• Tidak ada hasil yang ditemukan

DETEKSI KELAINAN JANTUNG DARI HASIL ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN FIREFLY ALGORITHM PADA PELATIHAN JARINGAN SYARAF BACKPROPAGATION Repository - UNAIR REPOSITORY

N/A
N/A
Protected

Academic year: 2019

Membagikan "DETEKSI KELAINAN JANTUNG DARI HASIL ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN FIREFLY ALGORITHM PADA PELATIHAN JARINGAN SYARAF BACKPROPAGATION Repository - UNAIR REPOSITORY"

Copied!
19
0
0

Teks penuh

(1)

DETEKSI KELAINAN JANTUNG DARI HASIL

ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN

FIREFLY ALGORITHM PADA PELATIHAN

JARINGAN SYARAF BACKPROPAGATION

SKRIPSI

ERIKA APRILIA

PROGRAM STUDI S-1 MATEMATIKA

DEPARTEMEN MATEMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS AIRLANGGA

SURABAYA

(2)

i

DETEKSI KELAINAN JANTUNG DARI HASIL

ELEKTROKARDIOGRAM (EKG) MENGGUNAKAN

FIREFLY ALGORITHM PADA PELATIHAN

JARINGAN SYARAF BACKPROPAGATION

SKRIPSI

ERIKA APRILIA

PROGRAM STUDI S-1 MATEMATIKA

DEPARTEMEN MATEMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS AIRLANGGA

SURABAYA

2016

(3)
(4)
(5)

PEDOMAN PENGGUNAAN SKRIPSI

Skripsi ini tidak dipublikasikan, namun tersedia di perpustakaan dalam lingkungan

Universitas Airlangga. Diperkenankan untuk dipakai sebagai referensi

kepustakaan, tetapi pengutipan seizin penulis dan harus menyebutkan sumbernya

sesuai kebiasaan ilmiah. Dokumen skripsi ini merupakan hak milik Universitas

(6)
(7)

vi

KATA PENGANTAR

Puji syukur ke hadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya sehingga peyusunan proposal skripsi ini dapat terselesaikan. Shalawat serta salam semoga senantiasa tercurahkan kepada Nabi Muhammad SAW, suri tauladan terbaik bagi kehidupan umat manusia. Pada akhirnya penulis dapat menyelesaikan proposal skripsi dengan judul “Deteksi Kelainan Jantung dari Hasil Elektrokardiogram (EKG) Menggunakan Firefly Algorithm Pada Pelatihan Jaringan Syaraf Backpropagation“.

Selama proses perkuliahan hingga disusunnya proposal skripsi ini, penulis ingin menyampaikan rasa terima kasih yang sebesar-besarnya kepada:

1. Universitas Airlangga, khususnya Departemen Matematika, yang telah

memberikan kesempatan kepada penulis menuntut ilmu.

2. Pemerintah RI melalui DIKTI yang telah memberikan beasiswa BIDIK

MISI kepada penulis. Semoga penulis bisa mengabdi untuk negeri.

3. Dr. Mohammad Imam Utoyo, M.Si, selaku Ketua Program Studi S-1 Matematika yang sangat menginspirasi.

4. Auli Damayanti, S.Si, M.Si, selaku dosen wali dan dosen pembimbing I, yang telah banyak membimbing penulis untuk mengambil langkah strategis selama perkuliahan.

(8)

vii

6. Yang tercinta orang tua penulis, M. Rochmad dan Suparti, yang sangat luar

biasa kasih sayangnya dan tidak pernah lupa menyebutkan nama penulis

disetiap doa yang mereka panjatkan. Serta yang terkasih saudara penulis,

Meilia, dan Ardiansyah, semoga ini bisa menjadi motivasi bersama untuk

membanggakan orang-orang yang menyayangi kita.

7. Hamdan Ritonga, terimakasih atas ilmu, doa, dan supportnya.

8. Citra Delonix Regia, Nimas Mega, Virgianita, Nabilah, Adiesty, Eka

Tukloy, Ilham Prakoso, Agustina, Firdha Octavia, Fatimah, Nur Mu’arifi,

Inan Nati Ismah, Kiki Pradipta, Aulia Rizky, para penghibur dikala susah.

