• Tidak ada hasil yang ditemukan

Dasar Stratifikasi Sebagai size pada PPS Sampling Dasar pengurutan pada sampling sistematik

N/A
N/A
Protected

Academic year: 2018

Membagikan "Dasar Stratifikasi Sebagai size pada PPS Sampling Dasar pengurutan pada sampling sistematik"

Copied!
16
0
0

Teks penuh

(1)

Oleh: Adhi Kurniawan

(2)

Variabel Pendukung (Auxiliarry Variable)

Digunakan dalam tahap penarikan sampel (Z)

Dasar Stratifikasi

Sebagai size pada PPS Sampling

Dasar pengurutan pada sampling sistematik

(implicit stratification)

Digunakan dalam tahap estimasi parameter (X)

Ratio Estimate

Difference Estimate

Regression Estimate

(3)

GENERALIZED ESTIMATOR

𝒚 𝑮 = 𝒚 + 𝒄 𝑿 − 𝒙

dengan c merupakan sesuatu yang belum ditetapkan (konstan atau variabel)

𝑦 , 𝑥 merupakan nilai rata-rata karakteristik 𝑦 dan 𝑥 dari data sampel

𝑋 merupakan nilai rata-rata karakteristik 𝑥 dari data populasi

Keterangan:

1. Jika 𝑐 = 0 maka 𝑦 𝐺 = 𝑦 ----> (rata-rata sederhana)

2. Jika 𝑐 = 𝑘 (𝑘 adalah konstanta, tidak tergantung pada sampel), maka

𝑦 𝐷 = 𝑦 + 𝑘 𝑋 − 𝑥 ----> (difference estimator)

3. Jika 𝑐 = 𝛽 (𝛽 adalah konstanta, koefisien regresi populasi), maka

𝑦 𝑙𝑟 = 𝑦 + 𝛽 𝑋 − 𝑥 ----> (regression estimator)

4. Jika 𝑐 = 𝑏 (𝑏 adalah random variable, estimator untuk 𝛽), maka

𝑦 𝑙𝑟 = 𝑦 + 𝑏 𝑋 − 𝑥 ----> (regression estimator)

5. Jika 𝑐 = 𝑟 (𝑟 = 𝑦 𝑥 ), maka

(4)

GENERALIZED ESTIMATOR PADA DESAIN SRS

No Nama Estimator Estimator rata-rata Unbiased Sampling Variance

1 Penduga SRS

𝑦 = 1𝑛 𝑦𝑖

𝑛

𝑖=1

𝑣 𝑦 = 1 − 𝑓𝑛 𝑠𝑦2

2 Penduga rasio

(ratio estimator) 𝑦 𝑅 = 𝑦

𝑥 𝑋 = 𝑅 𝑋 𝑣 𝑦 𝑅 =

(1 − 𝑓)

𝑛 𝑠𝑦2 − 2𝑅 𝜌𝑠𝑦𝑠𝑥 + 𝑅 2𝑠𝑥2 3 Penduga beda

(difference estimator)

𝑦 𝐷 = 𝑦 + 𝑘(𝑋 − 𝑥 ) 𝑣 𝑦

𝑅 = (1 − 𝑓)𝑛 𝑠𝑦2 − 2𝑘𝜌𝑠𝑦𝑠𝑥 + 𝑘2𝑠𝑥2

4 Penduga regresi

(regression estimator)

𝑦 𝑙𝑟 = 𝑦 + 𝑏(𝑋 − 𝑥 ) 𝑣 𝑦

𝑙𝑟 = (1 − 𝑓)𝑛 𝑠𝑦2 − 2𝑏𝜌𝑠𝑦𝑠𝑥 + 𝑏2𝑠𝑥2

= (1 − 𝑓)𝑛 𝑠𝑦2 1 − 𝜌2

Keterangan:

