• Tidak ada hasil yang ditemukan

Ukuran Dispersi Multivariat

N/A
N/A
Protected

Academic year: 2021

Membagikan "Ukuran Dispersi Multivariat"

Copied!
9
0
0

Teks penuh

(1)

Bab IV Ukuran Dispersi Multivariat

Pada bab ini, pertama-tama akan dikemukakan definisi tentang vektor variansi variabel-variabel standar (VVVS) sebagai ukuran dispersi multivariat tatkala seluruh variabel yang terlibat adalah variabel standar. Selanjutnya akan diturunkan distribusi asimtotik dari VVVS sampel.

IV.1 Vektor Variansi Variabel-Variabel Standar

Misalkan X adalah vektor acak yang merupakan superposisi dari ( 1 )

X dan ( 2 )

X , di mana masing-masing berdimensi p dan q, X =

(

X( )1 X( )2

)

t. Misalkan pula,

( i ) µ =

( )

( i ) E X ; i = 1, 2 dan Σij =

(

)(

)

t ( i ) ( i ) ( j ) ( j ) E XX − ⎤ ⎣ µ µ ⎦; i, j = 1, 2. Oleh karena itu, matriks kovariansi dari X, sebut saja Σ , dapat dituliskan dalam bentuk partisi Σ = 11 12 21 22 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ Σ Σ

Σ Σ . Djauhari (2007) mengemukakan bahwa Cleroux

(1987) menggunakan Tr

(

Σ Σ12 21

)

untuk mengukur hubungan linear antara dua vektor acak ( 1 )

X dan ( 2 )

X . Parameter ini disebut vektor kovariansi yang merupakan jumlah semua elemen diagonal dari Σ Σ12 21. Dengan demikian, seperti dikemukakan Djauhari (2007),

( )

2

11

Tr Σ dan

( )

2 22

Tr Σ secara berturut-turut disebut variansi vektor (VV) dari X( )1 dan dariX( )2 . Jika p = q = 1, kovariansi vektor adalah kuadrat dari kovariansi sedangkan variansi vektor adalah kuadrat dari variansi klasikal.

Djauhari (2007) menurunkan secara rinci bahwa VV merupakan ukuran dispersi multivariat di samping Generalized Variance (GV) atau determinan matriks kovariansi seperti dikemukakan Anderson (1963), Serfling (1980), Muirhead (1982) dan Djauhari (2007). GV adalah ukuran dispersi multivariat yang sudah terlebih dahulu populer dan banyak digunakan. Aplikasinya dalam Multivariate Statistical Process Control (MSPC) dapat dijumpai, misalnya, dalam Alt dan Smith (1988), Wierda (1994), Woodall dan Montgomery (1999), Montgomery

(2)

(2001, 2005) dan Djauhari (2005a). Sedangkan aplikasinya dalam penaksiran robust bagi parameter lokasi dan dispersi dapat dilihat dalam bentuk algoritma FMCD (Fast Minimum Covariance Determinant) yang sangat populer dan dikemukakan dalam Rousseeuw (1985), Rousseeuw dan Leroy (1987), Rousseeuw dan Hubert (1999), Rousseeuw dan van Driessen (1999), Hubert dkk. (2005) dan Herwindiati dkk. (2007). Sebagai ukuran dispersi multivariat, VV telah berhasil diaplikasikan dalam mereduksi tingkat kompleksitas komputasi FMCD seperti dikemukakan dalam Herwindiati dkk. (2007). Dengan mengacu kepada hasil penelitian Djauhari (2007) dan Herwindiati dkk. (2007), maka penelitian ini menggunakan VV sebagai ukuran dispersi multivariat.

Sekarang, misalkan X adalah vektor acak berdimensi p dengan matriks kovariansi

Σ yang bersifat definit positif. Dengan menggunakan operator vec, VV dari X dapat dituliskan sebagai vec

( )

Σ 2. Untuk selanjutnya, dalam penelitian ini,

penulis memfokuskan diri kepada masalah di mana seluruh variabel yang terlibat merupakan variabel standar. Misalkan Z adalah vektor acak berdimensi p di mana komponen ke-k nya merupakan komponen ke-k dari vektor acak X yang telah distandarkan; k = 1, 2, … , p. Oleh karena itu, matriks kovariansi dari Z adalah matriks korelasi dari X. Matriks korelasi ini kita tulis P. Sejalan dengan definisi VV di atas, selanjutnya parameter vec

( )

P 2 kita sebut vektor variansi

variabel-variabel standar (VVVS).