9. Teman-teman S-1 Matematika angkatan 2012, Kakak-kakak alumnus, khususnya Mas Ali, Mbak Ayu Enesty, Mbak Zaim, dan Mbak Marcel, dan

teman-teman KKN BBM 52 Desa SendangAgung-Bojonegoro, mari

membanggakan almamater tercinta.

10. Tim Beauty Advisor Promotor Wardah x MakeOver, PT Paragon

Technology and Innovation, dan Samudera Indonesia Group. 11. Serta semua pihak yang tidak dapat penulis sebutkan satu persatu.

Penulis berharap semoga proposal skripsi ini dapat bermanfaat sebagai bahan pustaka dan penambah informasi, khususnya bagi mahasiswa Universitas Airlangga.

Surabaya, April 2016

(9)

viii

Erika Aprilia, 2016, Deteksi Kelainan Jantung Dari Hasil Elektrokardiogram (EKG) Menggunakan Firefly Algorithm Pada Pelatihan Jaringan Syaraf Backpropagation, Skripsi ini dibawah bimbingan Auli Damayanti, S.Si., M.Si., dan Dr. Herry Suprajitno M.Si., Departemen Matematika, Fakultas Sains dan Teknologi, Universitas Airlangga, Surabaya.

ABSTRAK

Dewasa ini pola dan gaya hidup modern semakin menggejala pada masyarakat. Kebiasaan makan berlebihan, terlalu banyak aktivitas, banyak merokok dan kurang istirahat merupakan hal yang kerap dilakukan masyarakat modern. Kecenderungan gaya hidup yang tidak sehat ini dapat meningkatkan keterjangkitan penyakit seperti penyakit jantung dan pembuluh darah (cardiovascular). Pemantauan kondisi jantung selama ini salah satunya menggunakan alat Elektrokardiograf (ECG). Walaupun mengetahui cara kerja ECG relatif mudah, namun untuk mengetahui informasi yang terdapat pada data Elektrokardiogram (EKG) sangat sulit. Dalam skripsi ini sebuah metode yang digunakan untuk mendeteksi kelainan jantung dari hasil elektrokardiogram (EKG) adalah Firefly Algorithm Pada Pelatihan Jaringan Syaraf Backpropagation. Metode ini akan menentukan bobot dan bias yang optimal yang cocok dengan pola data. Data yang digunakan dalam pelatihan ini sebanyak 40 citra EKG dan dibagi menjadi menjadi dua bagian: 30 citra untuk pelatihan dan 10 citra untuk uji validasi. Sebelum dilatih, citra-citra tersebut akan diproses untuk diubah menjadi nilai numerik. Hasil dari proses tersebut akan digunakan sebagai input data pelatihan. Dari proses pelatihan ini didapatkan bobot dan bias yang optimal dengan MSE 0.0000995127100 dengan 142 iterasi. Prosentase keberhasilan tesing adalah 100% dan prosentase uji validasi adalah 100%.

(10)

ix

Erika Aprilia, 2016, Cardiac Abnormalities Recognition from The Result of Electrocardiograph (ECG) by Using Firefly Algorithm on training of Backpropagation Neural Network, This undergraduate thesis is supervised by Auli Damayanti, S.Si., M.Si., and Dr. Herry Suprajitno M.Si., Mathematics Departement, Faculty of Science and Technology, Airlangga University, Surabaya.

ABSTRACT

People’s modern lifestyle is recently increased in the community. The habit of over consuming, doing too much activity, smoking, and also lack of rest are the things of modern people regularly do. This tendency of an unhealthy lifestyle can increase much disease; heart disease and blood vessel (cardiovascular). One of methods to monitor the condition of heart disease is by using electrocardiograph (ECG). Even though, knowing how to use ECG is relatively easy, but to know the information on ECG's data is very difficult. In this paper, a method used to detect cardiac abnormalities from ECG's result is firefly algorithm on training of Backpropagation neural network. This method will determine the optimum weight and bias that is suited with the pattern of the data. The data that is used for this research is 40 EKG files and divided into two parts: 30 EKG files for training and testing and the rest 10 EKG files are used for validation test. Before trained, those images (EKG files), will be processed into numeric value. The result of those processes will be used as the input of training. The training process obtain optimum weight and bias for validation which MSE=0.0000995127100 in 142 iteration. The success percentage of testing is 100% and the success percentage of validation test is also 100%.