𝑏 = 𝑠𝑦𝑥 𝑠𝑥2 =

1

𝑛 − 1 𝑥𝑖 − 𝑥 𝑦𝑖 − 𝑦

1

𝑛 − 1 𝑥𝑖 − 𝑥 2

= 𝑥 𝑥𝑖 − 𝑥 𝑦𝑖 − 𝑦

𝑖 − 𝑥 2

𝜌 = 𝑠𝑠𝑦𝑥

𝑥𝑠𝑦 =

𝑥𝑖 − 𝑥 𝑦𝑖 − 𝑦

𝑥𝑖 − 𝑥 2 𝑦𝑖 − 𝑦 2

𝑋 = 𝑁 𝑋1 𝑖

𝑁

𝑖=1

→ rata − rata populasi

𝑥 = 𝑛 𝑥1 𝑖

𝑛

𝑖=1

(5)

GENERALIZED ESTIMATOR PADA DESAIN SRS

No Nama Estimator Estimator total Unbiased Sampling Variance

1 Penduga SRS 𝑌 = 𝑁𝑦 𝑣 𝑌 = 𝑁2𝑣 𝑦

2 Penduga rasio (ratio estimator)

𝑌 𝑅 = 𝑁𝑦 𝑅 𝑣 𝑌 = 𝑁2𝑣 𝑦 𝑅

3 Penduga beda

(difference estimator)

𝑌 𝐷 = 𝑁𝑦 𝐷 𝑣 𝑌 = 𝑁2𝑣 𝑦 𝐷

4 Penduga regresi

(regression estimator)

𝑌 𝑙𝑟 = 𝑁𝑦 𝑙𝑟 𝑣 𝑌 = 𝑁2𝑣 𝑦 𝑙𝑟

Keterangan:

𝑁: jumlah populasi

Relative Efficiency (RE)

Merupakan perbandingan varians dari dua metode.

Metode yang variansnya lebih kecil daripada metode lainnya dikatakan lebih efisien

𝑅𝐸 =

𝑣(𝑦

𝑣 𝑦

1

2

) 𝑎𝑡𝑎𝑢 𝑅𝐸 =

(6)

REGRESSION ESTIMATOR PADA DESAIN SRS

Soal Latihan 1:

Sebuah pengamatan dilakukan terhadap 100 lahan yang ditanami pohon cabai merah di suatu desa. Dari hasil pengamatan dengan eye estimate diperoleh total produksi dari 100 lahan tersebut sebanyak 5750 kg. Sebuah random sampel sebanyak 10 lahan diambil secara SRS WOR dan setiap lahan terpilih dilakukan pemanenan cabai merah dan selanjutnya dilakukan pengukuran terhadap berat dari cabai yang dihasilkan. Data produksi cabai (kg) dari lahan terpilih yang diperoleh dari hasil pengamatan (eye

estimate) dan hasil pengukuran sebagai berikut:

a. Perkirakan rata-rata produksi cabai per lahan dan total produksi cabai merah di desa tersebut dengan menggunakan difference estimator (𝑘 = 1) beserta standar error, RSE, dan 95% confidence interval -nya ! Interpretasikan hasil yang diperoleh

b. Perkirakan rata-rata produksi cabai per lahan dan total produksi cabai merah di desa tersebut dengan menggunakan regression estimator beserta standar error, RSE, dan 95% confidence interval-nya ! Interpretasikan hasil yang diperoleh

c. Hitunglah efisiensi penduga regresi terhadap penduga beda. Kesimpulan apa yang dapat diperoleh ?