IV.2 Distribusi Asimtotik VVVS Sampel

Misalkan Z ,Z ,1 2,Zn sampel acak berukuran n dari Z dengan matriks kovariansi P. Jika R adalah matriks korelasi sampel, maka vec

( )

R 2 atau Tr

( )

R2

kita sebut VVVS sampel. Untuk menyelidiki distribusi asimtotik dari VVVS sampel, penulis menggunakan Teorema III.1 yang telah dibahas pada Bab III. Untuk itu, misalkan

{ }

Xn adalah suatu barisan vektor acak yang saling bebas. Misalkan pula u X

( )

adalah suatu fungsi bernilai real di mana u′ ada dan

(3)

( )

0

u X′ ≠0 untuk setiap X0 di lingkungan dari c. Djauhari (2005b) menunjukkan bahwa variabel acak Yn=u X

( )

n dapat ditulis dalam bentuk uraian Taylor berikut,

( )

( )

t

(

)

n n n u c Y u c X c R X ⎛∂ ⎞ = + − + ∂ ⎝ ⎠ ξ di mana R 1

(

Xn c

) (

tA Xn c

)

2 = − −

ξ ξ , elemen (i,j) dari matriks simeteris Aξ adalah

( )

2

( )

i j u a i, j ;i, j 1,2, , p X X ∂ = = ∂ ∂ ξ

dan Xi adalah elemen ke-i dari Xndan ξ di lingkungan dari c dengan ξ − <c Xnc . Selanjutnya, berdasarkan uraian Taylor

tersebut, Djauhari (2005b) menurunkan distribusi dari Yn=u X

( )

n yang dirumuskan dalam teorema berikut.

Teorema IV.1

Jika barisan

{ }

p n

X ⎯⎯→c, cadalah suatu vektor konstan di Rp dan

{ }

d ( )

n p

X ⎯⎯→N c ,Σ maka variabel acak d

(

2

)

n Y Y Y ⎯⎯→N µ σ, di mana µYu c( ) dan ( ) t ( ) 2 Y n n u c u c X X ⎛∂ ⎞ ⎛∂ ⎞ → ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ⎝ ⎠ σ Σ . Bukti. Karena p n

X ⎯⎯→c dan bentuk kuadrat Rξ lebih cepat menuju 0 dari pada bentuk linear ( )

(

)

t n n u c X c X ⎛∂ ⎞ − ⎜ ⎟ ∂ ⎝ ⎠ , maka Yn=u X

( )

n dan ( ) ( ) t

(

)

n n n u c v u c X c X ⎛∂ ⎞ = +⎜ ⎟ − ∂ ⎝ ⎠

konvergen dalam distribusi ke distribusi yang sama. Selanjutnya, karena ( )

d

n p

X ⎯⎯→N c ,Σ , menurut Serfling (1980, hal. 24),

( )

d

(

2

)

n n v =u X ⎯⎯→N µ συ, υ di mana µυE u c

(

( )

)

dan ( ) ( ) t 2 n n u c u c X X ⎛∂ ⎞ ⎛∂ ⎞ → ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ⎝ ⎠ υ σ Σ , sebab a. µυ = E v( )n

(4)

= ( ) ( )

(

)

t n n u c E u c X c X ⎞ ⎜ + ⎟ ⎜ ⎟ ⎝ ⎠ =

(

( )

)

( )

(

)

t n n u c E u c E X c X ⎞ ⎜ ⎟ + ⎜ ⎟ − ∂ ⎝ ⎠ ⎝ ⎠ Karena p n X ⎯⎯→c yang berarti ( )

(

)

t n n u c E X c 0 X ⎞ ⎜ ⎟ ⎝ ⎠ , maka µυE u c

(

( )

)

= ( ) u c . b. 2 υ σ = Var v( )n = ( ) ( ) t

(

)

n n u c Var u c X c X ⎞ ⎜ + ⎟ ⎜ ⎟ ⎝ ⎠ = ( )

(

)

( )

(

)

t t t n n n n u c u c E X c X c X X ⎞⎛ ⎤ ⎛∂ ⎞ ⎛∂ ⎞ ⎢ ⎟⎜ ⎥ ⎢ ⎟⎜ ⎥ ⎢⎝ ⎠⎝ ⎠ ⎥ ⎣ ⎦ – ( )

(

)

( )