(11)

x

DAFTAR ISI

Halaman

HALAMAN JUDUL ... i

LEMBAR PERNYATAAN ... ii

LEMBAR PENGESAHAN ... iii

PEDOMAN PENGGUNAAN SKRIPSI ... iv

SURAT PERNYATAAN TENTANG ORISINALITAS ... v

KATA PENGANTAR ... vi

DAFTAR LAMPIRAN ... xviii

(12)

xi

2.4.1. Intensitas Cahaya dan Keatraktifan Firefly ... 13

2.4.2. Jarak Antar Firefly ... 13

2.4.3. Pergerakan Firefly ... 14

2.5. Jaringan Syaraf Tiruan ... 15

2.5.1. Arsitektur Jaringan Syaraf Tiruan ... 15

2.5.2. Metode Pelatihan Jaringan Syaraf Tiruan ... 17

2.5.3. Fungsi Aktivasi ... 18

2.6. Jaringan Syaraf Backpropagation ... 19

2.6.1. Prosedur Pelatihan (Training) ... 20

2.6.2. Prosedur Testing Data Pelatihan ... 23

2.7. Penerapan Firefly Algorithm pada pelatihan Jaringan Syaraf Backpropagation... 24

2.8. Java ... 24

BAB III METODE PENELITIAN ... 25

(13)

xii

4.3. Prosedur Firefly Algorithm pada Pelatihan Jaringan Syaraf Backpropagation... 37

4.3.1. Input Data Pelatihan ... 38

4.3.2. Inisialisasi Parameter ... 39

4.3.3. Generate Populasi Awal ... 39

4.3.4. Konversi Individu menjadi Bobot dan Bias ... 41

4.3.5. Proses Jaringan Syaraf Backpropagation ... 41

4.3.6. Konversi Bobot dan Bias Menjadi Individu ... 44

4.3.7. Menghitung Nilai Fitness Dan Intensitas Cahaya Firefly ... 45

4.3.8. Melakukan Update Pergerakan Firefly ... 45

4.4. Proses Jaringan Syaraf Backpropagation Pada Uji Validasi ... 46

4.5. Manual Firefly Algorithm pada Pelatihan Jaringan Syaraf Backpropagation... 48

4.5.1. Data Pelatihan ... 48

4.5.2. Inisialisasi Parameter ... 49

(14)

xiii

4.5.4. Konversi Individu Firefly menjadi Bobot dan Bias

dalam JSB ... 50

4.5.5. Menghitung MSE dengan Proses JSB ... 51

4.5.6. Proses FA pada Pelatihan JSB ... 57

4.6. Implementasi Program ... 64

4.6.1. Pengolahan Citra ... 65

4.6.2. Pelatihan FA-JSB ... 66

4.6.3. Testing FA-JSB ... 67

4.6.4. Uji Validasi ... 71

BAB V SIMPULAN DAN SARAN ... 73

4.6. Simpulan ... 73

4.6. Saran ... 74

(15)

xiv

DAFTAR GAMBAR

Gambar Judul Halaman

2.1 Kertas Perekam EKG 7

2.2 Gelombang EKG 7

2.3 Sadapan Elektrokardiogram 9

2.4 Contoh Jaringan Syaraf dengan Single Layer 16

2.5 Contoh Jaringan Syaraf dengan Multi Layer 16

2.6 Fungsi Aktivasi Sigmoid Biner 19

3.1 Diagram Alir Pengolahan Citra 30

3.2 Diagram Alir FA pada pelatihan JSB (JSB-FA) 31

3.3 Diagram Alir Testing Data 32

3.4 Diagram Alir Uji Validasi 32

4.1 Prosedur Greyscaling 34

4.2 Prosedur Tresholding 35

4.3 Prosedur Deteksi Tepi 35

4.4 Prosedur Normalisasi 36

4.5 Prosedur Pelatihan FA-JSB 37

4.6 Prosedur Input Data Pelatihan 38

4.7 Prosedur Inisialisasi Parameter 39

4.8 Arsitektur Jaringan Syaraf Backpropagation pada Pola EKG 40

4.9 Prosedur Generate Populasi Awal 40

4.10 Prosedur Konversi Individu menjadi Bobot dan Bias 41

(16)

