berupa nilai UN siswa SMA X dengan dua kategori yaitu nilai UN  65 tergolong Kurang (1) dan nilai UN  75 tergolong Baik (2). Sedangkan variabel prediktor (X) yaitu variabel-variabel yang diduga mempengaruhi probabilitas seorang siswa bernilai kategori Kurang dan Baik sebagai berikut :

1) Rata-rata nilai UN SMP (X

1

)

adalah jumlah nilai yang diperoleh siswa setelah mengikuti kegiatan

proses belajar mengajar di Sekolah Menengah Pertama (SMP) yang diselenggarakan secara nasional.

Variabel ini berskala kontinyu.

2) Rata-rata nilai Ujian Sekolah (X

2

) adalah nilai yang diperoleh siswa setelah mengikuti kegiatan proses belajar mengajar di Sekolah Menengah Atas (SMA) selama 3 tahun yang diselenggarakan di tingkat sekolah. Variabel ini berskala kontinyu.

3) Rata-rata nilai tryout (X

3

)

adalah penilaian yang dilaksanakan secara terpadu dengan kegiatan pem- belajaran atau terpisah. Variabel ini berskala kontinyu.

4) Rata-rata nilai rapor SMA (X

4

)

adalah nilai yang diperoleh siswa setelah mengikuti kegiatan proses belajar mengajar di Sekolah Menengah Atas (SMA) selama satu semester yang diselenggarakan tiap akhir semester. Variabel ini berskala kontinyu.

5) Pendapatan orang tua (X

5

)

adalah jumlah penghasilan yang didapatkan oleh setiap orang tua siswa, termasuk penghasilan yang diperoleh tanpa melakukan kegiatan apapun dalam setiap bulannya.

Variabel ini berskala kontinyu.

(11)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

110 6) Jumlah saudara (X

6

)

adalah jumlah saudara (kakak-adik) baik saudara kandung maupun saudara tiri yang dimiliki oleh tiap siswa

.

Variabel ini berskala kontinyu.

7) Jurusan (X

7

)

adalah jurusan yang dipilih siswa.

Variabel ini berskala kategorik (nominal), yaitu IPA dengan kategori 1 dan IPS dengan kategori 2.

Metode yang digunakan untuk mencapai tujuan penelitian ini adalah metode regresi nonparametrik multivariat dengan pendekatan Multivariate Adaptive Regression Spline (MARS). Langkah-langkah analisis yang dilakukan pada penelitian ini sebagai berikut.

a. Memasukkan data Nilai UN beserta faktor-faktor yang diduga berpengaruh ke dalam software i MARS 2.0.

b. Mengkombinasikan unsur penentu model yaitu besarnya Basis Function (BF), Maximum Interaction (MI) dan Minimum Observation (MO) pada data training yang digunakan dengan cara:

1) Menentukan maksimum fungsi basis (Max-BF), yaitu 2-4 kali

jumlah prediktor yang akan digunakan.

2) Menentukan jumlah maksimum interaksi (Max-I), yaitu 1,2 dan 3, dengan asumsi bahwa jika MI > 3 akan menghasilkan model yang semakin kompleks.

3) Menentukan minimal jumlah pengamatan setiap knots (Min-O), yaitu 0, 1,2 dan 3.

c. Menetapkan model terbaik dengan didasarkan pada nilai GCV minimum

yang diperoleh dengan

mengkombinasikan BF, MI, dan MO.

d. Menduga koefisien model.

e. Melakukan uji signifikansi fungsi basis model MARS.

f. Mengelompokkan fungsi basis berdasarkan variabel prediktor yang masuk dalam model.

g. Menguji keakurasian prediksi model MARS (ketepatan klasifikasi) yang terbentuk dari data sehingga men- dapatkan angka ketepatan klasifikasi.

h. Menghitung nilai kesalahan klasi- fikasi dengan menggunakan APER serta menghitung kestabilan kla- sifikasi dengan statistik uji Press’s Q.