No urut lahan 1 2 3 4 5 6 7 8 9 10

Produksi

(pengukuran) 51 42 46 39 71 61 58 57 58 67

Produksi

(7)

REGRESSION ESTIMATOR PADA DESAIN SRS

Bentuk lain dari varians regression estimator:

𝑣 𝑦 =

1 − 𝑓

𝑛 𝑠

𝑦2

1 − 𝜌

2

=

1 − 𝑓

𝑛

𝑠

𝑦2

− 𝑠

𝑦2

𝜌

2

=

1 − 𝑓

𝑛

𝑠

𝑦2

− 𝑠

𝑦2

𝑠

𝑦𝑥2

𝑠

𝑦2

𝑠

𝑥2

=

1 − 𝑓

𝑛

𝑠

𝑦2

𝑠

𝑦𝑥2

𝑠

𝑥2

=

1 − 𝑓

𝑛

𝑠

𝑦2

− 𝑏𝑠

𝑦𝑥

=

𝑛(𝑛 − 1)

1 − 𝑓

𝒚

𝒊

− 𝒚

𝟐

− 𝒃 𝒚

𝒊

− 𝒚 𝒙

𝒊

− 𝒙

𝒏

𝒊=𝟏 𝒏

𝒊=𝟏

=

𝑛(𝑛 − 1)

1 − 𝑓

𝒚

𝒊

− 𝒚 − 𝒃 𝒙

𝒊

− 𝒙

𝟐

𝒏

𝒊=𝟏

=

𝑛(𝑛 − 1) ∙

1 − 𝑓

𝑺𝑺𝑹𝒆𝒔

Keterangan:

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

𝒆

𝒊

= 𝒚

𝒊

− 𝒚 − 𝒃 𝒙

𝒊

− 𝒙

𝑆𝑢𝑚 𝑂𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑆𝑆𝑅𝑒𝑠 =

𝒚

𝒊

− 𝒚 − 𝒃 𝒙

𝒊

− 𝒙

𝟐

𝒏

(8)

REGRESSION ESTIMATOR PADA DESAIN SRS

Syntax SPSS

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN

/DEPENDENT Produksi_pengukuran

/METHOD=ENTER Produksi_pengamatan.

Koefisien korelasi

𝝆

(9)

REGRESSION ESTIMATOR PADA DESAIN SRS

Koefisien regresi 𝒃

𝒚 − 𝒃𝒙

SSRes

Estimasi rata-rata

𝑦 𝑙𝑟 = 𝑦 + 𝑏 𝑋 − 𝑥 = 𝑦 + 𝑏𝑋 − 𝑏𝑥 = 𝑦 − 𝑏𝑥 + 𝑏𝑋

= 4,405 + 0,903 × 57,5 =56,3275

𝑣 𝑦 𝑙𝑟 = 𝑛(𝑛 − 1) × 𝑆𝑆𝑅𝑒𝑠1 − 𝑓

=10(10 − 1) × 134,3471 − 0,1 = 1,34347

𝑠𝑒 𝑦 𝑙𝑟 = 1,15908

Estimasi total 𝑌 𝑙𝑟 = 𝑁𝑦 𝑙𝑟

= 100 × 56,3275 = 5632,75

𝑣 𝑌 𝑙𝑟 = 𝑁2𝑣 𝑦 𝑙𝑟

= 1002 × 1,34347 = 13.434,7

(10)

REGRESSION ESTIMATOR PADA DESAIN SRS

Soal Latihan 2:

Untuk meneliti kondisi pendidikan para penyandang cacat, dilakukan suatu survei disabilitas di pulau Jawa. Dari 118 kabupaten/kota diambil sampel sebanyak 30 kabupaten/kota secara SRS WOR, kemudian dilakukan pencacahan ke semua Sekolah Luar Biasa (SLB) yang ada di kabupaten/kota terpilih. Untuk setiap SLB yang dikunjungi, dilakukan tes terhadap para penyandang cacat yang belajar di sekolah tersebut. Misalkan, 𝑥𝑖 merupakan jumlah guru yang mengajar di SLB untuk kabupaten/kota ke-i, 𝑦𝑖 merupakan jumlah penyandang cacat yang nilai tesnya berada di atas standar nilai minimal yang ditetapkan. Diketahui jumlah guru SLB di pulau Jawa sebanyak 826 orang. Ringkasan data yang diperoleh sebagai berikut:

𝑥𝑖 = 225

𝑛

𝑖=1

, 𝑦𝑖 = 1127

𝑛

𝑖=1

, 𝑥𝑖𝑦𝑖 = 14977

𝑛

𝑖=1

, 𝑥𝑖2 = 3005

𝑛

𝑖=1

, 𝑦𝑖2 = 75281

𝑛

𝑖=1

a. Perkirakan total penyandang cacat di pulau Jawa yang nilainya berada di atas standar minimal dengan penduga rata-rata sederhana, lengkapi dengan standar error, RSE, dan 95% Confidence Interval-nya !

b. Dengan regression estimator, perkirakan total penyandang cacat di pulau Jawa yang nilainya berada di atas standar minimal beserta standar error, RSE, dan 95% Confidence Interval-nya !

(11)

REGRESSION ESTIMATOR PADA DESAIN SRS

Soal Latihan 3:

Dari data Sensus Ternak tahun lalu diperoleh informasi bahwa jumlah peternak sapi di suatu wilayah sebanyak 82.688 rumah tangga peternak dan rata-rata jumlah sapi untuk tiap peternak sebanyak 9 ekor. Sebuah sampel acak sederhana sebanyak 5.168 peternak diambil dari populasi tersebut untuk memperkirakan produksi susu yang dihasilkan. Jumlah sapi yang diperoleh dari hasil observasi adalah 48.450 ekor dan rata-rata produksi susu untuk tiap peternak sebanyak 300 liter per hari. Informasi lain yang diperoleh sebagai berikut:

𝑠𝑦 = 28,8 𝑠𝑥 = 1,25 𝜌 = 0,875

Dengan menggunakan regression estimator,

a. Perkirakan rata-rata produksi susu per hari yang dihasilkan oleh rumah tangga peternak beserta

standar error, rse, dan 95% Confidence Interval-nya !

b. Perkirakan total produksi susu per hari di wilayah tersebut beserta standar error, rse, dan 95%

Confidence Interval-nya !

c. Interpretasikan hasil yang diperoleh !

(12)

REGRESSION ESTIMATOR PADA DESAIN SRS

Soal Latihan 4:

Dalam rangka Praktik Kerja Lapangan, mahasiswa Tingkat 3 STIS melakukan penelitian kondisi kesehatan masyarakat di suatu wilayah. Dari hasil pemutakhiran (updating) rumah tangga yang dilakukan secara sensus (complete enumeration) di blok sensus terpilih diperoleh informasi bahwa jumlah penduduk yang mengalami keluhan kesehatan selama sebulan yang lalu sebanyak 248 orang. Dari populasi eligible rumah tangga sebanyak 120 rumah tangga yang diperoleh dari hasil pemutakhiran, diambil sampel sebanyak 10 rumah tangga secara SRS WOR untuk dilakukan pencacahan yang lebih rinci. Data yang diperoleh:

a. Dengan menggunakan penduga rata-rata sederhana, penduga rasio, penduga beda (k=1), dan penduga regresi, perkirakan jumlah penduduk yang mengalami keluhan kesehatan selama sebulan yang lalu beserta standar error, rse, dan 95% Confidence Interval-nya !. Interpretasikan hasil yang diperoleh.

b. Bandingkan efisiensi dari keempat metode pada point (a). Metode manakah yang mempunyai efisiensi yang terbaik ?

No urut ruta sampel 1 2 3 4 5 6 7 8 9 10

Jumlah ART mengalami keluhan (hasil

updating) 3 0 3 0 3 0 2 4 4 1

Jumlah ART mengalami keluhan (hasil

(13)

