Pengantar Data
Agenda
• Pengertian data warehouse
• Model data multidimensi
• Operasi-operasi dalam OLAP
• Arsitektur data warehouse
Apa itu Data Warehousing?
• Data warehouse adalah koleksi dari data yang
subject-oriented, terintegrasi, time-variant, dan
nonvolatile, dalam mendukung proses pembuatan
keputusan.
• Sering diintegrasikan dengan berbagai sistem
aplikasi untuk mendukung pemrosesan informasi
dan analisis data dengan menyediakan platform
untuk historical data.
• Data warehousing: proses konstruksi dan
penggunaan data warehouse.
Data warehouse -- subject oriented
• Data warehouse diorganisasikan di seputar
subjek-subjek utama seperti customer, produk, sales.
• Fokus pada pemodelan dan analisis data untuk
pembuatan keputusan, bukan pada operasi harian
atau pemrosesan transaksi.
• Menyediakan sebuah tinjauan sederhana dan ringkas
seputar subjek tertentu dengan tidak
mengikutsertakan data yang tidak berguna dalam
proses pembuatan keputusan.
Data warehouse
-- terintegrasi
• Dikonstruksi dengan mengintegrasikan banyak
sumber data yang heterogen.
– relational database, flat file, on-line transaction
record
• Teknik data cleaning dan data integration
digunakan
– Untuk menjamin konsistensi dalam
konvensi-konvensi penamaan, struktur pengkodean,
ukuran-ukuran atribut dll diantara sumber data yang
berbeda.
• Contoh: Hotel price: currency, tax, breakfast
covered, dll.
Data Warehouse—Time Variant
• Data disimpan untuk menyediakan informasi
dari perspektif historical, contoh 5-10 tahun
yang lalu.
• Struktur kunci dalam data warehouse
– Mengandung sebuah elemen waktu, baik secara
ekspisit atau secara implisit.
– Tetapi kunci dari data operasional bisa
mengandung elemen waktu atau tidak.
Data Warehouse — Non-Volatile
• Data warehouse adalah penyimpanan data yang
terpisah secara fisik yang ditransformasikan dari
lingkungan operasional.
• Data warehouse tidak memerlukan pemrosesan
transaksi, recovery dan mekanisme kontrol
konkurensi.
• Biasanya hanya memerlukan dua operasi dalam
pengaksesan data, yaitu initial loading of data dan
OLAP (on-line analitical processing)
• OLAP adalah operasi basis data untuk
mendapatkan data dalam bentuk kesimpulan
dengan menggunakan agregasi sebagai
mekanisme utama.
• Ada 3 tipe:
– Relational OLAP (ROLAP):
– Multidimensional OLAP (MOLAP)
– Hybrid OLAP (HOLAP) Æ membagi data antara tabel
relasional dan tempat penyimpanan khusus.
Data Warehouse vs. Operational DBMS
• OLTP (on-line transaction processing)
– Major task of traditional relational DBMS
– Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc.
• OLAP (on-line analytical processing)
– Major task of data warehouse system – Data analysis and decision making
• Distinct features (OLTP vs. OLAP):
– User and system orientation: customer vs. market
– Data contents: current, detailed vs. historical, consolidated – Database design: ER + application vs. star + subject
– View: current, local vs. evolutionary, integrated
OLTP vs. OLAP
OLTP OLAP users clerk, IT professional knowledge worker
function day to day operations decision support
DB design application-oriented subject-oriented
data current, up-to-date detailed, flat relational isolated
historical,
summarized, multidimensional integrated, consolidated
usage repetitive ad-hoc
access read/write
index/hash on prim. key
lots of scans
unit of work short, simple transaction complex query
# records accessed tens millions
#users thousands hundreds
Dari tabel dan spreadsheet
ke Kubus Data
• Data warehouse didasarkan pada model data multidimensional, dimana data dipandang dalam bentuk kubus data
• Kubus data, seperti sales, memungkinkan data dipandang dan dimodelkan dalam banyak dimensi
– Tabel dimensi, seperti item (item_name, brand, type), or time(day, week, month, quarter, year)
– Tabel fakta mengandung measures (seperti dollars_sold) dan merupakan kunci untuk setiap tabel-tabel dimensi terkait.