MODEL MARS

Penentuan model terbaik

didasarkan pada nilai GCV paling

(12)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

111 minimum yang diperoleh dengan cara

trial dan error dalam mengkombinasikan nilai BF, MI, dan MO sampai mendapatkan model terbaik. Dari keseluruhan model yang telah diperoleh dengan berdasarkan pada nilai GCV paling minimum maka model MARS terbaik yang dipilih yaitu model dengan nilai BF = 21, MI = 3, dan MO = 0 serta nilai GCV sebesar 0,0742 dan R

2

sebesar 89,4%.

Model MARS terbaik dari nilai UN siswa SMA X tahun pelajaran 2011/2012, sebagai berikut.

10 11

12 14 15

16 17 19

0, 945 1, 511 2, 529

0,162 9,194 15,181

13, 776 5, 772 5, 915

(5)

Y BF BF

BF BF BF

BF BF BF

   

   

  

dengan,

 

 

2 1

4 2

max 0, 6, 980 ; max 0, 6, 920 ;

BF X

BF X

 

 

 

 

 

 

 

 

 

 

6 1 4

10 4 6

11 4 6

12 4 2

14 3

15 3 2

16 5 6

17 1

19 1

max 0, 6, 450 * ;

max 0, 70, 00 * ;

max 0, 70, 00 * ;

max 0, 68, 00 * ; max 0, 5, 370 ; max 0, 5, 370 * ;

max 0, 0, 500 * ;

max 0, 6, 610 ; max 0, 6, 4

BF X BF

BF X BF

BF X BF

BF X BF

BF X

BF X BF

BF X BF

BF X

BF X

 

 

 

 

 

 

 

 

   50 ;

UJI SIGNIFIKANSI FUNGSI BASIS MODEL MARS

Pada model MARS dilakukan uji signifikansi fungsi basis yang meliputi uji serentak dan uji individu. Uji signifikansi yang dilakukan secara bersamaan/serentak terhadap fungsi basis-fungsi basis yang terdapat dalam model MARS ini menggunakan hipotesis sebagai berikut.

0 10 11 12 14 15 16 17

19 1

:

0

: Paling tidak ada satu

j

0 H

H

      

     

 

 dengan,

10,11,12,14,15,16,17,19

j

Berdasarkan hasil pengolahan

MARS dapat diketahui bahwa nilai

F

hitung

sebesar 55,004. Dengan meng-

gunakan  = 0,05 maka diperoleh

F

0,05(8,52)

= 2,14 sehingga daerah kritis

yaitu F

hitung

 F

0,05(8,52)

, maka keputusan

yang diambil yaitu menolak H

0

, artinya

paling sedikit ada satu 

j

yang tidak

sama dengan nol yang dapat dinyatakan

pula bahwa minimal terdapat satu fungsi

basis  yang memuat variabel prediktor

yang berpengaruh terhadap variabel

respon.

(13)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

112 Uji yang dilakukan secara parsial/

individu menggunakan hipotesis sebagai berikut.

H

0

:

j

 0 H

1

: 

j  0

dengan,

10,11,12,14,15,16,17,19 j

Dengan menggunakan  = 0,05 maka didapatkan :

t

tabel

= t

(0,025; 52)

= 2,011

Daerah kritis adalah jika t

hitung

 t

(0,025;

52)

maka menolak H

0

.

Tabel 1 Uji Signifikansi Fungsi Basis pada Model yang Terpilih

Parameter t-hitung Keputusan Constant 22.380 Tolak H

0

BF 10 -3.285 Tolak H

0

BF 11 -6.481 Tolak H

0

BF 12 5.190 Tolak H

0

BF 14 6.242 Tolak H

0

BF 15 4.341 Tolak H

0

BF 16 -5.805 Tolak H

0

BF 17 -11.355 Tolak H

0

BF 19 13.602 Tolak H

0

Sumber : Output pengolahan MARS

Berdasarkan Tabel 1 dapat dilihat bahwa semua parameter fungsi basis mempunyai nilai signifikan sehingga keputusan yang diambil adalah menolak H

0

yang berarti semua parameter fungsi basis dalam model mempunyai pengaruh yang signifikan terhadap model.

Berikut intepretasi model MARS pada Persamaan 5, yaitu.