(

)

t t t n n n n u c u c E X c E X c X X ⎧ ⎡ ⎤⎫⎧ ⎡ ⎤⎫ ⎪ ⎪⎪ ⎪ ⎜ ⎟ ⎜ ⎟ ⎨ ⎬⎨ ⎬ ⎝ ⎠ ⎝ ⎠ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭ = ( )

(

)(

)

( ) t t n n n n u c u c E X c X c X X ⎤ ⎢⎜ ⎟ − − ⎜ ⎟⎥ ⎢ ⎥ ⎣ ⎦ – ( )

{

(

)

}

{

(

)

}

( ) t t n n n n u c u c E X c E X c X X ⎛∂ ⎞ ⎛∂ ⎞ − − ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ⎝ ⎠

Karena Xn⎯⎯→p c, yang berarti

(

)(

)

t p n n E Xc Xc ⎯⎯→Σ , maka ( ) t

(

)(

)

( ) t 2 n n n n u c u c E X c X c X X ⎛∂ ⎞ ⎛∂ ⎞ → − − ∂ ∂ ⎝ ⎠ ⎝ ⎠ υ σ atau ( ) ( ) t 2 n n u c u c X X ⎛∂ ⎞ ⎛∂ ⎞ → ⎜ ⎟ ⎜ ⎟ ∂ ∂ ⎝ ⎠ ⎝ ⎠ υ σ Σ .

Secara umum, Teorema III.1.1 dan IV.2.1 di atas memungkinkan untuk melakukan kajian tentang distribusi asimtotik dari setiap fungsi bernilai real dari matriks korelasi sampel R. Sebagai akibat dari kedua teorema itu, penulis sajikan proposisi berikut.

(5)

Proposisi IV.2

Jika u R( ) adalah suatu fungsi bernilai real di R, u′ ada, dan u R*′( ) ≠ 0 untuk semua R* dalam lingkungan P, maka

( ) d

(

2

)

u R ⎯⎯→N µ σ, dengan µ→u P( ), ( ) ( ) t 2 p p n n u P u P 2 M M n 1 R R ∂ ∂ ⎛ ⎞ ⎛ ⎞ → ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ σ Φ , p

(

p2 pp

)

1 M I K 2 = + di mana

Φ =

{

Ip2

(

IpP

)

Λp

}

(PP)

{

Ip2−Λp

(

IpP

)

}

dan Λp diberikan pada Teorema III.1. Proposisi IV.2 dapat digunakan untuk menyelidiki distribusi asimtotik dari VVVS sampel. Untuk itu digunakan operator vec yang akan dapat menyederhanakan penulisan. Jika A matriks sembarang berukuran p x p, maka yang dimaksud dengan vec A( ) adalah vektor berdimensi p2 yang diperoleh dengan menyusun vektor-vektor kolom dari A yang satu di bawah yang lain. Jadi, vec R( ) adalah representasi matriks korelasi R dalam bentuk vektor kolom berdimensi p2 yang diperoleh dari R dengan menyusun vektor-vektor kolomnya, yang satu di bawah yang lain. Dengan demikian, VVVS sampel tidak lain adalah vec R( )2 atau

( )

2

Tr R yang merupakan jumlah kuadrat semua elemen dari R yakni

( )

2

Tr R = p p 2 ij i 1 j 1 r = =

∑∑

, dengan rij adalah elemen ke-(i,j) dari R. Apabila pada Proposisi IV.2

kita definisikan u vec R

(

( )

)

= vec R( )2, maka pada proposisi berikut disajikan distribusi dari VVVS sampel.

Proposisi IV.3

Jika pada Proposisi IV.2 didefinisikanu vec R

(

( )

)

= vec R( )2, maka

( ) ( )2 ( )2 2 d 2 vec R vec R vec R ⎯⎯→ ⎜N, ⎝µ σ ⎠ dengan

(6)

a. ( )2 ( ) 2 vec Rvec P µ dan b. ( )2

(

( )

)

(

( )

)

t 2 p p vec R 8 vec P M M vec P n 1 → − σ Φ ... (IV.1) Bukti

Perhatikan bahwa u vec R

(

( )

)

= vec R( )2 memenuhi sifat u′ ada dan u R*′( ) ≠ 0 untuk semua R* dalam lingkungan P. Karena p

ij ij

r ⎯⎯→ρ untuk setiap i,j = 1, 2, ... , p, sila lihat juga El Maache (1997), dan ( ) 2 ( )

d p p p 2 vec R N vec P , M M n 1 ⎛ ⎞ ⎯⎯→ − ⎝ Φ ⎠, maka ( )