xv

Gambar Judul Halaman

4.12 Prosedur Bobot dan Bias Menjadi Individu Firefly 44 4.13 Prosedur Menghitung Nilai Fitness Dan Intensitas Cahaya 45

Firefly

4.14 Prosedur Update Pergerakan Firefly 46

4.15 Prosedur Proses Jaringan Syaraf Backpropagation Pada 47 Uji Validasi

4.16 Prosedur Konversi Output Menjadi Biner 47

4.17 Arsitektur Jaringan Syaraf Backpropagation 50

4.18 Proses Pengolahan Citra 65

(17)

xvi

DAFTAR TABEL

Tabel Judul Halaman

4.1 Data Pelatihan Jaringan Syaraf Backpropagation 48

4.2 Generate Populasi Awal 50

4.3 Proses Konversi Individu FA Menjadi Bobot dan Bias 51 dalam JSB

4.4 Hasil Perhitungan Manual Proses JSB Firefly 1 55

4.5 Nilai MSE masing-masing Firefly 56

4.6 Individu Firefly Ter-Update dari Proses JSB 57

4.7 Nilai Intensitas Cahaya 58

4.8 Nilai Terbaru dari Firefly 1 59

4.9 Proses Pergerakan Firefly 60

4.10 Pergerakan Firefly Terbaik 62

4.11 Populasi Firefly Setelah Update Pergerakan Firefly 62

4.12 Nilai MSE terbaru 63

4.13 Populasi Firefly Terbaru 63

4.14 Bobot Optimal 64

4.15 Hasil Training dan Testing dengan Popsize 10 dan Variasi 68 Nilai Parameter Koefisien Udara, Koefisien Random,

Keatraktifan Awal, Dan Learningrate

4.16 Hasil Training dan Testing dengan Popsize 30 dan Variasi 69 Nilai Parameter Koefisien Udara, Koefisien Random,

(18)

xvii

4.17 Hasil Training dan Testing dengan Popsize 50 dan Variasi 70 Nilai Parameter Koefisien Udara, Koefisien Random,

Keatraktifan Awal, Dan Learningrate

4.18 Hasil Training Dan Testing Terbaik 71

(19)

xviii

DAFTAR LAMPIRAN

Lampiran Judul

1 Tampilan Program Deteksi Kelainan Jantung dari Hasil

Elektrokardiogram (EKG) menggunakan Firefly Algorithm pada Pelatihan Jaringan Syaraf Backpropagation

2 Source Code Program

3 Data Input Training, Testing, dan Uji Validasi

Gambar

Gambar Judul
Gambar Judul
Tabel Judul

Referensi

Dokumen terkait

bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a, perlu menetapkan Peraturan Gubernur Sulawesi Utara tentang Pembentukan Unit Pelaksana Teknis Daerah

Berdasarkan rukun akad dan syarat yang dijelaskan diatas, maka dapat disimpulkan bahwa jual beli di Desa Batumarta 1 Kecamatan Lubuk Raja terpenuhi rukun objek akad

Salah satu upaya yang dilakukan oleh Indonesia dalam menangani masalah yang terkait dengan perbatasan, khususnya masalah perdagangan manusia adalah dengan memaksimalkan

Cara manual dilakukan dengan pemetikan pucuk burung (b+ 1), sedangkan cara kimia dengan penyemprotan GA3 berkonsentrasi 1 000 ppm dan dosis 50 mlltanaman. Perlakuan

Candrayanthi dan saputra (2013) juga menyatakan bahwa dengan adanya CSR perusahaan dapat semakin terbuka dalam mengungkapkan aktivitas yang dilakukan, tidak sebatas

Sedang kelompok kedua berpandangan bahwa agama mempunyai kepentingan secara moral dalam sebuah negara untuk menerapkan sistem pemerintahan yang demokratis, egalitarian

Judul yang dipilih oleh Tim peneliti untuk Hibah Penelitian dan Pengabdian Pada Masyarakat Kemenristekdikti 2017 ini adalah “Rencana Kontinjensi Pengurangan Risiko Bencana

Dengan demikian penelitian ini berjudul “ Analisis Penerimaan Aplikasi Sistem Informasi Dengan Menggunakan Technology Acceptance Model (Studi Kasus Pada Sistem Informasi