GENERALIZED ESTIMATOR PADA DESAIN PPS

No Nama

Estimator Estimator total Unbiased Sampling Variance

1 Penduga PPS 𝑌 𝑝𝑝𝑠 = 1

𝑛 𝑦𝑖 𝑝𝑖

𝑛

𝑖=1

𝑣 𝑌 𝑝𝑝𝑠 = 𝑛(𝑛 − 1) 1 𝑦𝑝𝑖

𝑖 − 𝑌 𝑝𝑝𝑠 2 𝑛

𝑖=1

2 Penduga rasio

(ratio estimator) 𝑌 𝑅(𝑝𝑝𝑠) =

𝑌 𝑝𝑝𝑠

𝑋 𝑝𝑝𝑠𝑋 = 𝑅 𝑋 𝑣 𝑌 𝑅(𝑝𝑝𝑠) = 𝑣 𝑌 𝑝𝑝𝑠 − 2𝑅 𝜌 𝑣 𝑌 𝑝𝑝𝑠 𝑣 𝑋 𝑝𝑝𝑠 + 𝑅 2𝑣 𝑋 𝑝𝑝𝑠

3

Penduga beda (difference estimator)

𝑌 𝐷(𝑝𝑝𝑠) = 𝑌 𝑝𝑝𝑠 + 𝑘(𝑋 − 𝑋 𝑝𝑝𝑠) 𝑣 𝑌 𝐷(𝑝𝑝𝑠) = 𝑣 𝑌 𝑝𝑝𝑠 − 2𝑘𝜌 𝑣 𝑌 𝑝𝑝𝑠 𝑣 𝑋 𝑝𝑝𝑠 + 𝑘2𝑣 𝑋 𝑝𝑝𝑠

4

Penduga regresi (regression estimator)

𝑌 𝑙𝑟(𝑝𝑝𝑠) = 𝑌 𝑝𝑝𝑠 + 𝑏(𝑋 − 𝑋 𝑝𝑝𝑠) 𝑣 𝑌 𝑙𝑟(𝑝𝑝𝑠) = 𝑣 𝑌 𝑝𝑝𝑠 − 2𝑏𝜌 𝑣 𝑌 𝑝𝑝𝑠 𝑣 𝑋 𝑝𝑝𝑠 + 𝑏 2𝑣 𝑋

𝑝𝑝𝑠

= 𝑣 𝑌 𝑝𝑝𝑠 1 − 𝜌2

𝑏 = 𝑦 𝑖 𝑝𝑖 − 𝑌 𝑝𝑝𝑠 𝑥𝑝𝑖 𝑖 − 𝑋 𝑝𝑝𝑠 𝑥𝑖 𝑝𝑖 − 𝑋 𝑝𝑝𝑠

2 𝜌 =

𝑦𝑖 𝑝𝑖 − 𝑌 𝑝𝑝𝑠 𝑥𝑝𝑖 𝑖 − 𝑋 𝑝𝑝𝑠 𝑥𝑖 𝑝𝑖 − 𝑋 𝑝𝑝𝑠 2 𝑦𝑖 𝑝𝑖 − 𝑌 𝑝𝑝𝑠

2 𝑋 𝑝𝑝𝑠 =

1 𝑛 𝑥𝑖 𝑝𝑖 𝑛 𝑖=1 𝑝𝑖 = 𝑍𝑍𝑖

(14)

GENERALIZED ESTIMATOR PADA DESAIN PPS

No Nama Estimator Estimator rata-rata Unbiased Sampling Variance

1 Penduga PPS

𝑦 𝑝𝑝𝑠 = 𝑌 𝑝𝑝𝑠𝑁 𝑣 𝑦 𝑝𝑝𝑠 = 𝑣(𝑌 𝑁𝑝𝑝𝑠2 )

2 Penduga rasio

(ratio estimator) 𝑦 𝑅(𝑝𝑝𝑠) =

𝑌 𝑅(𝑝𝑝𝑠)

𝑁 𝑣 𝑦 𝑅(𝑝𝑝𝑠) =

𝑣(𝑌 𝑅(𝑝𝑝𝑠)) 𝑁2

3 Penduga beda

(difference estimator) 𝑦 𝐷(𝑝𝑝𝑠) =

𝑌 𝐷(𝑝𝑝𝑠)

𝑁 𝑣 𝑦 𝐷(𝑝𝑝𝑠) =

𝑣(𝑌 𝐷(𝑝𝑝𝑠)) 𝑁2

4 Penduga regresi

(regression estimator) 𝑦 𝑙𝑟(𝑝𝑝𝑠) =

𝑌 𝑙𝑟(𝑝𝑝𝑠)