(

)

( ) ( )2 ( )2 2 d 2 vec R vec R u vec R = vec R ⎯⎯→ ⎜N, ⎝µ σ ⎠ di mana a. ( )2

(

(

( )

)

)

(

(

( )

)

)

( ) 2 vec R =E u vec RE u vec P = vec P

µ dan b. ( )

(

( )

)

( )

(

( )( )

)

2 t 2 p p vec R u vec P u vec P 2 M M n 1 vec R vec R ⎛∂ ⎞ ⎛∂ ⎞ → ⎜ σ Φ . Selanjutnya karena

(

( )

)

( ) u vec P vec R

∂ adalah vektor berdimensi p

2 di mana elemen-elemennya adalah ij ij p p 2 ij i 1 j 1 ij r r r = = = ⎛ ⎞ ⎜ ⎟ ∂ ⎜ ⎟ ⎝ ⎠ ∂

∑ ∑

ρ

(7)

maka

(

( )

)

( )

(

( )( )

)

t p p u vec P u vec P M M vec R vec R ⎛∂ ⎞ ⎛∂ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Φ ⎝ ⎠ =

(

( )

)

(

( )

)

t p p

4 vec P M ΦM vec P . Jadi,

dengan demikian, ( )2

(

( )

)

(

( )

)

t 2 p p vec R 8 vec P M M vec P n 1 → − σ Φ .

Parameter mean dan variansi pada proposisi di atas dapat juga diturunkan secara langsung berdasarkan uraian Taylor fungsi vektor bernilai real seperti dikemukakan dalam Marsden dan Tromba (1999). Uraian Taylor untuk u vec R

(

( )

)

= vec R( )2 di sekitar vec P( ) sampai suku kedua adalah ( )

(

)

u vec R = u vec P

(

( )

)

+

(

( )

)

( )

(

( ) ( )

)

t R P u vec R vec R vec P vec R = ⎞ ⎜ ⎟ − ⎜ ∂ ⎟ ⎝ ⎠ . Oleh karena itu,

a. Mean dari u vec R

(

( )

)

adalah ( )

(

)

(

)

E u vec R ≈ ( ) ( ) ( )

(

( ) ( )

)

t 2 2 n R P vec R

E vec P vec R vec P

vec R = ⎛ ⎞ ∂ ⎜ ⎟ + − ⎜ ⎟ ∂ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ≈

(

( )

)

( ) ( )

(

( ) ( )

)

t 2 2 R P vec R

E vec P E vec R vec P

vec R = ⎛ ⎞ ∂ ⎜ ⎟ + ∂ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ Karena ( ) ( )

(

( ) ( )

)

t 2 R P vec R E vec R vec P vec R = ⎛ ⎞ ∂ ⎜ ⎟ − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ = 0, maka

(

(

( )

)

)

p

(

( )2

)

E u vec R ⎯⎯→E vec P = vec P( )2.

b. Variansinya adalah ( )

(

)

(

)

var u vec R ≈ ( ) ( ) ( )

(

( ) ( )

)

t 2 2 R P vec R

var vec P vec R vec P

vec R = ⎛ ⎞ ∂ ⎜ ⎟ + − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ = ( ) ( )

(

( ) ( )

)

t 2 R P vec R

var vec R vec P

vec R = ⎛ ⎞ ∂ ⎜ ⎟ − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ , karena ( ) 2 vec P konstanta

(8)

= ( ) ( )

(

( ) ( )

)

( )( )

(

( ) ( )

)

t t t 2 2 R P R P vec R vec R

E vec R vec P vec R vec P

vec R vec R = = ⎛ ⎞⎛ ⎞ ∂ ∂ ⎜ ⎟⎜ ⎟ − − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ – ( ) ( )

(

( ) ( )

)

( )( )

(

( ) ( )

)

t t t 2 2 R P R P vec R vec R

E vec R vec P E vec R vec P

vec R vec R = = ⎛ ⎛ ⎞⎞⎛ ⎛ ⎞⎞ ⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟ − − ⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Suku kedua pada ruas kanan sama dengan 0 sebab E u vec R

(

(

( )

)

)

= vec P( )2. Akibatnya, ( )

(

)

(

)

( )( )

(

(

( ) ( )

)

(

( ) ( )

)

)