Tabel 2 Interpretasi Model MARS Fungsi

Basis Interpretasi

Setiap kenaikan satu fungsi basis (

) dapat meningkatkan resiko memperoleh nilai UN

“kurang” sebesar 1,511 pada siswa yang memiliki rata-rata nilai rapor kurang dari 70,00;

rata-rata nilai UN SMP kurang dari 6,45; dan rata-rata nilai ujian sekolah kurang dari 6,92.

Setiap kenaikan satu fungsi basis (

) dapat me- ningkatkan resiko memperoleh nilai UN “kurang” sebesar 2,529 pada siswa yang memiliki rata- rata nilai rapor kurang dari 70,00; rata-rata nilai UN SMP kurang dari 6,45; dan rata-rata nilai ujian sekolah kurang dari 6,92.

Fungsi

Basis Interpretasi

Setiap kenaikan satu fungsi basis (

) dapat mengurangi resiko memperoleh nilai UN

“kurang” sebesar 0,162 pada siswa yang memiliki rata-rata nilai rapor lebih dari 68,00 dan rata-rata nilai UN SMP lebih dari 6,98.

Setiap kenaikan satu fungsi basis (

) dapat mengurangi resiko memperoleh nilai UN

“kurang” sebesar 9,194 pada siswa yang memiliki rata-rata nilai tryout lebih dari 5,37.

Setiap kenaikan satu fungsi basis (

) dapat mengurangi resiko memperoleh nilai UN

“kurang” sebesar 15,181 pada siswa yang memiliki rata-rata nilai tryout lebih dari 5,37 dan rata-rata nilai UN SMP lebih dari 6,98.

Setiap kenaikan satu fungsi

basis (

) dapat me-

ningkatkan resiko memperoleh

nilai UN “kurang” sebesar

(14)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

113 13,776 pada siswa yang

penghasilan orang tuanya kurang dari Rp. 500.000 dan rata-rata nilai UN SMP kurang dari 6,45

Setiap kenaikan satu fungsi basis (

) dapat me- ningkatkan resiko memperoleh nilai UN “kurang” sebesar 5,772 pada siswa yang memiliki rata- rata nilai UN SMP kurang dari 6,610.

Setiap kenaikan satu fungsi basis (

) dapat mengurangi resiko memperoleh nilai UN

“kurang” sebesar 5,915 pada siswa yang memiliki rata-rata nilai UN SMP lebih dari 6,45.

Tabel 2 menunjukkan tingkat kepentingan variabel prediktor pada fungsi pengelompokan, yang ditaksir oleh kenaikan nilai GCV karena berpindahnya variabel-variabel yang dipertimbangkan tersebut dari model.

Dapat dilihat bahwa variabel rata-rata nilai UN SMP ( ) adalah variabel terpenting pada model dengan tingkat kepentingannya 100%, kemudian diikuti oleh variabel rata-rata nilai rapor ( ) dengan tingkat kepentingan 66,923%.

Urutan ketiga yaitu variabel rata-rata nilai ujian sekolah ( ) dengan tingkat kepentingan 43,321%, urutan keempat yaitu penghasilan orang tua ( ) dengan tingkat kepentingan 40,984%, dan urutan terakhir yaitu variabel rata-rata nilai tryout ( ) dengan tingkat kepentingan 34,502%. Dua variabel lainnya yaitu

jumlah saudara ( ) dan jurusan ( ) tidak memiliki tingkat kepentingan (0%) karena sudah terwakili oleh lima variabel sebelumnya.

Tabel 3 Kepentingan Variabel Prediktor Variabel Tingkat Kepentingan

X

1

100,000%

X

4

66,923%

X

2

43,321%

X

5

40,984%

X

3

34,502%

X

6

0,000%

X

7

0,000%

KETEPATAN KLASIFIKASI DAN EVALUASI PENGKLASIFIKASIAN

Untuk melihat seberapa besar

peluang kesalahan dalam pengkla-

sifikasian nilai UN siswa SMA maka

dihitung dengan menggunakan nilai

APER. Penelitian ini merupakan binary

response yang dikelompokkan menjadi

siswa dengan nilai UN  65 tergolong

Kurang (1) dan siswa dengan nilai UN 

75 tergolong Baik (2). Berdasarkan

Tabel 5 kesalahan klasifikasi (nilai

APER) dalam pengklasifikasian nilai UN

siswa SMA adalah 1,6%. Karena

terdapat kesalahan dalam

pengklasifikasian 5 ART terinfeksi (1)

masuk ke dalam kelompok ART tidak

(15)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

114 terinfeksi (2) dan kesalahan dalam

pengklasifikasian 1 ART tidak terinfeksi (2) masuk ke dalam kelompok ART terinfeksi (1).