• n-D base cube dinamakan base cuboid. 0-D cuboid merupakan
cuboid pada level paling tinggi, yang menampung ringkasan data
dalan level paling tinggi, dinamakan apex cuboid. Lattice dari
Cube: A Lattice of
Cuboids
all
time item location supplier
time,item time,location time,supplier item,location item,supplier location,supplier time,item,location time,item,supplier time,location,supplier item,location,supplier
time, item, location, supplier
0-D(apex) cuboid
1-D cuboids
2-D cuboids
3-D cuboids
Pemodelan Konseptual Data Warehouse
• Star schema
: Sebuah tabel fakta di tengah-tengah
dihubungkan dengan sekumpulan tabel-tabel dimensi.
• Snowflake schema
: perbaikan dari skema star ketika
hirarki dimensional dinormalisasi ke dalam sekumpulan
tabel-tabel dimensi yang lebih kecil
• Fact constellations
: Beberapa tabel fakta dihubungkan ke
tabel-tabel dimensi yang sama, dipandang sebagai
kumpulan dari skema star, sehingga dinamakan skema
galaksi atau fact constellation.
Contoh Skema Star
time_key day day_of_the_week month quarter year time location_key street city province_or_street country location Sales Fact Tabletime_key item_key branch_key location_key units_sold dollars_sold avg_sales Measures item_key item_name brand type supplier_type
item
branch_key branch_name branch_typebranch
Contoh skema Snowflake
time_key day day_of_the_week month quarter year time location_key street city_key location Sales Fact Tabletime_key item_key branch_key location_key units_sold dollars_sold avg_sales Measures item_key item_name brand type supplier_key
item
branch_key branch_name branch_typebranch
supplier_key supplier_typesupplier
city_key city province_or_street country cityContoh Fact Constellation
time_key day day_of_the_week month quarter year time location_key street city province_or_street country location Sales Fact Tabletime_key item_key branch_key location_key units_sold dollars_sold avg_sales Measures item_key item_name brand type supplier_type item branch_key branch_name branch_type branch
Shipping Fact Table time_key item_key shipper_key from_location to_location dollars_cost units_shipped shipper_key shipper_name location_key shipper_type shipper
Hirarki Konsep: Dimensi (Lokasi)
all
Europe
North_America
Mexico
Canada
Spain
Germany
Vancouver
M. Wind
L. Chan
...
...
...
...
...
...
all
region
office
country
Toronto
Frankfurt
city
Tampilan datawarehouse dan
hirarki
Specification of hierarchies
• Schema hierarchy
day < {month < quarter;
week} < year
• Set_grouping hierarchy
Data Multidimensional
• Sales volume sebagai fungsi dari product,
month, dan region
Product
R
eg
io
n
Month
Dimension: Product, Location, Time Hierarchical summarization paths
Industry Region Year Category Country Quarter
Product City Month Week Office Day
Contoh Kubus Data
Total annual sales of TV in U.S.A.