𝑁 𝑣 𝑦 𝑙𝑟(𝑝𝑝𝑠) =

𝑣(𝑌 𝑙𝑟(𝑝𝑝𝑠)) 𝑁2

Keterangan:

𝑣 𝑌

𝑝𝑝𝑠

=

𝑛(𝑛 − 1)

1

𝑦

𝑝

𝑖

𝑖

− 𝑌

𝑝𝑝𝑠 2 𝑛

𝑖=1

𝑣 𝑋

𝑝𝑝𝑠

=

𝑛(𝑛 − 1)

1

𝑥

𝑝

𝑖

𝑖

− 𝑋

𝑝𝑝𝑠 2 𝑛
(15)

REGRESSION ESTIMATOR PADA DESAIN PPS

Soal Latihan 5

Berdasarkan hasil pencacahan Potensi Desa (Podes) 2011, jumlah tindak kriminalitas di suatu kecamatan mencapai 775 kasus. Suatu survei dilakukan di kecamatan tersebut pada akhir tahun 2012 dengan mengambil sampel sebanyak 12 desa dari 30 desa secara PPS WR dengan size jumlah rumah tangga. Jumlah rumah tangga di kecamatan tersebut sebanyak 69.875 rumah tangga. Dari setiap desa terpilih diteliti jumlah kasus kriminalitas yang terjadi selama tahun 2012.

a. Perkirakan total tindak kriminalitas di kecamatan tsb tahun 2012 dengan estimasi PPS beserta standar error, RSE, dan 95% Confidence interval-nya!

b. Jika jumlah tindak kriminalitas tahun 2011 dijadikan sebagai auxiliarry variable, perkirakan total kasus kriminalitas yang terjadi di kecamatan tsb pada tahun 2012 dengan estimasi regresi beserta standar error, RSE, dan 95% Confidence interval-nya !

c. Hitung relative efficiency estimasi regresi terhadap estimasi PPS !

d. Interpretasikan hasil yang diperoleh

No Jumlah ruta Jumlah Kriminalitas 2011 (Podes) 2012 (survei)

1 1750 19 14

2 1500 16 9

3 2625 28 21

4 2000 28 14

5 3000 24 21

6 1000 6 9

7 3000 38 21

8 1250 12 10

9 3625 38 29

10 3250 48 26

11 3875 35 31

(16)

TERIMA KASIH

Referensi

Dokumen terkait

Penelitian ini dilakukan untuk mengetahui pengaruh getah pepaya terhadap kualitas lada putih, konsentrasi getah pepaya yang paling baik dalam perendaman lada, waktu

Tujuan dari tesis ini adalah untuk mengetahui faktor-faktor yang menyebabkan perbedaan sanksi tindakan plagiarisme karya tulis menurut Undang – Undang Hak

PEMBANGUNAN WEBSITE JEJARING SOSIAL UNTUK BERBAGI INFORMASI KAJIAN ISLAM..

(roses #elarut SEC*II dan ydrocracks batubara ke dalam cairan dan gas  #roduk .(roses ini tidak memerlukan #enyaringan atau #elarut de*ashing yang digunakan dalam src*i

Contohnya jika Warga Thailand melakukan perbuatan kawin tanpa izin isteri (perkawinan terlarang) dan di Thailand perkawinan terlarang diancam dengan pidana maka apabila warga

Motlan Sirait, M.Sc, Ph.D, yang juga memberikan ijin kepada saya untuk mengikuti Program Studi S3 Ilmu Kimia di Fakultas MIPA Universitas Sumatera Utara.. Ketua Jurusan Ilmu Kimia

[r]

Terdapat korelasi antara dosis koagulan dan kecepatan pengadukan yang diberikan terhadap efisiensi penurunan kadar BOD, COD dan TSS dengan biji asam sebagai koagulan memperoleh