Tabel 4 Ketepatan dan Kesalahan Klasifikasi Data Nilai UN SMA Kelas

Aktual

Prediksi Kelas Total Aktual

1 2

1 24 2 26

2 0 35 35

Total

Prediksi 24 37 61

Benar 39,34% 57,37%

APER 3,28%

Total Benar

96,72%

Untuk mengetahui kestabilan dalam ketepatan klasifikasi (sejauh mana kelompok-kelompok ini dapat dipisahkan dengan menggunakan variabel yang ada) maka digunakan uji statistik Press’s Q. Tabel 5 menunjukkan besarnya kestabilan dalam ketepatan klasifikasi nilai UN SMA berdasarkan nilai dari Press’s Q adalah 53,26. Bila dibandingkan dengan

= 3,841 maka nilai dari Press’s Q untuk model tersebut jauh lebih besar daripada nilai

sehingga dapat disimpulkan bahwa keakuratan pengklasifikasian nilai UN SMA dengan pendekatan MARS sudah dikatakan konsisten secara statistik.

Tabel 5 Ketepatan dan Kestabilan Klasifikasi Nilai UN SMA Ketepatan Klasifikasi

Press’s Q

Nilai UN

65 (1)

Nilai UN

> 65 (2) 24

(39,34%)

35

(57,37%) 53,26

KESIMPULAN

Berdasarkan hasil penelitian dan pembahasan, maka dapat ditarik kesimpulan sebagai berikut.

1. Variabel yang berpengaruh terhadap nilai UN SMA X yang berlokasi di provinsi Maluku meliputi variabel rata-rata nilai UN SMP ( ) dengan tingkat kepentingan 100%, kemudian diikuti oleh variabel rata-rata nilai rapor ( ) dengan tingkat kepen- tingan 66,923%. Urutan ketiga yaitu variabel rata-rata nilai ujian sekolah ( ) dengan tingkat kepentingan 43,321%, urutan keempat yaitu penghasilan orang tua ( ) dengan tingkat kepentingan 40,984%, dan urutan terakhir yaitu variabel rata- rata nilai tryout ( ) dengan tingkat kepentingan 34,502%.

2. Pada model MARS terbaik, terdapat

interaksi antara dua variabel yaitu

interaksi antara variabel rata-rata

nilai tryout dengan rata-rata nilai UN

(16)

Maylita Hasyim, M.Si: Pendekatan Multivariate Adaptive Regression Spline (MARS) Dengan Binary Response Untuk Menganalisis Faktor-Faktor Yang Berpengaruh Terhadap Nilai UN SMA

115 SMP, serta interaksi antara variabel

penghasilan orang tua dengan rata- rata nilai UN SMP. Selain itu juga terdapat interaksi tiga variabel yaitu interaksi antara variabel rata-rata nilai rapor, rata-rata nilai UN SMP dan rata-rata nilai ujian sekolah.

3. Berdasarkan evaluasi pengklasi- fikasian, maka diperoleh ketepatan klasifikasi nilai UN SMA X yang berlokasi di provinsi Maluku sebesar 96,7%. Keakuratan pengklasifikasian nilai UN SMA dapat dikatakan sudah stabil dan konsisten secara statistik.

DAFTAR PUSTAKA

Agresti, A. 1990. Categorical Data Analysis. New York: John Willey and Sons.

Arifin, Zainal. 2011. Evaluasi Pembelajaran (Prinsip, Teknik, Prosedur). Bandung: PT. Remaja Rosdakarya.

Cox, D.R., Snell, E.J. 1989. Analysis of Binary Data. Second Edition.

London: Chapman & Hall.