Date
P
ro
du
ct
Country
sum sum TV VCR PC 1Qtr 2Qtr 3Qtr 4Qtr U.S.A Canada Mexico sumCuboid yang terkait dengan
kubus
all
product date country
product,date product,country date, country
product, date, country
0-D(apex) cuboid 1-D cuboids
2-D cuboids
Browsing
kubus data
• Visualization
• OLAP capabilities
Operasi-operasi OLAP
• Roll up (drill-up): summarize data
– by climbing up hierarchy or by dimension reduction
• Drill down (roll down): reverse of roll-up
– from higher level summary to lower level summary or detailed
data, or introducing new dimensions • Slice and dice:
– project and select
• Pivot (rotate):
– reorient the cube, visualization, 3D to series of 2D planes. • Other operations
– drill across: involving (across) more than one fact table
– drill through: through the bottom level of the cube to its back-end relational tables (using SQL)
Ilustrasi
• Ilustrasi untuk operasi-operasi pada data
Rancangan Data Warehouse: Business
Analysis Framework
• Four views regarding the design of a data warehouse
– Top-down view
• allows selection of the relevant information necessary for the data warehouse
– Data source view
• exposes the information being captured, stored, and managed by operational systems
– Data warehouse view
• consists of fact tables and dimension tables
– Business query view
• sees the perspectives of data in the warehouse from the view of end-user
Proses Perancangan Data Warehouse
• Top-down, bottom-up approaches or a combination of both
– Top-down: Starts with overall design and planning (mature) – Bottom-up: Starts with experiments and prototypes (rapid)
• From software engineering point of view
– Waterfall: structured and systematic analysis at each step before proceeding to the next
– Spiral: rapid generation of increasingly functional systems, short turn around time, quick turn around
• Typical data warehouse design process
– Choose a business process to model, e.g., orders, invoices, etc. – Choose the grain (atomic level of data) of the business process
– Choose the dimensions that will apply to each fact table record – Choose the measure that will populate each fact table record
Multi
Multi
-
-
Tiered Architecture
Tiered Architecture
Data
Warehouse
Extract Transform Load RefreshOLAP Engine
Analysis
Query
Reports
Data mining
Monitor & Integrator MetadataData Sources
Front-End Tools
Serve
Data Marts OperationalDBs
othersources
Data Storage
OLAP ServerData Warehouse Back-End Tools and
Utilities
• Data extraction:
– get data from multiple, heterogeneous, and external sources
• Data cleaning:
– detect errors in the data and rectify them when possible
• Data transformation:
– convert data from legacy or host format to warehouse format
• Load:
– sort, summarize, consolidate, compute views, check integrity,
and build indicies and partitions
• Refresh
Three Data Warehouse
Models
• Enterprise warehouse
– collects all of the information about subjects spanning the entire
organization
• Data Mart
– a subset of corporate-wide data that is of value to a specific
groups of users. Its scope is confined to specific, selected
groups, such as marketing data mart
• Independent vs. dependent (directly from warehouse) data mart
• Virtual warehouse
– A set of views over operational databases
Data Warehouse
Development: A
Recommended Approach
Define a high-level corporate data model
Data
Mart
Data
Mart
Distributed
Data Marts
Multi-Tier Data
Warehouse
Enterprise
Data
Warehouse
Model refinement Model refinementOLAP Server Architectures
• Relational OLAP (ROLAP)
– Use relational or extended-relational DBMS to store and manage warehouse data and OLAP middle ware to support missing pieces – Include optimization of DBMS backend, implementation of
aggregation navigation logic, and additional tools and services – greater scalability
• Multidimensional OLAP (MOLAP)
– Array-based multidimensional storage engine (sparse matrix techniques)
– fast indexing to pre-computed summarized data
• Hybrid OLAP (HOLAP)
– User flexibility, e.g., low level: relational, high-level: array
• Specialized SQL servers
Data Warehouse Usage
• Three kinds of data warehouse applications
– Information processing
• supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
– Analytical processing
• multidimensional analysis of data warehouse data
• supports basic OLAP operations, slice-dice, drilling, pivoting
– Data mining
• knowledge discovery from hidden patterns
• supports associations, constructing analytical models,
performing classification and prediction, and presenting the mining results using visualization tools.
From On-Line Analytical Processing
to On Line Analytical Mining (OLAM)
• Why online analytical mining?
– High quality of data in data warehouses
• DW contains integrated, consistent, cleaned data
– Available information processing structure surrounding data warehouses
• ODBC, OLEDB, Web accessing, service facilities, reporting and OLAP tools
– OLAP-based exploratory data analysis
• mining with drilling, dicing, pivoting, etc.
– On-line selection of data mining functions
• integration and swapping of multiple mining functions, algorithms, and tasks.
An OLAM Architecture
Data Warehouse Meta DataMDDB
OLAM
Engine
OLAP
Engine
User GUI APIData Cube API
Database API Data cleaning Data integration Layer3 OLAP/OLAM Layer2 MDDB Layer1 Data Repository Layer4 User Interface Filtering&Integration Filtering Databases