( )( ) t 2 2 t p R P R P vec R vec R

var u vec R E vec R vec P vec R vec P

vec R vec R = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎯⎯→ − − ∂ ∂ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ atau

(

(

( )

)

)

( ) ( ) ( )( ) t 2 2 p R P R P vec R vec R var u vec R vec R n 1 vec R = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎯⎯→⎜ ⎝ ⎠ ⎝ ⎠ Γ atau

(

(

( )

)

)

( ) ( ) ( )( ) t 2 2 p p p R P R P vec R 2 vec R var u vec R M M vec R n 1 vec R = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎯⎯→⎜ ⎝ ⎠ ⎝ ⎠ Φ sebab

berdasarkan Teorema III.1, Γ = 2MpΦMp. Dengan demikian, ( )

(

)

(

)

( )( ) ( )( ) t 2 2 p p p R P R P vec R vec R 2 var u vec R M M n 1 vec R vec R = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎯⎯→ ⎝ ⎠ ⎝ ⎠ Φ . Akan tetapi

(

( )

)

( ) u vec P vec R

∂ adalah vektor berdimensi p

2 dimana elemen-elemennya adalah ij ij p p 2 ij i 1 j 1 ij r r r = = = ⎛ ⎞ ⎜ ⎟ ∂ ⎜ ⎟ ⎝ ⎠ ∂

∑ ∑

ρ

untuk setiap i,j = 1, 2, ..., p.

(9)

ij ij p p 2 ij i 1 j 1 ij r r r = = = ⎛ ⎞ ⎜ ⎟ ∂ ⎜ ⎟ ⎝ ⎠ ∂

∑ ∑

ρ =

( )

( )

ij ij ij ij 2 ij ij ij ij ij r r r 2 r r r r = = ∂ ∂ = ∂ ∂ ρ ρ = 2ρij .

Oleh karena itu,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1,1 1,2 1,p p ,1 p ,2 p,p u vec P 2 2vec P vec R ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂ ⎜ ⎟ = = ∂ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ρ ρ ρ ρ ρ ρ Jadi,

(

( )

)

( )

(

( )( )

)

(

( )

)

(

( )

)

t t p p p p u vec P u vec P 2 2 M M 2vec P M M 2vec P n 1 vec R vec R n 1 ⎛∂ ⎞ ⎛∂ ⎞ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − Φ − Φ dan

variansi dari vec R( )2

(

( )

)

t p p

(

( )

)

8

vec P M M vec P

n 1− Φ . Dengan demikian dapat

disimpulkan bahwa

( )2 d ( )2

(

( )

)

t

(

( )

)

p p

8

vec R N vec P , vec P M M vec P

n 1

⎛ ⎞

⎯⎯→ ⎜ Φ ⎟

Berdasarkan Proposisi IV.3 telah diketahui bahwa variansi dari vec R( )2

(

( )

)

t

(

( )

)

p p

8

vec P M M vec P

n 1− Φ . Selanjutnya akan disederhanakan bentuk

penulisan variansi dari vec R( )2 melalui sifat-sifat operator vec dan matriks komutasi. Hasil yang telah diperoleh dapat dilihat dalam BAB V pada disertasi ini.

Referensi

Dokumen terkait

BAB II Kajian Pustaka Pada bab ini dikemukakan hal-hal yang mendasari dalam teori yang dikaji, yaitu himpunan kabur fuzzy set, definisi graf kabur, order dan ukuran dari graf

Berdasarkan hasil pengujian yang telah dikemukakan dalam bab empat mengenai pengaruh leverage , profitabilitas, ukuran perusahaan, struktur modal, dan kebijakan dividen

Berdasarkan hasil analisis yang telah dilakukan pada bab IV mengenai pengaruh variabel profitabilitas, struktur aset, peluang pertumbuhan dan ukuran perusahaan

Definisi operasional variabel ukuran or- ganisasi diukur melalui indikator: 1) Jumlah jabatan yang ada dalam organisasi. 2) Aturan dan persyaratan bagi pegawai untuk bisa

BAB IV Bab ini berisi hasil perhitungan dari pengaruh variabel dependen yaitu audit delay, sedangkan variabel independen yaitu reputasi auditor, opini audit, ukuran perusahaan, dan

94 BAB V PENUTUP 5.1 Kesimpulan Penelitian ini memiliki tujuan untuk menguji apakah variabel likuiditas, ukuran perusahaan, risiko bisnis dan pertumbuhan penjualan berpengaruh