Dimayati dan Mujiono. 1999. Belajar dan Pembelajaran. Jakarta: PT.

Rineka Cipta.

Friedman, J.H. 1991. Multivariate Adaptive Regression Splines. The Annals of Statistics, Vol. 19 No. 1.

Friedman, J.H., Silverman, B.W. (1989).

Flexible Parsimony Smoothing and

Additive Modelling.

Technometrics, 31.

Hair J.F, Rolph E. Anderson, Ronald L.

Tatham, William C. Black. (2006).

Multivariate Data Analysis. Sixth Edition, Pearson Education Prentice Hall, Inc.

Hamalik, Oemar. 2004. Proses Belajar Mengajar. Jakarta: PT. Bumi Aksara.

Hidayat, U. 2003. Analisis Penge- lompokan dengan Metode MARS, Studi Kasus: Pengelompokan Desa/Kelurahan di Jatim. Tesis Master. (Tidak Dipubilkasikan), Mahasiswa Jurusan Statistika FMIPA ITS, Surabaya.

Mulyasa, E. 2011. Standar Kompetensi dan Sertifikasi Guru. Bandung:

PT. Remaja Rosdakarya.

Nash, Mahliha S. dan David F. Bradford.

2001. Parametric and Non Parametric Logistic regression for Prediction of Precense/Absence of an Amphibian. Las Vegas, Nevada.

Otok, B.W., Guritno, S., Subanar, Haryatmi, S. 2006. Bootstrap dalam MARS untuk Klasifikasi Perbankan. Inferensi Jurnal Statistik, Volume 2, N0. 1, Januari 2006. FMIPA ITS Surabaya.

Otok, B.W. 2008. Multivariate Adaptive Regression Spline. Pelatihan MARS. Surabaya.

Purwanto. 2009. Evaluasi Hasil Belajar.

Yogyakarta: Pustaka Pelajar.

Slameto. 2010. Belajar dan Faktor- Faktor yang Mempengaruhinya.

Jakarta: Rineka Cipta.

Gambar

Tabel 2 Interpretasi Model MARS  Fungsi
Tabel  2  menunjukkan  tingkat  kepentingan  variabel  prediktor  pada  fungsi  pengelompokan,  yang  ditaksir  oleh  kenaikan  nilai  GCV  karena  berpindahnya  variabel-variabel  yang  dipertimbangkan  tersebut  dari  model
Tabel 4 Ketepatan dan Kesalahan  Klasifikasi Data Nilai UN SMA  Kelas

Referensi

Dokumen terkait

indeks harga saham gabungan (IHSG) menggunakan model Multivariate Adaptive Regression Splines (MARS), karena dengan pendekatan kurva regresi nonparametrik data tersebut

Setelah hasil klasifikasi dari metode Multivariate Adaptive Regression Spline (MARS) dan Fuzzy k-Nearest Neighbor in Every Class (FK-NNC) didapatkan, langkah selanjutnya adalah

Setelah hasil klasifikasi dari metode Multivariate Adaptive Regression Spline (MARS) dan Fuzzy K-Nearest Neighbor (FK-NN) didapatkan, langkah selanjutnya adalah membuat

Multivariate Adaptive Regression Spline (MARS) adalah salah satu metode analisis regresi nonparametrik yang digunakan untuk mengatasi permasalahan data yang berdimensi tinggi

Selanjutnya Agustien (2016) membahas tentang Pemodelan Risiko Kejadian Bayi Berat Badan Lahir Rendah Berdasarkan Pendekatan Multivariate Adaptive Regression Spline

Pemodelan Risiko Persalinan Bayi Prematur dengan Pendekatan Multivariate Adaptive Regression Spline (Studi Kasus di RSU Haji Surabaya).. Skripsi dibawah

Pengaruh Infrastruktur Terhadap Pertumbuhan Ekonomi di Sulawesi Selatan dengan Pendekatan Model Multivariate Adaptive Regression Spline.. Skripsi dibawah

Ketepatan Klasifikasi Dengan Menggunakan Metode Multivariate Adaptive Regression Spline MARS Pada Data Kelompok Rumah Tangga Kabupaten Cilacap.. Penerapan Data Mining Untuk Cluster Data